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Abstract: We propose a theory of the interaction between knowl-
edge and games. Epistemic game theory is of course a well devel-
oped subject [4,5]. But there is also a need for a theory of how
some agents can affect the outcome of a game by affecting the
knowledge which other agents have and thereby affecting their ac-
tions.

We concentrate on games of incomplete or imperfect informa-
tion, and study how conservative, moderate, or aggressive players
might play such games. We provide models for the behavior of a
knowledge manipulator who seeks to manipulate the knowledge
states of active players in order to affect their moves and to max-
imize her own payoff even while she herself remains inactive.

1 Introduction

It is a commonplace that what we do depends on what we know4. And
the theory of mind (Premack and Woodruff [15]) predicts that we also
know that what others do will depend on what they know.

Bill can copy the answers from a fellow student’s exambook if he knows
that the teacher is not looking. And Betty can shoplift if she knows that
the store does not have cameras, and that the guard is distracted.5

4 or believe. We will use the word ‘knowledge’ neutrally, being well aware that actions
often proceed from false beliefs.

5 Deception also occurs among non-human primates. As [11] note, “... chimpanzees,
one of humans’ two closest primate relatives, sometimes attempt to actively conceal
things from others. Specifically, when competing with a human in three novel tests,
eight chimpanzees, from their first trials, chose to approach a contested food item
via a route hidden from the human’s view (sometimes using a circuitous path to
do so).” Note that we are not claiming that chimps actually have what is called a
theory of mind. Merely that some of their behavior seems deceptive.



But we can also proceed one level up. If Bill wants to copy from Jack’s
answerbook, he might ask Betty to distract the teacher, perhaps by asking
his permission to go to the bathroom. If the store does not want Betty
to shoplift then it might install TV cameras which record what happens
in the store.

This second level of arranging for some level of knowledge or ignorance
in others, in order to influence their actions, seems not to be sufficiently
investigated formally.

Manipulation of knowledge can happen in two different contexts. One
might manipulate knowledge for a particular purpose. For instance if Jack
and Ann are going on a picnic and do not want Betty to come along, they
may simply not reveal the existence of the picnic to her. That way they
can avoid the situation where she says, “Oh, can I come too?” and have
to either put up with her presence or else offend her by saying no.

But manipulation can also happen in a more general context. For instance
a university may reveal the email address of a student to a professor who
is teaching a course which the student is taking; and yet, not reveal the
email address to another professor even though there is no specific reason
why this knowledge would be harmful in some way.

1.1 Our Model

In our model we have a number of active players as well as a knowledge
manipulator (KM). The knowledge manipulator arranges for the players
to have certain restricted amounts of knowledge, both about the situation
and about the knowledge of the other players. But she makes no moves
herself. When the game ends, all the players including KM receive payoffs.

As we show later, our games can be reduced to more familiar forms treat-
ing KM as yet another active player. We choose not to do that since the
role of the manipulator in real life is different, whether we are speaking
about Julian Assange revealing certain secret messages or the government
of some country restricting access to the internet. Iago in Shakespeare’s
play Othello is also a knowledge manipulator, although what he supplies
to Othello is false beliefs rather than knowledge. It is important that Oth-
ello trusts Iago rather than questioning his motives. So in this paper, we
will assume that the active players do not concern themselves with the
motives of KM.



1.2 Defining rationality

Suppose an agent is in a situation of uncertainty where it has to choose
between two moves L and R but does not know for sure what the outcome
will be with either choice. How will the agent choose?

One option is the maxmin route. The agent can choose L if the worst
possible outcome with L is better than the worst outcome with R. We
will describe such an agent as conservative. However, an ambitious agent
may choose R if the best outcome under R is better than the best outcome
with L. We will describe such an agent as aggressive.

It is clear then that in the same situation, an aggressive agent with the
same preferences as a conservative one may still make a different choice.
Some people never buy lottery tickets on the ground that the worst out-
come under buying, namely losing one’s money, is worse than the certain
outcome under not buying. But those who do buy such tickets are clearly
judging by the best outcome.

