
Generating Examples of Paths Summarizing RDF Datasets

Jindřich Mynarz
Department of Information and

Knowledge Engineering,
University of Economics

W. Churchill Sq. 4
130 67 Prague, Czech

Republic
jindrich.mynarz@vse.cz

Marek Dudáš
Department of Information and

Knowledge Engineering,
University of Economics

W. Churchill Sq. 4
130 67 Prague, Czech

Republic
marek.dudas@vse.cz

Paolo Tomeo
SisInf Lab, Polytechnic

University of Bari
Via Orabona 4

70125 Bari, Italy
paolo.tomeo@poliba.it

Vojtěch Svátek
Department of Information and

Knowledge Engineering,
University of Economics

W. Churchill Sq. 4
130 67 Prague, Czech

Republic
svatek@vse.cz

ABSTRACT
As datasets become too large to be comprehended directly,
a need for data summarization arises. A data summary can
present typical patterns commonly found in a dataset, from
which high-level understanding of the data can be obtained.
Nonetheless, such abstract understanding can be improved
by providing concrete examples of the summary patterns.
If possible, the chosen examples should be diverse and rep-
resentative of the patterns they instantiate. In this paper,
we present three methods for generating examples of pat-
terns discovered in RDF datasets. The patterns we consider
are the most frequent path graphs that consist of classes of
instances or data types of literals connected by RDF proper-
ties. We propose an RDF/S vocabulary for describing these
path graphs and their instances. We present three methods
for generating path examples, namely random, distinct, and
representative selection, that are based on randomization,
diversification, and clustering.

CCS Concepts
•Information systems→ Summarization; Resource De-
scription Framework (RDF);

Keywords
summarization, diversity, clustering, RDF

1. INTRODUCTION
Many datasets nowadays are too large to comprehend by

examining all their data. Fortunately, most large datasets
exhibit regular structure. Partial comprehension of such
datasets can be derived from the common patterns mani-
fested in their structure. In a way, a dataset’s structure pro-

c© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

vides a high-level summary of the dataset’s content. Never-
theless, discovering a dataset’s structure is somewhat more
difficult with data formalized using the Resource Descrip-
tion Framework (RDF) [5]. RDF is a graph data model that
decomposes data into binary relations represented as RDF
triples. RDF datasets usually do not have a schema fixed
up-front. While traditional relational databases enforce ex-
ante schema, schema in RDF datasets often emerges only
ex-post as a result of combination of several RDF vocabu-
laries and their specific way of use. The schemas of RDF
datasets are thus descriptive rather than prescriptive.

Since schemata of RDF datasets are not formalized be-
fore use, they typically need to be discovered from data
via statistical inference. An example of a tool that discov-
ers and summarizes the structure of RDF datasets is LOD-
Sight [7]. LODSight offers a node-link visualization of the
most common path graphs found in a summary of an RDF
dataset. Path graphs are trees with n nodes, such that 2
nodes have vertex degree 1 and n− 2 nodes have vertex de-
gree 2, so that the graph can be drawn with all its nodes and
edges lying in a single straight line [8, p. 18]. The nodes
in these RDF paths in LODSight are types (either classes
or data types), while the edges are predicates connecting in-
stances of the types in the summarized dataset. Paths follow
the direction from subject to object. For example, a path
can connect the class gr:BusinessEntity1 via the predi-
cate schema:address to the class schema:PostalAddress,
which is in turn connected to the data type xsd:string via
the predicate schema:streetAddress. This path connects
companies to their postal addresses that have literal street
addresses.

The empirical schema of an RDF dataset embodied in the
LODSight’s paths may be rather abstract. In order to re-
cover some of the understanding obtained by examining the
data itself, it is possible to present the user of LODSight with

1All namespace prefixes (gr:, schema:, etc.) used in this
paper can be resolved to their corresponding namespace IRIs
by using http://prefix.cc.

representative examples instantiating the patterns found in
the dataset. Providing several diverse examples of a cho-
sen pattern can complement the high-level understanding of
a dataset with inductive understanding following from the
concrete examples. LODSight offered a basic functionality
for generating examples of RDF paths from its inception. It
retrieved examples in a non-random fashion from an RDF
store using the default sort order for SPARQL results, so
that for each query the same examples are retrieved. In this
paper we present an improvement of this functionality. It is
implemented as an application that generates random and
illustrative examples of RDF paths. In the following sections
we present the methods used for example selection and their
implementation.

