
Towards Efficient Archiving of Dynamic Linked

Open Data

Javier D. Fernández, Axel Polleres, Jürgen Umbrich

Vienna University of Economics and Business, Vienna, Austria
{javier.fernandez,axel.polleres,juergen.umbrich}@wu.ac.at

Abstract. The Linked Data paradigm has enabled a huge shared in-
frastructure for connecting data from different domains which can be
browsed and queried together as a huge knowledge base. However, struc-
tured interlinked datasets in this Web of data are not static but continu-
ously evolving, which suggests the investigation of approaches to preserve
Linked data across time. In this article, we survey and analyse current
techniques addressing the problem of archiving different versions of se-
mantic Web data, with a focus on their space efficiency, the retrieval
functionality they serve, and the performance of such operations.

1 Introduction

The Linked Data paradigm promotes the use of the RDF [7] data model to
publish structured data on the Web and to create data-to-data links between
different data sources [9]. As a result, a continuously growing interconnected
Web of data, consisting of typed hyperlinks between interconnected resources
and documents has emerged over the past years and attracted the attention of
several research areas, such as indexing, querying and reasoning over RDF data.

However, the emergingWeb of data is not a static structure of linked datasets,
but a dynamic framework continuously evolving; Distributedly and without no-
tice, novel datasets are added, others are modified, abandoned to obsolescence
or removed from the Web. All this without a centralized monitoring nor prefixed
policy, following the scale-free nature of the Web. Applications and businesses
leveraging the availability of certain data over time, and seeking to track data
or conduct studies on the evolution of data, thus need to build their own infras-
tructures to preserve and query data over time.

Thus, preservation policies on Linked Open Data (LOD) collections emerge
as a novel topic with the goal of assuring quality and traceability of datasets
over time. However, previous experiences in traditional Web archives, such as
the Internet Archive1, with petabytes of archived information, already highlight
scalability problems when managing evolving volumes of information at Web-
scale, making the task of longitudinal query across time a formidable challenge
with current tools [74]. It needs to be stressed that querying Web archives has to
deal mainly with text, whereas structured interlinked data archiving shall focus

1 http://archive.org.



on structured queries across time. In particular, several research challenges arise
when representing and querying evolving structured interlinked data:

– How can we represent archives of continuously evolving linked datasets?
– How can we minimize the redundant information and respect the original

modeling and provenance information of archives?
– How can emerging retrieval demands in archiving (e.g. time-traversing and

traceability) be satisfied on such evolving interlinked data?
– How can certain time specific queries over archives be answered on existing

technologies (e.g. SPARQL), providing the temporal validity of the returned
bindings, and how can we capture the expresiveness of queries that cannot
even be expressed in SPARQL itself (e.g. knowing if a dataset has changed,
and how, in a certain time period)?

This work gains first insights into the problem of archiving and querying
evolving semantic Web data. We first survey the most important related ar-
eas and techniques (Section 2). Then, we present current archiving models for
dynamic Linked Open Data (Section 3), describing their main inherent charac-
teristics and processing performance on common archiving retrieval needs. We
conclude by pointing out current research challenges, in Section 4.

2 Related Work

Dynamic Linked Open Data. The use of RDF to expose Semantic Data
on the Web has seen a dramatic increase over the last years. Several research
areas have emerged aside (or resurfaced strongly), such as RDF indexing [24,
40] and optimized graph querying [62, 57] on the basis of SPARQL, ontological
reasoning [13, 71, 49], and many others (schema mapping, graph visualization,
etc.). Most of these areas and applications, though, consider a static snapshot of
datasets, disregarding the dynamic nature of Web data, a lifecycle without order
nor generally established policies. As an example of such behavior, LODStats2,
a project constantly monitoring the LOD, reports (in March 2015) 4,223 live
datasets having almost 90 billion triples, in contrast to 5018 (54.3%) datasets
which present problems for retrieving. Similar problems were previously reported
by [69], and recently by the Dynamic Linked Data Observatory [32], which also
provides the raw corpora, openly and continuously. Its latest studies found that
38% of 80K crawled Linked Data documents had changed in a seven-month win-
dow (the monitoring period). In particular, 23% of the total documents suffered
from infrequent changes, and 8% were highly dynamic documents. Of the docu-
ments that changed, most updates affect values for RDF terms (27%), keeping
the same number of triples, or just added triples (24%) which leads to monotonic
additions. Regarding the availability of resources, 5% of documents disappeared
permanently, whereas, on average, documents were unavailable 20% of the time.

All these results provide evidence that RDF datasets are rarely static, and
tracking changes is receiving an increasing attention [67, 15, 72].

2 http://stats.lod2.eu/.



Time modeling in RDF. Managing semantic archives succinctly stands for
managing the time dimension in evolving RDF datasets. The time dimension
is naturally present when representing information as it is probably one of the
most important dimensions to locate events, actions and facts. There is, though,
a complete catalog of definitions and theories about the temporal dimension
[25, 1]; Time can be seen from multiple perspectives, from intervals (10am to
5pm) of validity of a fact to concrete time points (when an event has exactly
happened), as well as durations (1 hour, a decade). The distinction between
such perspectives is not always so clear or, better said, the temporal theories
and managing tools tackle time under certain assumptions related to the final
application. Additionally, temporal descriptions might be vague. For instance,
TimeML [51], the ISO standard to annotate temporal information, allows to
define recurrent events (e.g. “twice a month”) potentially without a concrete
timepoint reference.