In most of this paper we assume that utilities are ordinal. In other words,
between any two choices a, b, the agent may be neutral, prefer a or pre-
fer b. Numbers can be assigned to a and b so that u(a) < u(b) iff b is
preferred to a. However, ordinal utilities are preserved by all order pre-
serving transformations. If c is preferred to b and b to a (which we may
write c > b > a) then there is no difference between utility assignments
to a, b, c of 1, 2, 3 or 1, 2, 4 or 1, 3, 4. It is also generally assumed that
comparing utilities between different players makes no sense.

If utilities are cardinal and a subjective probability is available, we could
also use expected value as a measure. However, in this work our utilities
will be ordinal, and the notion of expected utility will not be available to
us.

In addition to conservative and aggressive players, we can also consider
moderate players who try to find the middle way. The general issue is
that a player in uncertainty is choosing between two sets (or sequences)
of payoffs. The payoff with L is say, a1 > a2 > ... > ak and with R it
is b1 > b2 > ... > bm. A conservative player chooses L over R iff ak is
preferred to bm. An aggressive player chooses R over L iff b1 is better than
a1. More generally, let a player use a function f to represent a sequence of
outcomes by a single element. A conservative player uses the minimum,
an aggressive player uses the maximum, and a moderate player uses (say)
the median.



Such points of view are often taken into account by stockbrokers advising
people on investments. A younger investor may prefer a stock with a high
potential growth but significant risk. An investor close to retirement age
may, on the contrary prefer a stock with less growth but also less risk. A
middle aged investor may accept a moderate amount of risk.

The function f should satisfy some rationality conditions.

Definition 1. A choice function f is suitable if it satisfies the following
two conditions:

1. If X is a final segment of Y , then f(X) ≥ f(Y ) and if X is an initial
segment of Y then f(Y ) ≥ f(X).

2. (Dubey) If sequences X and Y overlap, but all elements in X −Y are
higher than all elements of Y −X, then f(X) is higher than f(Y ).

3. If sequences X and Y are in an order preserving one-one correspon-
dence g then g(f(X)) = f(Y ).

Lemma 11 The minimum, the median and the maximum are all suit-
able functions in the sense above (and the corresponding notions of f -
rationality are equivalent to being conservative, moderate, and aggressive
respectively).

Note that an SCF need not satisfy Nash’s IIA condition that if a = f(X),
Y ⊆ X, and a ∈ Y then a = f(Y ). It so happens that both the maximum
and the minimum do satisfy this condition, but not the median. Of course
there is no particular reason why IIA should be obeyed in such a case.
The role of f(X) is to play the role of an element which in some sense
represents X rather than that of a most preferred element of X. Thus
the median is probably the closest to the expected value which we tend
to use when we have cardinal utilities and a subjective probability.

Definition 2. Given an SCF f , An f -rational agent is an agent who,
when uncertain between sets X and Y of alternatives, always picks X if
f(X) > f(Y ).

It is easily seen that if all payoffs in X are higher than those in Y then an
f -rational player will choose X over Y . Thus all three kinds of players,
conservative, moderate and aggressive will never pick a strictly dominated
strategy.6

6 By a strictly dominated strategy we will mean a strategy which is dominated by
another pure strategy. See appendix for details.



1.3 An Example

W

H − l

(3, 2)

B

(0, 0)

S

B

H − r

(1, 1)

B

(2, 3)

S

S

Fig. 1.

In figure 1, we assume that the wife moves first and the husband after.
We consider various scenarios involving the husband’s knowledge and
temperament. We assume that the wife knows the husband’s payoffs and
temperament and he does not know hers.

Case 1) Husband does not know wife’s move (and she knows this).

a) He is aggressive. Then being aggressive, he will choose S (Stravinsky)
for his move since the highest possible payoff is 3. Anticipating his move,
she will also choose S, and they will end up with payoffs of (2,3).

b) The husband is conservative. Then not knowing what his wife chose, he
will choose B since the minimum payoff of 1 is better than the minimum
payoff of 0. Anticipating this, the wife will also choose B and they will
end up with (3,2).