Before proceeding with our work, we consider the research
related to it. While a lot of related effort is dedicated to
summarization of RDF datasets, generating examples from
summaries is rarely covered. In cases where the research on
RDF summarization is concerned with selection of the most
representative features of the analysed datasets, it does so
predominantly on the level of patterns instead of the level
of pattern instances (e.g., [13, 15, 16]). Similar to our work,
Presutti et al. [13] also propose a vocabulary for describing
paths in RDF datasets.2 Automatic selection of representa-
tive examples proposed by Böhm et al. [2] uses the resources
described by the most RDF triples as representative exam-
ples linked via the void:exampleResource property from the
Vocabulary of Interlinked Datasets [1]. To our knowledge
the work of Dudáš et al. [7] on the previously-mentioned
LODSight, on which this research builds, is the first to men-
tion automatic selection of representative instances of pat-
terns from RDF datasets.

2. EXAMPLE GENERATION METHODS
The application generating examples of RDF paths that

is described in this paper offers 3 methods we developed
for example selection of increasing sophistication, namely
random selection, distinct selection, and representative se-
lection. An integral part of all these methods is the rep-
resentation of RDF paths, for which we propose the RDF
Path vocabulary. Additionally, a fundamental part of the
latter two methods is distance computation. We describe
both these components before we explain how the example
generation methods work.

2.1 RDF Path Vocabulary
We designed the RDF Path Vocabulary as a means to for-

malize the description of RDF paths. The development of a
custom vocabulary was motivated by the goal of improving
the representation of RDF paths. The result is a simple vo-
cabulary3 that is formalized using RDF Schema [3]. Unlike
the similarly named RDF path languages,4 it is a modelling
vocabulary and not a query language. Paths are represented
as instances of the Path class. Each path has at least 1 edge
that instantiates the Edge class. A path is connected to its
edges via the edges property. In order to maintain the order
of edges, the object of this property is a collection (rdf:Seq)
that wraps the edges constituting the path. Each edge has

2http://www.ontologydesignpatterns.org/ont/
lod-analysis-path.owl
3https://w3id.org/lodsight/rdf-path
4https://www.w3.org/wiki/RdfPath

a starting and ending node (linked via the start and end

properties, respectively) and a predicate that connects the
nodes (linked by the edgeProperty property). There is a de-
gree of isomorphism between the path edges and the RDF
reification vocabulary [11]. In fact, the Edge class is derived
as a subclass of rdf:Statement, while its properties are de-
signed as subproperties of the properties used for reifying
RDF statements. Both the start and the end node of each
edge must instantiate either a class or a data type. Each
instantiated class and data type must be explicitly typed as
either rdfs:Class or rdfs:Datatype. Paths must be contin-
uous, so that the edge’s start node must be equal to the end
node of the preceding edge. Both paths and their examples
are represented as instances of the Path class, but they differ
in the representation of nodes. While path nodes are iden-
tified by blank nodes interpreted as existentially quantified
variables, nodes in path examples are concrete resources.

2.2 Distance computation
A key component of the non-random example selection is

computation of distance between examples of paths. The
distance of path examples is based on the distance of their
constituent nodes. It is computed as a mean average of the
distances of the paths’ corresponding pairs of nodes. The
distance is always normalized to the [0, 1] interval, such that
1 is used for completely dissimilar resources, while 0 is used
for equivalent resources.