Temporal information has been discussed in temporal databases [58, 64, 30],
XML documents [3, 53], and the World Wide Web [63, 2]. Although temporal
representation and management in RDF and the Semantic Web have appeared
recently, there is a growing interest in this area. See [11, 20] for a discussion on
temporal aspects in the Semantic Web.

Research works in the Semantic Web area roughly distinguish three forms of
annotating RDF/Linked Data with temporal information [54, 4]: (i) document-
centric annotation, where time points are associated with whole RDF docu-
ments. This annotation can be implicit, for instance HTTP metadata can be
used to detect changes [32], or explicit. In the latter case, specific vocabular-
ies to annotate metadata about datasets, such as the Vocabulary of Interlinked
Datasets (VoID)3, can be used. In turn, RDF documents can be considered as
digital objects following the path of other disciplines, such as Digital Libraries,
with preservation standards for these objects, such as HDF4 and PREMIS5 (this
latter including a semantic ontology for Linked Data compliance). Provenance
information of data collections is also becoming a hot topic, given the distributed
nature of Linked Open Data. In fact, the recent W3C PROV [22] standards can
be used to annotate and query RDF documents with time [72].

Time can be also represented (ii) using sentence-centric annotation, explicitly
defining the temporal validity, whether a time point or intervals, at the level of
statements/triples [68, 65, 50, 23, 78], and (iii) in a relationship-centric model,
encapsulating time into n-ary relations [43]. In this latter, a specific resource
identifies the time relation, and make use of it to link other related resources
[75, 39]. This can be seen as a particular case of multidimensional modeling [33,
17]. In [56], the authors study different general time modeling behaviors stating
that n-ary is the most used for experts.

As yet another practical approach which does not fall into one of these strict
categories, in [27] the authors build a Knowledge Base of facts (Yago2) from

3 http://www.w3.org/TR/void/.
4 http://www.hdfgroup.org/products/hdf4/.
5 http://www.loc.gov/standards/premis/.



Wikipedia, and enhance it with temporal and spatial dimension: they distin-
guish between the temporal dimension of entities (resources) and facts (sen-
tences). They develop a method to capture time and space from facts, as well
as rules for propagating such information to other related facts. To do so, they
consider static/permanent relations (e.g. ISBN, name), creation relations (e.g.
paint, create), destruction relation (e.g. died, destroy), and rules created on top.
Most important for preservation, each fact is assigned a time point denoting
its extraction and insertion into the Knowledge Base in order to capture prove-
nance information and allow systems to select facts from certain points of time.
This latter corresponds to the transaction time in the literature on temporal
databases [58], i.e. the period of time during with a fact is present in the sys-
tem, in contrast to the valid time, i.e. the data entered by the user of when a
fact is true in reality.

Finally, the OWL-Time6 ontology provides an RDF vocabulary to model –
but not to directly process and query – such temporal aspects.

Structured query languages managing time. Within the database com-
munity, several temporal query languages have been designed on the basis of
SQL-like modifications, such as TQuel [59], or the TSQL2 language [60] de-
signed for temporal relational databases [58]. The main time features of these
proposals are based on defining operations between time intervals [25, 1], such
as computing overlapping and meeting points of two intervals, or before, equal,
during and finish relationships between them.

Structured query languages managing time represented in RDF mainly follow
this approach. T-SPARQL [19] is a temporal extension of SPARQL, motivating
the proposal on the need of keeping track of the changes in the legal domain. The
T-SPARQL language assumes that the temporal information is represented in
RDF using a sentence-centric annotation where timestamps are associated with
RDF triples. Then, it extends SPARQL embedding aforementioned temporal
features of the TSQL2 language [60]. In contrast, the author does not provide a
feasible implementation, but names two special index structures which allow for
efficient processing of temporal queries: tGRIN [50] and keyTree [65].

The tGRIN proposal is based on triples annotated with time (tRDF), i.e. a
sentence annotation modeling, but they consider time annotations in the edges
of the relations. Then, they define a variation of SPARQL augmented with these
temporal annotations on the edges (either variable or constant), referred to as
tRDF queries. Finally, they build a balance tree keeping together those nodes
with a “close” timing (as they should be queried together). Nevertheless, both
the construction and the query can result in costly operations.

SPARQL-ST [48] is a SPARQL extension supporting spatio-temporal queries,
limited to special FILTER conditions, also on the basis of sentence annotation.
Regarding the query language in [27], authors make use of reification, as each
fact has an identifier and time points are associated to facts. However, searching
in a SPARQL fashion produces a large number of joins which is not easy for

6 http://www.w3.org/TR/owl-time/.



non-experts. Thus, they designed the so-called SPOTL view, a syntactic sugar
modification of SPARQL to avoid such joins when specifying time or location. In
particular, four types of time predicates can be added after each (s,p,o) pattern:
overlaps, during, before and after. This allows to query interesting events with
few constructions. Based on a similar idea, stSPARQL [8] extends SPARQL with
minimal constructions to query valid times of linked geospatial data.