2) Finally if the husband will know what node he is at (and the wife
knows this), then the wife will choose B, the husband will also choose B
and they will end up at (3,2).

1.4 Example 2

Artemov [2] is concerned with rationality in the presence of uncertainty.7

A rational player for him is one who makes a decision based on the highest
guaranteed payoff, subject to the player’s knowledge. In other words he
describes as rational the kind of player we have chosen to call conservative.

7 His utilities are also ordinal.



Artemov shows (his theorem 1) that a rational player in his sense will
follow the backward induction solution even in the absence of common
knowledge of rationality. Thus Artemov generalizes Aumann’s result, re-
placing common knowledge of rationality by plain rationality.8
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Fig. 2. Centipede game

Now consider a moderate player playing this game. If he had been conser-
vative and used backward induction, he would go down at once and get
a certain payoff. But since he is a moderate, he will see that the median
from going across is much higher. If both players are moderate players,
and agnostic about the rest of the game, then the game will continue
for quite a while, with both players going across and earning much larger
payoffs. Thus our notion of a moderate player shows the rationality of the
common pattern seen in ordinary behaviour where players play across for
quite a while.9

1.5 Comparison with previous work

Two relevant sources are the book by Chwe [7] and the recent paper by
Artemov [2]. Chwe’s book is largely concerned with the manipulation of
beliefs through some form of advertising. An advertiser may seek to create
the common belief that everyone is drinking beer X and so the viewer of
the TV show should also drink beer X. However, Chwe’s treatment is
largely non-technical and does not bring in game theoretic techniques for
the most part.

Artemov does mention a case (section 5.2 of [2]) where revealing true
information changes the behavior of the players.
8 Artemov’s argument applies only to the tree. For other games Artemov’s solution

could diverge from the backward induction solution.
9 We are assuming here that the players will be agnostic about the actions of the other

player rather than carry out the elaborate backward induction argument.



What is novel in our present work is that we make knowledge manipu-
lation the central aspect of our considerations and we do bring in some
technical considerations.

Thus while we acknowledge a debt to Chwe and Artemov, we are carrying
the ideas considerably further.

Other work like that of Brandenburger et al [6] is also relevant but unlike
us they rely on cardinal utilities. They also do not speak about actual
manipulation of behavior by limiting knowledge.

Finally, Agotnes et al have written a very interesting paper about the
power which agents have over other agents who want some knowledge.
Suppose A knows P → R, B knows Q → R and C knows P ∧ Q. Then,
if the interest is in knowing that R is true, C has the most power since
either of the pair A and C or the pair B and C could derive R; but A
and B together could not.

2 Game Theory

Let us consider a game tree for two (The number two has no special
significance and is only used to simplify notation.) players with a set X
of nodes, divided into X1, the nodes where player 1 moves, X2 where
player 2 moves, and T the set of terminal nodes so that X is the disjoint
union of X1, X2, T . Moreover payoff functions p1 and p2 are defined on T .
To simplify matters we will usually assume that both p1 and p2 are 1-1.
(I.e., the payoffs at distinct leaves are distinct, i.e., the tree is generic.)

In that case we know that if we have a perfect information game, then
backward induction yields a unique way in which the game is played and
according to Aumann, that will indeed be the way the game will be played
if there is common knowledge of rationality, see [3,2].

But of course a perfect information game might be played differently from
an imperfect information game with the same structure, same moves, and
the same payoffs. As we saw with the example in figure 1, this matters,
because someone who can manipulate the knowledge of others can also
affect the way they play some particular game. If the game has payoffs
not only for the active players, but also for the KM, then KM will seek to
manipulate the active players’ knowledge in such a way as to maximize
her own payoff.



2.1 States of Knowledge

We now describe a model for representing a game with possibly complex
knowledge situations. We will use Kripke models for that. X is the set of
nodes of the game tree.

Let us stipulate that for each element A ∈ X, A is also an atomic formula
which is true precisely when the play is at node A. We create a formal
language L by closing under truth functions, operators K1,K2 and the
operator C. (Here K1 means that 1 knows, K2 means that 2 knows, and
C stands for common knowledge).