In general, there are 2 kinds of node types: referents
and literals. The distance function is polymorphic and dis-
patches based on the types of its operands. The way of com-
puting the distance between literals is chosen based on their
data types, which are either explicitly provided in the source
data or inferred. A data type can be inferred by matching
literal to a regular expression constraining the lexical space
of the data type. If unequal data types are to be compared,
we try to get their lowest common ancestor in the type hier-
archy. If a common ancestor is found, the distance metric as-
sociated with it is used. For example, xsd:negativeInteger
and xsd:long are compared as xsd:integer. We amended
the hierarchy of XML Schema data types5 to be rooted in
xsd:string, so that the distance computation defaults to
string comparison if no closer common ancestor is found.

The distance metrics are chosen based on the data types
of the compared literals. For instance, numeric literals may
be compared using a different metric than string literals.
Some data types can be further decomposed and their dis-
tance can be computed from their constituent parts. For
example, URLs can be split into domain names, protocols,
port numbers etc., and their distance can be derived from
the distances of their parts.

Type inference used in the distance computation supports
referents and several data types defined by the XML Schema,
including xsd:decimal, xsd:date, xsd:dateTime, xsd:du-

ration, xsd:boolean, and xsd:anyURI, overall defaulting
to xsd:string. Default distance measure for strings is the
Jaro-Winkler metric, which computes the edit distance of
the compared strings while taking into account their length.
If the compared literals have the English language tag, the
Porter stemmer is applied to them before the comparison.
The distance of xsd:anyURI is computed as a weighted arith-
metic mean of distances of the constituent URI parts mea-
sured by the Jaro-Winkler metric, so that higher weight is

5https://www.w3.org/TR/xmlschema-2

given to more prominent parts of URIs, such as the domain
name. The distance of ordinal values, such as xsd:decimal

or xsd:date, is calculated as their absolute difference nor-
malized by the maximum spread of values of the compared
property p in a dataset:

distp(a, b) =
|a− b|

maxp −minp
(1)

The distance of non-identical referents (resources identi-
fied by IRIs or blank nodes) is computed as the distance
of their descriptions. We use the concise bounded descrip-
tions [14] of RDF resources. If IRIs of the referents are
identical then their distance is 0. Otherwise, the referents
are compared by value, i.e. their representation in RDF,
which recursively includes representations of the linked re-
sources if available. RDF resources are represented as sets of
predicate-object pairs. We use an adjusted form of Jaccard
index formalized in Equation 2 to aggregate the distances of
pairs of resources a and b and sum the similarities of objects
of properties found in both compared resource descriptions,
subtract it from the number of distinct properties describing
the objects, and divide the result by the number of distinct
properties. The index was adjusted by using similarities
in place of exact matches. p(a) is a function that returns
predicates of the resource a, while o(a, p) is a function that
returns objects of the resource a for the predicate p, and
dis(a, b) is a function that computes distance between the
objects a and b.

dJ(a, b) =
|p(a) ∪ p(b)| −

∑
i∈p(a)∩p(b) 1− dis(o(a, i), o(b, i))

|p(a) ∪ p(b)|
(2)

The computation of distance between referents is recur-
sive. If referents are found as part of resources’ descrip-
tions, their distance is in turn computed as the distance of
their descriptions. This way of distance computation can
be considered as bottom-up, since the distance of referents
proceeds from the distance of literals found in the referents’
descriptions. The number of hops in the RDF graph that
are followed in distance computation can be limited to con-
trol the runtime of example selection. In order to prevent
infinite recursion, we delete cycles from the processed data
prior to distance computation.

Should either of the properties shared in the compared re-
sources have multiple objects, their distance would be com-
puted for each combination of the objects and aggregated
to minimum. The computation of pairwise distances be-
tween path examples has approximately quadratic complex-

ity O(n(n−1)
2

) based on the number of path combinations.
The complexity is also determined by the path length and
the number of hops followed when resolving referents.

2.3 Random selection
Our baseline approach is random selection of examples

of RDF paths. Random selection provides a cursory view
of the kinds of data involved in a given RDF path. Using
this method we retrieve k random examples of the provided
RDF path. This selection is based on random sort order of
the retrieved path examples. Since the selection is random,
the results may include near-duplicates or outliers, which
do not represent well what the analysed dataset contains.
Hence, we propose more sophisticated methods for example

selection.