In turn, AnQL [78] is a SPARQL extension focused on querying annotated
graphs. These annotations can refer to several domains, such as trust or fuzzy
values, provenance and temporal information (e.g. temporal validity), for which
the proposal highlights some specific issues and extensions to cope with multi-
ple domains. Finally, other research efforts focus on representing and querying
temporal information in the Web Ontology Language [26] (OWL) [46, 6].

Web archives. Similar scenarios were recently envisioned for Web archiving7,
i.e. maintaining snapshots of the Web at different times. In this respect, active
non-profit organizations, such as Common Crawl8 and the Internet Memory9,
provide open Web crawl data which can be used for third parties. In particular,
the Web Data Commons project10 has extracted the hyperlink graph11 from the
data from Common Crawl, also providing it for open use.

However, current Web archiving offers limited query services, mostly re-
stricted to dereferencing URLs across certain time points. Note that the Web
archive size will increase several orders of magnitude across time: a system that
should index and provide full-text queries to such an archive will need to deal
with amounts of information which largely surpass the volume managed by lead-
ing Web search engines. Although several works identify this challenge of Web
archive search [12, 74, 18] no satisfying solution exists to date. In fact, this can
be seen as one on the biggest Big Data problems [18].

Other issues & Discussion. Many semantic Web applications currently work
mainly with the most recent snapshot of RDF data collections from the Web.
Acknowledging that this could cope the requirements of some information ser-
vices, more advanced requirements, such as longitudinal querying over time and
queries regarding of the evolution of data, cannot be achieved. Consider, for in-
stance, the open data portals of certain governments. These portals usually have
several contributors from different governmental agencies, or even try to provide
a unique access point to information from diverse governmental levels. Recent
projects monitoring Open Data portals, such as the Open Data Portal Watch
[70] and the Open Data Monitor12, reinforce the idea that these portals are
growing unconstrained. Thus, there is an ongoing need to archive information
whether locally at the site of each contributor itself, or centralized. In any case,

7 Up-to-date bibliography at http://digital.library.unt.edu/ark:/67531/metadc172362.
8 http://commoncrawl.org/.
9 http://internetmemory.org/en/.

10 http://webdatacommons.org/.
11 Latest graph (April 2014) covers 1.7 billion web pages and 64 billion hyperlynks.
12 http://www.opendatamonitor.eu/.



Fig. 1. Example of RDF graph versions.

it could be relevant for analysis purposes to know the evolution of a collection
over time. For external applications and services built on top of such collections,
a searchable record of changes should be useful to integrating such information
accordingly. In this sense, RDF graph replication [29, 52, 55, 66] addresses the
slightly different problem of mirroring complete or partial graphs (locally or in
different nodes), and to propagate changes between the subsets. Although in
this case the main objective is to optimize the synchronization, some tasks, such
as semantic differences computation and size reduction, can be seen as common
issues both for data replication and LOD archiving.

Finally, what was stated in a dataset at a certain time point in the past
may be taken into account for legals aspects in the same way its used in Web
archiving [28]. Data journalism is another particular area in which tracking and
comparing information over time is especially relevant.

3 Modelling Archives of Dynamic Linked Open Data

In this section we present current practical approaches to archive dynamic Linked
Open Data. We then discuss the desired retrieval functionality and how differ-
ent models specifically tackle such query demands. Our use case is depicted in
Figure 1, which shows a sequence of three snapshots for an RDF graph. In this
example, the original version V1 models the information on two students ex:S1
and ex:S2 studying in a course ex:C1, whose professor is ex:P1. In the second
version V2, ex:S2 disappeared in favour of a new student ex:S3. Finally, in ver-
sion V3, professor ex:P1 leaves the course to a pair of professors: a new professor
ex:P2 and the former ex:S2 who reappears under a different role.

3.1 Archiving policies

Several research efforts address the challenge of archiving the increasingly dy-
namic data exposed as Linked Data. The main related works make use of three
storage strategies (slightly adapted from [67]), namely independent copies (IC),
change-based (CB) and timestamp-based (TB) approaches. Figure 2 shows dif-
ferent archiving policies for our running example.



Fig. 2. Common archiving policies on RDF graph versions.

Independent Copies (IC). This basic policy [34, 45] stores and manages each
version as a different, isolated dataset, as shown in Figure 2 (a). Nonetheless, a
metadata characterization could be built on top in order to provide a catalogue of
the different available versions, e.g. using the Data Catalog Vocabulary (DCAT)
[38] and the Provenance Ontology (PROV) [22].

IC suffers from well-known scalability problems, as the static core (triples
that do not change), is fully repeated across versions.

Change-based approach (CB). This policy addresses the previous scalability
issue by computing and storing the differences (deltas) between versions, as can
be seen in Figure 2 (b). In this particular example, differences are computed at
the level of triples (low-level deltas [73, 15, 77]), distinguishing between added
(∆+) and deleted (∆−) triples. Change detection is thus based on a basic lan-
guage of changes describing the change operations, typically marking added and
deleted triples, which can be shared in markup languages such as RDF Patch13.
Complementary recent works focus on computing dataset differences in a dis-
tributed way, such as rdfDiff14 and G-Diff [31], both working on MapReduce.