Then a perfect information game is simply a game where formulas of the
form A→ C(A) are true for all nodes A.

But now consider a game with two players 1 and 2 and where the formula
A → (K1(A) ∧ K2(A)) holds at all nodes A, but for instance K1K2(A)
does not hold at node A. At each node, both players know what node it
is but they do not know that the other knows.

With (K1(A)∧K2(A)), both players know which node they are at. But if
1 makes a choice between L and R, 2 knows which choice 1 made, but 1
does not know that 2 will know, then 1 might well play differently. So it is
not a perfect information game, strictly speaking. Yet we cannot indicate
the ‘imperfection’ by indicating an information set.

To represent such situations, we modify the knowledge requirement. We
stipulate that with each node A is associated a Kripke structure MA with
two knowers 1 and 2. Such a Kripke structure would represent a state of
partial knowledge on the part of the players.

We assume that the map A ; MA is common knowledge.10 To fix
thoughts, we also assume that common knowledge of temperaments (con-
servative, moderate or aggressive) exists. Each player plays according to
his own temperament subject to what he believes about the choice sit-
uation he will be in.11 Thus the class of knowledge situations we can
consider is more general than perfect information games or games whose
imperfection can be indicated simply by information sets.

10 We of course mean the unpointed Kripke structure MA, since an agent who knows
also what the real world is would know everything.

11 Thus it is even open in our model to consider players who have not carried out
certain deductions which they were entitled to carry out. They choose according to
their belief.



We define an extended knowledge-based game (or KB-game) as an ex-
tended game supplemented by such a function MA. As we noted, a perfect
information game is a special case of such a KB-game. For in that case,
for each A, the structure MA has a single state satisfying A and no other
states are accessible to any player.

2.2 Creating knowledge States

How would the KM create the structure MA? One way that KM can
create such structures is, at each node she sends signals to the players
– the signal function s is common knowledge, and based on the signal
received by the player he can infer something about the node he is at.

Definition 3. A game tree with knowledge function is a standard extensive-
form game tree with nodes A along with a set of signals Σ and a function
s : A → P (Σn) where n is the number of players and P stands for the
power set. We extend s to sequences ∈ A∗ in the obvious way. The asso-
ciated protocol (see [14]) H(A) consists of all sequences
(a1, σ1),m1, (a2, σ2) . . . ,mk−1, (ak, σk) ∈ (A × Σ)∗ such that a1, . . . , ak

is a path in the game tree starting at the root, for all i < k, ai+1 is
a child of ai resulting from the move mi, and σi ∈ s(ai) for each 1 ≤
i ≤ k. We define a valuation function V : H(A) → 2A by setting
V ((a1, σ1), . . . , (ak, σk)) := {ak} (re-using the nodes as propositions).
Further, we assume an observability function on Σ for each player which
gives rise to synchronous epistemic accessibility relations in the usual
way. Thus for each σi = (s1, ..., sn), player j observes sj and moreover
the player observes all the mi which were his own moves.

Pradeep Dubey [8] has pointed out that by including KM as an additional
active player and interpreting her signals as moves, a knowledge based
game can be understood as a conventional game of partial information
with information sets. For details see the appendix.

2.3 Example 1 revisited

We consider now the question of how KM can create these various knowl-
edge scenarios of example 1.

KM is capable of creating all these three situations by means of signals,
as well as the one we did not mention where the husband does not know
but the wife does not know that he will not.



For case 1a), s(H − l) = (l, a) and s(H − r) = (r, a). The wife knows (if
she did not already) which node they are at, but the husband will not.

For case 2, s(H − l) = (l, l) and s(H − r) = (r, r). Both will know which
node they are at.

Finally if KM wants the wife to be in doubt whether the husband knows,
he could make s(H−l) = {(l, l), (l, a)} and s(H−r) = {(r, r), (r, a)}. Then
if the wife chose left and receives an l, she will not know if the husband
got an l or the neutral a. If KM does send (l, l) then the husband will
know, but will also know that his wife did not know whether he would
know.