2.4 Distinct selection
The distinct selection method maximizes the diversity of

the selected examples. Using this method we want to se-
lect k examples such that their mutual distance is maximal.
In other words, “given a set P of n items, we aim at se-
lecting k items out of them, such that the average pairwise
distance between the selected items is maximized” [6, p. 1].
However, selecting the most diverse subset of items is known
as an NP-hard problem [6, p. 1]. Thus, solutions to this task
need to be approximated by using heuristics. We chose the
greedy construction heuristic [6], since it achieves good di-
versity in short execution time. Using this heuristic we start
by selecting 1 random example, then pair it with the most
dissimilar example, and continue adding examples that have
the highest total distance with the already included ones. To
compute the distance between path examples we use the dis-
tance measure described in Section 2.2. Using this method
we produce examples that provide broader coverage of an
RDF path in the processed dataset than the random selec-
tion does.

2.5 Representative selection
In addition to the chosen examples being diverse we want

them to be representative. The selection of examples with
maximum diversity may not be the most representative of
the summarized dataset. It may include misleading outliers
that maximize the total distance of the selected examples.
Instead, we want to pick examples that are both diverse
and representative of the most common kinds of data in
the analysed dataset. This reformulation of the example
selection task lends itself to clustering, so that “the goal now
is to identify and recommend a set of representative items,
one for each cluster, so that the average distance of each
item to its representative is minimized” [4, p. 897]. One
suitable method for the selection of representative examples
is k-medoids clustering. This type of clustering “searches
for k ‘representative’ objects called medoids, which minimize
the average dissimilarity of all objects of the data set to the
nearest medoid” [9]. It offers efficient means of computing
clusters from pairwise distances and produces medoids that
can be considered the most representative members of the
generated clusters. In fact, medoid is the “most centrally
located object in a cluster” [12], so we select the generated
medoids as the most representative examples of a given RDF
path.

3. IMPLEMENTATION
Having described the methods employed for example se-

lection, we now detail how we implemented these methods.
The methods were implemented as a web service that ex-
poses a single endpoint to which client applications may
post an RDF path and get the path examples in return. The
source code of the application is released as open source.6

We adopted JSON-LD as the data exchange format. The
web service expects the RDF paths to be provided in JSON-
LD syntax and the generated examples are also returned in
JSON-LD. This allows us to harness the standard operations
defined by the JSON-LD API [10], such as expansion, which
makes it possible to coerce heterogeneous RDF graphs into

6https://github.com/jindrichmynarz/rdf-path-examples

regular data structures with predictable attribute names.
Path examples are retrieved from SPARQL endpoints us-
ing the SPARQL 1.1 Protocol.7 The obtained payload is
converted to JSON-LD and expanded into a predictable
structure. The results of example selection are serialized
to JSON-LD and compacted using a JSON-LD context that
is aware of the semantics of the RDF Path Vocabulary in
order to ease manipulation with the results.

All the methods presented in Section 2 use random se-
lection in SPARQL. The random method directly uses the
examples generated by a SPARQL query with random order.
The other methods randomly fetch a sample of path exam-
ples, out of which the k required examples are selected. The
sample size can be configured by a sampling factor, which is
used to multiply the desired number of examples, to obtain
the size of the retrieved sample. For example, if k is 5 and
the sampling factor is set to 20, then 100 path examples are
retrieved.

If either the distinct or representative selection method is
used, an additional SPARQL query is issued to retrieve a
k-hop graph neighbourhood of the path example’s nodes. A
k-hop graph neighbourhood of a node is a subgraph that in-
cludes all adjacent nodes that are at most k hops away. For
example, 2-hop neighbourhood contains the RDF triples in
which a path node is in the subject position (1st hop) plus
the triples in which the subjects are objects of the triples
included in the first hop (2nd hop). The obtained dataset
is used for computing the distances between referents used
as nodes of path examples. Similarly to processing the path
examples, we convert the node data into JSON-LD and ex-
pand it to obtain a predictable data structure.