Other approaches works on extracting human-readable (high-level deltas [47,
44]) with the purpose of obtaining a more concise explication on the whys and
hows of the changes (e.g. deltas can state that a class has been renamed, and this
affects all the instances). On the one hand, low-level deltas are easy to detect and
manage, and applies to any valid RDF dataset. On the other hand, high-level
deltas are more descriptive and can be more concise, but this is at the cost of
relying on an underlying semantics (such as RDFS or OWL), and they are more
complex to detect and manage [76].

13 http://afs.github.io/rdf-patch/.
14 https://github.com/paulhoule/infovore/wiki/rdfDiff.



Timestamp-based approach (TB). This approach can be seen as a partic-
ular case of the aforementioned sentence-centric annotation to model the time
in RDF [68, 65, 50, 23, 78]. Instead of explicitly defining the temporal validity
of statements/triples, in the LOD archiving, each sentence locally holds the
timestamp of the version. Again, the static core of the archive would produce
repetitions, as static triples would be labelled with all the present timestamps.
In order to save space avoiding such repetitions, practical proposals annotate the
triples only when they are added or deleted. That is, the triples are augmented
by two different fields: the created and deleted (if present) timestamps [41, 72].

3.2 Retrieval Functionality

Querying evolving semantic Web data is an emerging but challenging topic. Con-
sidering several aspects from previous categorizations [61, 35], we can distinguish
six different types of retrieval needs grouped under several dimensions, shown
in Table 1. The classification regards the query type (materialization or struc-
tured query) and the main focus (version/delta) of the involved query. We also
distinguish the time (single/cross-time queries) for the structured queries.

Version materialization: It involves to retrieve a given version, or the closest
version/s from a certain given period.

Although this can be seen as a straightforward, basic demand, in fact (i) it is
the most common feature provided by large scale archives, such as current Web
archiving (see Section 2) that mostly dereferences URLs across certain time
points, and (ii) it still presents a challenge at Web scale, as size will increase
several orders of magnitude across time. This functionality is also intensively
used in related areas, such as retrieving a certain state in revision control systems.

Single-version structured queries: Structured queries must be satisfied on
a specific version, typically, but not limited to, the newest one.

In this case, the retrieval demands are aligned with current state-of-the-art
query resolution over semantic data. That is, one could expect to work on an
RDF archive in a similar way than to any RDF store that serves, for instance
SPARQL resolution. Likewise, the same complexities applies, with the added
difficulty of switching between versions.

For instance, in our running example from Figure 1, one could ask what
lecture was given by certain teacher at a certain time, or if two given students
attended the same course in a given time.

Cross-version structured queries: Structured queries must be satisfied across
different versions.

This feature opens up the possibility to resolve time-traversal queries, thus
coping with information needs dealing with evolution patterns. This evolution
can be tracked at two different levels: (i) a simple triple/sentence pattern, for
instance, in our running example one may be interested in knowing all the courses
attending by a certain student, and (ii) a complex graph pattern query, such
as retrieving those subjects who have played the role of student and teacher of
the same course. Both cases are related to previous work on structured query



Focus

Type
Materialization

Structured Queries
Single time Cross time

Version Version Materialization Single-version structured queries Cross-version structured queries

-get snapshot at time ti -lectures given by certain teacher at time ti -subjects who have played the role of student
and teacher of the same course

Delta Delta Materialization Single-delta structured queries Cross-delta structured queries

-get delta at time ti -students leaving a course between two con-
secutive snapshots, i.e. between ti−1 , ti

-evolution of added/deleted students across
versions

Table 1. Classification and examples of retrieval needs.

RETRIEVAL NEED
POLICIES

Indep. Copies (IC) Change-based (CB) Timestamp-based (TB)

Version Materialization Low Medium Medium

Delta Materialization Medium Low Low

Single-version structured queries Medium Medium Medium

Cross-version structured queries High High Medium

Single-delta structured queries High Medium Medium

Cross-delta structured queries High High Medium

Table 2. Processing of retrieval needs (level of complexity).

languages managing time (see Section 2). Nonetheless, the first one requires less
expressiveness, and thus it could be provided by simpler resolution mechanisms.

Delta materialization: In this case, the main focus of the retrieval need is the
changes between two or more given versions.

While this functionality may seem underexploited in current LOD archiving,
increasingly LOD adoption would also bring RDF authoring to be widespread
and distributively performed. In this scenario, version difference and its related
operations (merge, conflict resolution, etc.) would be as crucial as they are in
revision control systems. Besides authoring, third-party systems relying on such
evolving datasets also might need to maintain a fresh version and thus updating
policies can be based on knowing and materializing version differences.

Single-delta structured queries: Structured queries must be satisfied on a
specific change instance of the dataset.

This information demand particularly focuses on the differences between two
versions, which are typically but not always consecutive. Besides other evolution
studies, these queries play a main role in monitoring and maintenance processes.
For instance, in our running example, one could be interested in knowing the
students leaving a course between two versions. In general, it is interesting to
know if certain addition/deletion or modification pattern applies, as this could
trigger other actions. This monitoring can impact on related areas such as view
maintenance, schema mappings and inference recomputation.