We have not indicated KM’s utilities above. They could appear as a third
component of the payoff function. When the game finishes, all three play-
ers including KM receive their payoffs and so KM has an interest in seeing
to it that the game is played in a certain way. She can do this, to a limited
extent, by influencing the structures MA.

The Kripke structures which arise this way will be special in three ways. In
the first place it will be common knowledge that wherever the players are,
they are all at some node of the game tree (but they may not know the
actual node). Secondly, (assuming perfect recall) if a player was uncertain
among nodes A and B, and only these, then she will know in the future
that she must be at some node below one of A and B. Finally, if she
herself performed an action α when she was so uncertain, then whatever
node she is at now will have be below either the α successor of A or the
α successor of B.

2.4 Predicting the play

Can the KM always predict how a game will be played in a less than per-
fect information state which he has brought about? This is indeed true in
a decision theoretic situation if the temperament of the player is common
knowledge12 For instance a conservative agent faced with uncertainty will
choose the least risky alternative. And since we assume that no two out-
comes have the same value, the least risky alternative will always be well
defined and known to the KM.

With two person games, there may not be a unique way that the players
will play in a game with imperfect information and so the KM may not
12 By decision theoretic we mean that there is only one agent apart from KM, who has

a decision theoretic problem to solve.



be able to predict how they will indeed play. In particular the reasoning
process of the players can be order-dependent, for consider figure 3 below.

With perfect information and CK of (conventional) rationality, the back-
ward induction solution applies. In figure 3, 2 would choose right at B
and left at A. The resulting payoffs for 1 are 4 with left, and 3 with right.
He chooses L and so does 2 so they get (4,4).

S

A

(4, 4)

L

(1, 1)

R

L

B

(0, 0)

L

(3, 3)

R

R

Fig. 3.

But now suppose that when it is his turn to play, 2 (who is conservative)
does not know whether he is at node A or B. Then he will choose Right
which gives him one of {1,3}, safer than {4,0}, which he would get with
Left. 1 will anticipate this and choose Right. So they end up at (3,3).

However, 2 might start his reasoning by trying to figure out 1’s move. 1
will get one of {4,1} if she plays Left, and one of {0,3} if she plays Right.
So she will play Left. 2 will anticipate this and will play Left. So they end
up at (4,4).

Clearly the KM (whose payoffs we have not included) cannot count on
any particular play.

Theorem 21 If player 2 does not know player 1’s payoffs but player 1
does know player 2’s payoffs, then (given their temperaments) there is a
unique solution to the game.

More generally, with 2 or more players, if the players are linearly ordered
so that no player knows the payoffs of any player above him then there is
a unique solution.

Future work: In the setup we investigated, there is only one knowledge
manipulator who, moreover, is trusted by the other players. But we can
consider variants.



One possibility is where the manipulator is, well, manipulative. Her payoff
function is known to other players, and they are aware that they cannot
fully trust her. This is the direction of cheap talk [10].

Another possibility to consider is that while the KM is presumed hon-
est, every player is both an actor and an informer. This case would be
investigated by enriching the purely informational structure of [14] and
augmenting it with actions.

Acknowledgement: We thank Sergei Artemov, Pradeep Dubey, and
Johan van Benthem for comments.
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3 Appendix

Proof of lemma 11 It is obvious that the median, the maximum and the
minimum are preserved by isomorphism. we check the Dubey property
just for the median. Suppose that X and Y overlap so that X is a1 >
a2 > ... > ak > b1 > ....bm and Y is b1 > b2 > ...bm > c1 > ... > cp. X−Y
is above Y −X. Clearly if the median of X is an ai or the median of Y
is a ci then we are done. If both medians are bi and bj respectively. Then
i+ k = m− i+ 1 and j = p+m− j + 1. Thus we get 2i = m+ 1− k and
2j = p+m+ 1. Thus i < j and bi > bj . 2

Sketch of proof of theorem 21: We do not assume that player 2 always
plays after 1. For instance the game may be over more than two stages.

At any particular node, player 2 has a set of nodes X which he might be
at. He considers all possible strategies s of player 1 which are compatible
with their presently being in X. For each such s he considers various
strategies s′ which he himself could play and the payoff p(s, s′) to himself
of s, s′. Then he chooses that s′ for which min{p(s, s′)|s ∈ X} is highest.