The runtime of example selection is dominated by the dis-
tance computation, because the selection methods require
distances between all pairs of path examples to be material-
ized. The runtime of example selection methods is negligible
once a matrix of distances between path examples has been
computed.

4. CONCLUSION
Exemplification is an important component of graph sum-

maries of LOD datasets, as carried out by tools such as
LODSight. We presented three methods for generating ex-
amples of RDF paths, which progressively build on each
other. The baseline method uses simple random selection.
The more sophisticated methods filter the random sample
down to the most salient examples. The distinct selection
method attempts to maximize the dissimilarity of the cho-
sen examples, thus potentially covering a broader variety of
instances of a given RDF path; there is however a risk of se-
lecting extremal, outlier values. Finally, the representative
selection method goes further by picking examples that are
both diverse and representative of the provided path.

5. ACKNOWLEDGMENTS
This research was supported by the VŠE IGA project

F4/28/2016.

6. REFERENCES
[1] K. Alexander, R. Cyganiak, M. Hausenblas, and

J. Zhao. Describing linked datasets with the VoID
vocabulary. W3C interest group note, W3C, 2011.

7http://www.w3.org/TR/sparql11-protocol

[2] C. Böhm, J. Lorey, and F. Naumann. Creating VoID
descriptions for web-scale data. Web Semantics:
Science, Services and Agents on the World Wide Web,
9(3):339–345, 2011.

[3] D. Brickley and R. Guha. RDF Schema 1.1. W3C
recommendation, W3C, 2014.

[4] P. Castells, N. J. Hurley, and S. Vargas. Recommender
systems handbook, chapter Novelty and diversity in
recommender systems, pages 881–918. Springer,
Berlin; Heidelberg, 2nd edition, 2015.

[5] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1
concepts and abstract syntax. W3C recommendation,
W3C, 2014.

[6] M. Drosou and E. Pitoura. Comparing diversity
heuristics. Technical Report TR-2009-05, University of
Ioannina, 2009.

[7] M. Dudáš, V. Svátek, and J. Mynarz. Dataset
summary visualization with LODSight. In The
Semantic Web: ESWC 2015 Satellite Events. Revised
Selected Papers, pages 36–40, Berlin; Heidelberg, 2015.
Springer.

[8] J. L. Gross and J. Yellen. Graph theory and its
applications. CRC Press, Boca Raton (FL), 2nd

edition, 2006.

[9] L. Kaufman and P. J. Rousseeuw. Statistical data
analysis based on the L1-norm and related methods,
chapter Clustering by means of medoids, pages
405–416. Elsevier, New York (NY), 1987.

[10] D. Longley, G. Kellogg, M. Lanthaler, and M. Sporny.
Json-ld 1.0 processing algorithms and api. W3C
recommendation, W3C, 2014.

[11] F. Manola and F. Miller. RDF primer. W3C
recommendation, W3C, February 2004.

[12] H.-S. Park and C.-H. Jun. A simple and fast algorithm
for K-medoids clustering. Expert Systems with
Applications, 36:3336–3341, 2009.

[13] V. Presutti, L. Aroyo, A. Adamou, B. Schopman,
A. Gangemi, and G. Schreiber. Extracting core
knowledge from linked data. In Proceedings of the
Second International Workshop on Consuming Linked
Data, volume 782 of CEUR workshop proceedings,
Aachen, 2011. RWTH Aachen University.

[14] P. Stickler. CBD: Concise bounded description. W3C
member submission, W3C, 2004.

[15] G. Troullinou, H. Kondylakis, E. Daskalaki, and
D. Plexousakis. Ontology understanding without
tears: the summarization approach. Under review.

[16] G. Troullinou, H. Kondylakis, E. Daskalaki, and
D. Plexousakis. RDF Digest: efficient summarization
of RDF/S KBs. In F. Gandon, M. Sabou, H. Sack,
C. d’Amato, P. Cudré-Mauroux, and A. Zimmermann,
editors, Proceedings of the 12th European Semantic
Web Conference, volume 9088 of Lecture notes in
computer science, pages 119–134, Berlin; Heidelberg,
2015. Springer.

