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Abstract. Epistemic game theory has shown the importance of infor-
mational contexts in understanding strategic interaction. We propose a
general framework to analyze how such contexts may arise. The idea is
to view informational contexts as the fixed-points of iterated, “rational
responses” to incoming information about the agents’ possible choices.
We show general conditions for the stabilization of such sequences of ra-
tional responses, in terms of structural properties of both the decision
rule and the information update policy.

1 Background and Motivation

An increasingly popular3 view is that “the fundamental insight of game theory
[is] that a rational player must take into account that the players reason about
each other in deciding how to play” [6, pg. 81]. Exactly how the players (should)
incorporate the fact that they are interacting with other (actively reasoning)
agents into their own decision making process is the subject of much debate.
A variety of frameworks explicitly model the reasoning of rational agents in a
strategic situation. Key examples include Brian Skyrms’ models of “dynamic de-
liberation” [32], Ken Binmore’s analysis of “eductive reasoning” [11], and Robin
Cubitt and Robert Sugden’s “common modes of reasoning” [17]. Although the
details of these frameworks are quite different they share a common line of
thought: In contrast to classical game theory, solution concepts are no longer the
basic object of study. Instead, the “rational solutions” of a game are the result
of individual (rational) decisions in specific informational “contexts”.

This perspective on the foundations of game theory is best exemplified by
the so-called epistemic program in game theory (cf. [15]). The central thesis
here is that the basic mathematical model of a game should include an explicit
parameter describing the players’ informational attitudes. However, this broadly
decision-theoretic stance does not simply reduce the question of decision-making
in interaction to that of rational decision making in the face of uncertainty or
ignorance. Crucially, higher-order information (belief about beliefs, etc.) are key
components of the informational context of a game4. Of course, different contexts

3 But, of course, not uncontroversial. See, for example, [22, pg. 239].
4 That is, strategic behavior depends, in part, on the players’ higher-order beliefs.

However, the question of what precisely is being claimed should be treated with
some care. The well-known email game of Ariel Rubinstein [30] demonstrates that



of a game can lead to drastically different outcomes, but this means that the
informational contexts themselves are open to rational criticism:

“It is important to understand that we have two forms of irrationality
[...]. For us, a player is rational if he optimizes and also rules nothing
out. So irrationality might mean not optimizing. But it can also mean
optimizing while not considering everything possible.” [16, pg. 314]

Thus, a player can be rationally criticized for not choosing what is best given
their information, but also for not reasoning to a “proper” context. Of course,
what counts as a “proper” context is debatable. There might be rational pressure
for or against making certain substantive assumptions5 about the beliefs of one’s
opponents, for instance, always entertaining the possibility that one of the players
might not choose optimally.

Recently, researchers using methods from dynamic-epistemic logic have taken
steps to understanding this idea of reasoning to a “proper” or “rational” con-
text [10, 9, 8, 36]. Building on this literature6, we provide a general characteriza-
tion of when players can or cannot rationally reason to an informational context.

2 Belief Dynamics for Strategic Games

Our goal is to understand well-known solutions concepts, not in terms of fixed
informational contexts—for instance, models (e.g., type spaces or epistemic mod-
els) satisfying rationality and common belief of rationality—but rather as a result
of a dynamic, interactive process of “information exchanges”. It is important to
note that we do not see this work as an attempt to represent some type of “pre-
play communication” or form of “cheap talk”. Instead, the idea is to represent
the process of rational deliberation that takes the players from the ex ante stage
to the ex interim stage of decision making. Thus, the “informational exchanges”
are the result of the players’ practical reasoning about what they should do, given
their current beliefs. This is in line with the current research program using dy-
namic epistemic and doxastic logics to analyze well-known solution concepts (cf.
[2, 9, 10] where the “rationality announcements” do not capture any type of com-
munication between the players, but rather internal observations about which
outcomes of the game are “rational”).

misspecification of arbitrarily high-orders of beliefs can have a great impact on (pre-
dicted) strategic behavior. So there are simple examples where (predicted) strategic
behavior is too sensitive to the players’ higher-order beliefs. We are not claiming
that a rational agent is required to consider all higher-order beliefs, but only that a
rational player recognizes that her opponents are actively reasoning, rational agents,
which means that a rational player does take into account some of her higher-order
beliefs (e.g., what she believes her opponents believe she will do) as she deliberates.
Precisely “how much” higher-order information should be taken into account is a
very interesting, open question which we set aside in this paper.