Cross-delta structured queries: Structured queries must be satisfied across
the differences of the dataset, thus allowing for fully fledged evolution studies.

In this case, the retrieval needs could be seen (i) as a generalization of the
previous scenario, thus fostering the evolution studies and feeding the monitoring
and maintenance processes, and (ii) as a particular realization of cross-version
structured queries. Nonetheless, in cross-delta structured queries we put the
focus on knowing the differences, i.e. the hows of the evolution process. For
instance, complex queries on our example could require to know the evolution in
the number of added/deleted students or teachers across several version.



3.3 Retrieval Processing

Finally, we briefly discuss how the presented archiving models can tackle the
aforementioned retrieval needs. First of all, note that all models represent the
same information, in complementary ways, so that all retrieval needs could be
theoretically satisfied. However, their aims clearly differ, thus they could present
important drawbacks. Table 2 summarizes the qualitative level of complexity
(low, medium, high) required to satisfy each type of retrieval demand.

Independent Copies (IC) may suffer from scalability problem in space, but it
is a straightforward, simple approach that could fit for basic retrieval purposes,
as version materialization, with low effort. In fact, this approach is widely used to
directly provide historical version dumps (typically compressed to reduce space
needs of textual RDF formats), such as in DBpedia15 and other projects serving
Linked Open Data snapshots, such as the dynamic Linked Data Observatory16.
In contrast, the rest of operations requires medium or high processing efforts. A
potential retrieval mediator (depicted in Figure 2 (a)) should be placed on top
of the versions, with the challenging tasks of i) computing deltas at query time
to satisfy delta-focused queries, ii) loading/accessing the appropriate version/s
and solve the structured queries, and iii) performing both previous tasks for the
particular case of structured queries dealing with deltas.

Change-based approaches (CB) reduce the required space but at the cost of
requiring additional computational costs for delta propagation and thus version-
focused retrieving operations. In general, as shown in Figure 2 (b), a query
mediator should access a materialized version and the subsequent deltas. In this
case, delta materialization is obviously costless but i) it requires of the aforemen-
tioned delta propagation to solve version-focused queries and ii) to load/access
the appropriate delta/s or re-created version/s for structured queries.

Nonetheless, note that his strategy is highly configurable, both in (a) the
aforementioned mechanism to detect and store the differences (e.g. low/high level
deltas), (b) whether to apply direct deltas (computing the changes of version Vi

with respect to version Vi−1) or reverse deltas (computing the changes of version
Vi−1 with respect to version Vi) and (c) whether to store all subsequence deltas
or store the full version materialization in some intermediate steps. Recent works
inspect the latter tradeoffs. On the one hand, [15] precomputes an aggregation of
all deltas, so that it improves cross-delta computation at the cost of augmenting
space overheads. On the other hand, [61] proposes a theoretical cost model to
adopt a hybrid (IC+CB) approach. These costs highly depend on the difficulties
of constructing and reconstructing versions and deltas, which may depend on
multiple and variable factors. Another intermediate solution [67] builds a partial
order index keeping a hierarchical track of changes. This proposal, though, is a
limited variation of delta computation and it is only tested with datasets having
some thousand triples. Same scalability issues applies for a hypergraph-based
solution [14], storing the information of version in hyperedges.

15 http://wiki.dbpedia.org/Downloads
16 http://swse.deri.org/dyldo/data/



Timestamp-based approaches (TB) conceptually manage one augmented
graph containing all versions, which are labelled accordingly. As stated, most
practical approaches, such as [41, 72, 21], annotate the insertion/deletion point
of each triple, thus saving space. These approaches manage versions/deltas un-
der named/virtual graphs, so that the retrieval mediator (depicted in Figure 2
(c)) can rely on existing solutions providing named/virtual graphs. In Table 2
we consider these practical cases and thus we report that, except for delta mate-
rialization, all retrieval demands can be satisfied with medium processing efforts
given that i) version materialization requires to rebuild the delta similarly to
CB, and ii) structured queries may need to skip irrelevant triples [41].

4 Discussion

Dynamic Linked Open Data archiving is a relevant and emerging area of interest
[5] which has its roots in Web archives where, unfortunately, the few current
approaches are seriously compromised by scalability drawbacks at Web scale [12].
In addition, these proposals include basic search capabilities, whereas structured
and time-traversing queries also constitute emerging retrieval demands [74].

Specific versioning, data replicas and archiving of interlinked data are still in
an early stage of research [72, 15, 67], while none of the analysed representations
have been neither designed nor applied at the scale of Linked Open Data.