This defines the strategy s′ of 2 as a function of the node. Player 1 can
simulate player 2’s reasoning and plays so as to maximize her own payoff.

This yields a unique outcome. 2

Note that since player 2 does not know player 1’s payoffs, he is not able
now to think of a proper response to player 1’s choice - he has no idea
what it is. So there is no ‘cycle of reasoning’.

We now provide definitions for the way in which a KM can create appro-
priate Kripke structures.

Intuitively, at each node a, the KM chooses and sends an n-tuple of signals
(s1, ..., sn) ∈ f(a). Player j observes only sj but can infer something about
the signals received by the other players. Moreover, he observes his own
moves. Based on what he has seen, he can infer a set of possible sequences
compatible with what he has seen, and what he knows is what is true in
all these possible sequences [14].

As Dubey has pointed out, the kinds of structures we defined above can
be replaced by traditional imperfect information games with information
sets, provided that the knowledge player’s signals are treated as actual
moves arising within the game tree rather than outside it.

Consider the case from figure 1 where KM wants the wife to be in doubt
whether the husband knows, she could make s(H− l) = {(l, l), (l, a)} and



s(H − r) = {(r, r), (r, a)}. Then if the wife chose left and receives an l,
she will not know if the husband got an l or the neutral a. If KM sends
(l, l) then the husband will know, but will also know that his wife did not
know whether he would know.

Thus KM could have two moves for each of the wife’s moves. After her
move L, she could have an L move corresponding to the signal pair (l, l)
and an R move corresponding to the signal pair (l, a). Similarly after her
R move, he could have an L move corresponding to the signal pair (r, r)
and an R move corresponding to the signal pair (r, a). This gives us four
nodes corresponding to the moves by the wife and KM, and let us denote
them in the natural way as LL, LR, RL and RR. (See figure 4).

The nodes LL, LR are indistinguishable for the wife and similarly RL and
RR. She knows what she moved, but does not know what the husband
got. The husband cannot distinguish between LR and RR, because in the
signal description he got an a in either case. But the other two, LL and
RL are singletons for him. If he gets an l or an r he knows how the wife
moved.
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Fig. 4.

Definition 4. A D-tree is a standard extensive-form game tree as above,
but with the choices given by s interleaved after each move, and informa-
tion sets added as follows: For each player i, at each depth in the tree, any
two nodes share an information set iff their parents share an i-information
set and



(i) they both result from the same action by i himself, or
(ii) they result from two s-actions which lead to the same observation

for i, or
(iii) they result from some other player’s actions.

Additionally, we define a valuation function which assigns a unique propo-
sition to all nodes generated by f -actions from the same parent. The
knowledge situation after n moves is the horizontal slice of this tree at
depth 2n.

Theorem 31 The knowledge situations in a game tree with knowledge
function are isomporphic to the ones in the corresponding D-tree (modulo
renaming of propositions).

Proof. intuition: both constructions boil down to taking the product of
a “normal” move and the signals that can be sent along with it, and in
both constructions the indistinguishabilities are wired according to the
observability of the signal part.

Theorem 32 Any knowledge situation can be created in a single signal-
ing step.

Proof. Intuition: Take the Kripke structure representing the knowledge
situation and create an edge from a unique (new) root node to each
possible world. Label each edge with tuples (σ1, . . . , σn) of signals, one
for each player i, such that any two edge labels coincide in σi iff the worlds
they lead to are indistinguishable to i. Define the observability function
for player i as the restriction of a given tuple to its ith component.

Postscript on dominated strategies: Suppose that an agent believes
he is facing various scenarios s1, ..., sn but does not know which one. For
each of these he has payoffs li from playing L and ri from playing R
and in each case li > ri. then it is an easy one step argument that the
set {l1, ..., ln} has higher maximum, minimum and median values than
the set {r1, ..., rn}. Thus whether a player is conservative, aggressive,
or moderate, he will not choose R. Only the case of a moderate player
requires a very short argument which we leave to the reader.