5 The notion of substantive assumption is explored in more detail in [29].
6 The reader not familiar with this area can consult the recent textbook [35] for details.



2.1 Describing an Informational Context

Let G = 〈N, {Si}i∈N , ui〉 be a strategic game (where N is the set of players and
for each i ∈ N , Si is the set of actions for player i and ui : ΠiSi → R is a utility
function).7 The informational context of a game describes the players’ hard and
soft information about the possible outcomes of the game. Many different formal
models have been used to represent an informational context of a game (for a
sample of the extensive literature, see [13, 10] and references therein). In this
paper we employ one such model: a plausibility structure consisting of a set of
states and a single plausibility ordering (which is reflexive, transitive and con-
nected) w � v that says “v is at least as plausible as w.” Originally used as a
semantics for conditionals (cf. [24]), these plausibility models have been exten-
sively used by logicians [34, 35, 8], game theorists [12] and computer scientists
[14, 23] to represent rational agents’ (all-out) beliefs. We thus take for granted
that they provide a natural model of beliefs in games:

Definition 1. Let G = 〈N, {Si}i∈N , ui〉 be a strategic form game. An infor-
mational context of G is a plausibility model MG = 〈W,�, σ〉 where � is
a connected, reflexive, transitive and well-founded8 relation on W and σ is a
strategy function: a function σ : W → ΠiSi assigning strategy profiles to each
state. To simplify notation, we write σi(w) for (σ(w))i (similarly, write σ−i(w)
for the sequence of strategies of all players except i).

A few comments about this definition are in order. First of all, note that there
is only one plausibility ordering in the above models, yet we are interested in
games with more than one player. There are different ways to interpret the fact
that there is only one plausibility ordering. One is that the models represent the
beliefs of a single player before she has made up her mind about which option to
choose in the game. A second interpretation is to think of a model as representing
the modeler’s or game theorist’s point of view about which outcomes are more
or less plausible given the reasoning of the players. Thus, a model describes
a stage of the rational deliberation of all the players starting from an initial
model where the players have the same beliefs (i.e., the common prior). The
private information about which outcomes the players consider possible given
their actual choice can then be defined from the conditional beliefs.9 Our second
comment on the above definition is that since we are representing the rational

7 We assume the reader is familiar with the basic concepts of game theory. For example,
strategic games and various solution concepts, such as iterated removal of strictly
(weakly) dominated strategies.

8 Well-foundedness is only needed to ensure that, for any set X, the set of minimal
elements in X is nonempty. This is important only when W is infinite – and there
are ways around this in current logics. Moreover, the condition of connectedness can
also be lifted, but we use it here for convenience.

9 The suggestion here is that one can define a partition model á la Aumann [5] from
a plausibility model. Working out the details is left for future work, but we note
that such a construction blurs the distinction between so-called belief-based and
knowledge-based analyses of solution concepts (cf. the discussion in [15]).



deliberation process, we do not assume that the players have made up their minds
about which actions they will choose. Finally, note that the strategy functions
need not be onto. Thus, the model represents the player’s(s’) opinions about
which outcomes of the game are more or less plausible among the ones that have
not been ruled out.

Of course, this model can be (and has been: see [8, 35]) extended to include
beliefs for each of the players, an explicit relation representing the player(s)
hard information or by making the plausibility orders state-dependent. In order
to keep things simple we focus on models with a single plausibility ordering.

We conclude this brief introduction to plausibility models by giving the well-
known definitions of a conditional belief. For X ⊆ W , let Min�(X) = {v ∈
X | v � w for all w ∈ X } be the set of minimal elements of X according to �.

Definition 2 (Belief and Conditional Belief). Let MG = 〈W,�, σ〉 be a
model of a game G. Let E and F be subsets of W , we say:

– E is believed conditional on F in MG provided Min�(F ) ⊆ E.