Our current efforts to foster efficient archiving of dynamic Linked Open Data
focus on two complementary challenges. On the one hand, improving scalability
of archives, which involves to manage them on a modular, distributed fashion,
while reducing the high levels of verbosity/redundancy. On the other hand, op-
timizing query resolution, specially for those retrieval demands that requires to
scale up to large volumes of data, along different dimensions.
Compression and Indexing of Archives. One promising way of managing
such collections at large scale is to take advantage of the information redundancy
to minimize its representation through compression and to provide indexing and
thus query resolution on the compressed information. Compressing and index-
ing highly repetitive text collections is an active research area. Grammar-based
compressors [42] infer a grammar which generates the given text, hence they
are particularly suitable for texts comprising many repeated substrings because
these can be effectively encoded through the grammar rules. In addition, latest
proposals enable direct access to the data [10]. Similar goals have been pur-
sued on the basis of the Lempel-Ziv LZ78 [80] or LZ77 [79] variants, with their
counterpart searchable proposals [36, 37]. Most of the approaches allowing direct
access assume that the information of which texts are close variants of which
can be identified. Thus, representative baseline texts can be selected while the
related texts can be compressed referencing their representatives [10].

Although archiving dynamic Linked Open Data has also to tackle text redun-
dancy, its distinguishing feature is the presence of a semantic structure. In this
respect, specific RDF compression [16] emerges as an ideal solution to achieve
highly-compressed representations of RDF archives at large scale.



Query resolution of Archives. Structured query mechanisms for temporal
data are mainly based on traditional relational proposals. While some work has
been done on structured query languages managing time in RDF [19, 48, 27], none
of the proposals is specific for archiving evolving interlinked data. In turn, there
is still a large interest in scalable RDF indexing [24, 40] and query optimization
[62, 57], whose performance is critical when managing very large datasets.

An efficient solution is thus a formidable challenge, which should consider a
scalable model for archiving, efficient compression and indexing methods that
supports an expressive temporal query language, which, all together, will enable
to gain novel insights from Linked Open Data across time.

Acknowledgments

Javier D. Fernández is funded by Austrian Science Fund (FWF): M1720-G11.

References

1. J. F. Allen. Towards a General Theory of Action and Time. Artificial intelligence,
23(2):123–154, 1984.

2. O. Alonso, J. Strötgen, R. A Baeza-Yates, and M. Gertz. Temporal information
retrieval: Challenges and opportunities. In Proc. of TempWeb, volume CEUR-WS
707, paper 1, 2011.

3. T. Amagasa, M. Yoshikawa, and S. Uemura. A Data Model for Temporal XML
Documents. In Proc. of DEXA, pp. 334–344, 2000.

4. A. Analyti and I. Pachoulakis. A Survey on Models and Query Languages for
Temporally Annotated RDF. International Journal of Advanced Computer Science
and Applications, 3(9):28–35, 2012.

5. S. Auer, T. Dalamagas, H. Parkinson, F. Bancilhon, G. Flouris, D. Sacharidis,
P. Buneman, D. Kotzinos, Y. Stavrakas, V. Christophides, G. Papastefanatos,
and K. Thiveos. Diachronic Linked Data: Towards Long-term Preservation of
Structured Interrelated Information. In Proc. of WOD, pp. 31–39, 2012.

6. S. Batsakis, K. Stravoskoufos, and E. G. M. Petrakis. Temporal Reasoning for
Supporting Temporal Queries in OWL 2.0. In Proc. of KES, pp. 558–567. 2011.

7. D. Beckett. RDF/XML Syntax Specification (Revised). W3C Recom. 2004.
8. K. Bereta, P. Smeros, and M. Koubarakis. Representation and Querying of Valid

Time of Triples in Linked Geospatial Data. In Proc. of ESWC, pp. 259–274. 2013.
9. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Inter-

national Journal on Semantic Web and Information Systems, 5:1–22, 2009.
10. F. Claude and G. Navarro. Self-Indexed Text Compression using Straight-Line

Programs. In Proc. of MFCS, pp. 235–246. 2009.
11. G. Correndo, M. Salvadores, I. Millard, and N. Shadbolt. Linked Timelines: Tem-

poral Representation and Management in Linked Data. In Proc. of COLD, volume
CEUR-WS 665, paper 7. 2010.

12. M. Costa, D. Gomes, F. Couto, and M. Silva. A Survey of Web Archive Search
Architectures. In Proc. of WWW Companion, pp. 1045–1050, 2013.

13. J. De Bruijn and S. Heymans. Logical foundations of (e)RDF(S): Complexity and
reasoning. In Proc. of ISWC, pp. 86–99. 2007.



14. I. Dong-Hyuk, Z. Nansu, K. Eung-Hee, Y. Seokchan, and K. Hong-Gee. A
Hypergraph-based Storage Policy for RDF Version Management System. In Proc.
of ICUIMC, pp. 74:1–74:5, 2012.

15. I. Dong-Hyuk, L. Sang-Won, and K. Hyoung-Joo. A Version Management Frame-
work for RDF Triple Stores. International Journal of Software Engineering and
Knowledge Engineering, 22(1):85–106, 2012.

16. J. D. Fernández, M. A. Mart́ınez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias.
Binary RDF Representation for Publication and Exchange (HDT). Journal of Web
Semantics, 19:22–41, 2013.

17. M. Gergatsoulis and P. Lilis. Multidimensional RDF. In Proc. of OTM, pp. 1188–
1205. 2005.

18. D. Gomes, M. Costa, D. Cruz, J. Miranda, and S. Fontes. Creating a Billion-scale
Searchable Web Archive. In Proc. of WWW Companion, pp. 1059–1066, 2013.

19. F. Grandi. T-SPARQL: A TSQL2-like Temporal Query Language for RDF. In
Proc. of ADBIS, pp. 21–30. 2010.

20. F. Grandi. Introducing an Annotated Bibliography on Temporal and Evolution
Aspects in the Semantic Web. SIGMOD Rec., 41(4):18–21, 2013.

21. M. Graube, S. Hensel, and L. Urbas. R43ples: Revisions for triples. In Proc. of
LDQ, volume CEUR-WS 1215, paper 3, 2014.

22. P. Groth and L. Moreau. PROV-overview: an Overview of the PROV Family of
Documents. W3C Working Group Note. 2013.

23. C. Gutierrez, C.A. Hurtado, and A. Vaisman. Introducing Time into RDF. IEEE
Transactions on Knowledge and Data Engineering, 19(2):207–218, 2007.

24. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A Federated Repository
for Querying Graph Structured Data from theWeb. In Proc. of ISWC, pp. 211–224.
2007.

25. P. Hayes. A Catalog of Temporal Theories. Tech. Report UIUC-BI-AI-96-01, 1995.
26. P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. OWL

2 Web Ontology Language Primer (Second Edition). W3C Recom. 2012.
27. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A Spatially

and Temporally Enhanced Knowledge Base from Wikipedia. Artificial Intelligence,
194:28–61, 2013.

28. B. A Howell. Proving Web History: How to Use the Internet Archive. Journal of
Internet Law, 9(8):3–9, 2006.

29. L. D. Ibáñez, H. Skaf-Molli, P. Molli, and O. Corby. Live linked data: Synchronising
semantic stores with commutative replicated data types. International Journal of
Metadata, Semantics and Ontologies, 8(2):119–133, 2013.

30. C. S. Jensen, C. E. Dyreson, M. Böhlen, et al. The consensus Glossary of Tempo-
ral Database Concepts-February 1998 version. Temporal Databases: Research and
Practice, pp. 367–405, 1998.

31. A. Jinhyun, I. Dong-Hyuk, E. Jae-Hong, Z. Nansu, and K. Hong-Gee. G-Diff: A
Grouping Algorithm for RDF Change Detection on MapReduce. In Proc. of JIST,
pp. 230–235. 2015.

32. T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan. Observing
Linked Data Dynamics. In Proc. of ESWC, pp. 213–227. 2013.

33. B. Kampgen. Flexible Integration and Efficient Analysis of Multidimensional
Datasets from the Web. PhD thesis, Karlsruhe Institute of Technology, 2015.

34. M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology versioning and
change detection on the web. In Proc. of EKAW, pp. 197–212. 2002.

35. G. Koloniari and E. Souravlias, D.and Pitoura. On Graph Deltas for Historical
Queries. In Proc. of WOSS, volume arXiv:1302.5549, 2012.



36. S. Kreft and G. Navarro. On compressing and indexing repetitive sequences. The-
oretical Computer Science, 483:115–133, 2013.

37. S. Kuruppu, S. J Puglisi, and J. Zobel. Relative Lempel-Ziv Compression of
Genomes for Large-Scale Storage and Retrieval. In Proc. of SPIRE, pp. 201–206.
2010.

38. F. Maali, J. Erickson, and P. Archer. Data catalog vocabulary (DCAT). W3C
Recom. 2014.

39. V. Milea, F. Frasincar, and U. Kaymak. Knowledge Engineering in a Temporal
Semantic Web Context. In Proc. of ICWE, pp. 65–74, 2008.

40. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19:91–113, 2010.

41. T. Neumann and G. Weikum. x-RDF-3X: Fast querying, high update rates, and
consistency for RDF databases. Proc. of VLDB Endowment, 3(1-2):256–263, 2010.

42. C. G. Nevill-Manning, I. H. Witten, and D. L. Maulsby. Compression by induction
of hierarchical grammars. In Proc. of DCC, pp. 244–253, 1994.

43. N. Noy, A. Rector, P. Hayes, and C. Welty. Defining N-ary Relations on the
Semantic Web. W3C Working Group Note, 2006.

44. N. F. Noy and M. A. Musen. Promptdiff: A Fixed-Point Algorithm for Comparing
Ontology Versions. In Proc. of IAAI, pp. 744–750. 2002.

45. N. F. Noy and M. A. Musen. Ontology Versioning in an Ontology Management
Framework. IEEE Intelligent Systems, 19(4):6–13, 2004.

46. M. J. O’Connor and A. K. Das. A Method for Representing and Querying Temporal
Information in OWL. In Proc. of BIOSTEC, pp. 97–110, 2011.

47. V. Papavasileiou, G. Flouris, I. Fundulaki, D. Kotzinos, and V. Christophides.
High-level Change Detection in RDF(S) KBs. ACM Trans. Database Syst., 38(1),
2013.

48. M. Perry, P. Jain, and A. P. Sheth. SPARQL-ST: Extending SPARQL to Support
Spatiotemporal Queries. Geospatial Semantics and the Semantic Web, 12:61–86,
2011.

49. A. Polleres, A. Hogan, R. Delbru, and J. Umbrich. RDFS and OWL Reasoning
for Linked Data. In Proc. of RW, pp. 91–149. 2013.

50. A. Pugliese, O. Udrea, and V. S. Subrahmanian. Scaling RDF with time. In Proc.
of WWW, pp. 605–614, 2008.

51. J. Pustejovsky, J. M. Castaño, R. Ingria, R. Sauri, R. J. Gaizauskas, A. Setzer,
G. Katz, and D. R. Radev. TimeML: Robust Specification of Event and Temporal
Expressions in Text. In Proc. of IWCS, 2003.

52. L. Rietveld. Replication for Linked Data. In Proc. of ISWC, pp. 415–423. 2012.
53. F. Rizzolo and A. A. Vaisman. Temporal XML: Modeling, Indexing, and Query

Processing. The VLDB Journal, 17(5):1179–1212, 2008.
54. A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, and A. Maurino. On the Diver-

sity and Availability of Temporal Information in Linked Open Data. In Proc. of
ISWC, pp. 492–507. 2012.

55. B. Schandl. Replication and Versioning of Partial RDF Graphs. In Proc. of ESWC,
pp. 31–45. 2010.

56. A. Scheuermann, E. Motta, P. Mulholland, A. Gangemi, and V. Presutti. An
Empirical Perspective on Representing Time. In Proc. of K-CAP, pp. 89–96, 2013.

57. M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL Query Optimiza-
tion. In Proc. of ICDT, pp. 4–33, 2010.

58. R. T. Snodgrass. Temporal Databases. IEEE Computer, 19:35–42, 1986.
59. R. T. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on

Database Systems (TODS), 12(2):247–298, 1987.



60. R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, 1995.

61. K. Stefanidis, I. Chrysakis, and G. Flouris. On Designing Archiving Policies for
Evolving RDF Datasets on the Web. In Proc. of ER, pp. 43–56. 2014.

62. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL Basic
Graph Pattern Optimization Using Selectivity Estimation. In Proc. of WWW, pp.
595–604, 2008.

63. J. Strötgen, O. Alonso, and M. Gertz. Identification of Top Relevant Temporal
Expressions in Documents. In Prof. of TempWeb, pp. 33–40, 2012.

64. A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors.
Temporal Databases: Theory, Design, and Implementation. 1993.

65. J. Tappolet and A. Bernstein. Applied Temporal RDF: Efficient Temporal Query-
ing of RDF Data with SPARQL. In Proc. of ESWC, pp. 308–322. 2009.

66. G. Tummarello, C. Morbidoni, R. Bachmann-Gmür, and O. Erling. RDFSync:
Efficient Remote Synchronization of RDF Models. In Proc. of ISWC, pp. 537–551.
2007.

67. Y. Tzitzikas, Y. Theoharis, and D. Andreou. On Storage Policies for Semantic
Web Repositories That Support Versioning. In Proc. of ESWC, pp. 705–719. 2008.

68. O. Udrea, D. R. Recupero, and V. S. Annotated RDF. ACM Transactions on
Computational Logic (TOCL), 11(2):1–41, 2010.

69. J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker. Towards Dataset
Dynamics: Change Frequency of Linked Open Data Sources. In Proc. of LDOW,
2010.

70. J. Umbrich, S. Neumaier, and A. Polleres. Towards assessing the quality evolution
of Open Data portals. In Proc. of ODQ, 2015.

71. J. Urbani, S. Kotoulas, E. Oren, and F. Van Harmelen. Scalable Distributed
Reasoning using Mapreduce. In Proc. of ISWC, pp. 634–649. 2009.

72. M. Vander Sander, P. Colpaert, R. Verborgh, S. Coppens, E. Mannens, and
R. Van de Walle. R&Wbase: Git for triples. In Proc. of LDOW, volume CEUR-WS
996, paper 1, 2013.

73. M. Volkel, W. Winkler, Y. Sure, S.R. Kruk, and M. Synak. Semversion: A version-
ing system for rdf and ontologies. In Proc. of ESWC, 2005.

74. G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. Benczúr, S. Kirkpatrick,
P. Rigaux, and M. Williamson. Longitudinal Analytics on Web Archive Data: It’s
About Time! In Proc. of CIDR, pp. 199–202, 2011.

75. C. Welty, R. Fikes, and S. Makarios. A reusable ontology for fluents in owl. In
Proc. of FOIS, pp. 226–236, 2006.

76. F. Zablith, G. Antoniou, M. d’Aquin, G. Flouris, H. Kondylakis, E. Motta, D. Plex-
ousakis, and M. Sabou. Ontology evolution: a process-centric survey. The Knowl-
edge Engineering Review, 30(01):45–75, 2015.

77. D. Zeginis, Y. Tzitzikas, and V. Christophides. On Computing Deltas of RDF/S
Knowledge Bases. ACM Transactions on the Web (TWEB), 5(3):14, 2011.

78. A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A General Framework
for Representing, Reasoning and Querying with Annotated Semantic Web Data.
Web Semantics: Science, Services and Agents on the World Wide Web, 12:72–95,
2012.

79. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977.

80. J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate
Coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.