Also, we say E is believed in MG if E is believed conditional on W . Thus, E
is believed provided Min�(W ) ⊆ E

2.2 A Primer on Belief Dynamics

We are not interested in informational contexts per se, but rather how the infor-
mational context changes during the process of rational deliberation. The type
of change we are interested in is how a modelMG of a game G incorporates new
information about what the players should do (according to a particular choice
rule). As is well known from the belief revision literature, there are many ways
to transform a plausibility model given some new information [28]. We do not
have the space to survey the entire body of relevant literature here (cf., [35, 7]).
Instead we sketch some key ideas, assuming the reader is already familiar with
this approach to belief revision.

The general approach is to define a way of transforming a plausibility model
MG given a proposition ϕ. A transformation τ maps plausibility models and

propositions to plausibility models (we write Mτ(ϕ)
G for τ(MG, ϕ)). Different

definitions of τ represent the different attitudes an agent can take to the incoming
information. The picture below provides three typical examples:
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The operation on the left is the well-known public announcement operation [25,
19], which assumes that the source of ϕ is infallible, ruling out any possibilities
that are inconsistent with ϕ. For the other transformations, while the players do
trust the source of ϕ, they do not treat the source as infallible. Perhaps the most
ubiquitous policy is conservative upgrade (↑ϕ), which allows the player(s) only
tentatively to accept the incoming information ϕ by making the best ϕ-worlds
the new minimal set while keeping the old plausibility ordering the same on all
other worlds. The operation on the right, radical upgrade (⇑ϕ), is stronger, mov-
ing all ϕ worlds before all the ¬ϕ worlds and otherwise keeping the plausibility
ordering the same. These dynamic operations satisfy a number of interesting
logical principles [35, 7], which we do not discuss further here.

We are interested in the operations that transform the informational context
as the players deliberate about what they should do in a game situation. In
each informational context (viewed as describing one stage of the deliberation
process), the players determine which options are “rationally permissible” and
which options the players ought to avoid (which is guided by some fixed choice
rule). This leads to a transformation of the informational context as the players
adopt the relevant beliefs about the outcome of their practical reasoning. The
different types of transformation mentioned above then represent how confident
the player(s) (or modeler) is (are) in the assessment of which outcomes are
rational. In this new informational context, the players again think about what
they should do, leading to another transformation. The main question is does
this process stabilize?

The answer to this question will depend on a number of factors. The general
picture is

M0
τ(D0)
=⇒ M1

τ(D1)
=⇒ M2

τ(D2)
=⇒ · · · τ(Dn)

=⇒ Mn+1=⇒· · ·

where each Di is some proposition and τ is a model transformer. Two questions
are important for the analysis of this process. First, what type of transformations
are the players using? For example, if τ is a public announcement, then it is not
hard to see that, for purely logical reasons, this process must eventually stop
at a limit model (see [8] for a discussion and proof). The second question is
where do the propositions Di come from? To see why this matters, consider the
situation where you iteratively perform a radical upgrade with p and ¬p (i.e.,
⇑(p),⇑(¬p), . . .). Of course, this sequence of upgrades never stabilizes. However,
in the context of reasoning about what to do in a game situation, this situation
may not arise thanks to special properties of the choice rule that is being used
to describe (or guide) the players’ decisions.

2.3 Deliberating about What to Do

It is not our intention to have the dynamic operations of belief change discussed
in the previous section directly represent the players’ (practical) reasoning. In-
stead, we treat practical reasoning as a “black box” and focus on general choice
rules that are intended to describe rational decision making (under ignorance).
To make this precise, we need some notation:



Definition 3 (Strategies in Play). Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a strate-
gic game and MG = 〈W,�, σ〉 an informational context of G. For each i ∈ N ,
the strategies in play for i is the set

S−i(MG) = {s−i ∈ Πj 6=iSj | there is w ∈Min�(W ) with σ−i(w) = s−i}
This set S−i(MG) is the set of strategies that are believed to be available for
player i at some stage of the deliberation process represented by the model
MG. Given S−i(MG), different choice rules offer recommendations about which
options to choose. There are many choice rules that could be analyzed here
(e.g., strict dominance, weak dominance or admissibility, minimax, minmax re-
gret, etc.). For the present purposes we focus primarily on weak dominance (or
admissibility), although our main theorem in Seciton 3 applies to all choice rules.

Weak Dominance (pure strategies10) Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a
strategic game andMG an model of G. For each i and a ∈ Si, put a ∈ Swdi (MG)
provided there is b ∈ Si such that for all s−i ∈ S−i(MG), ui(s−i, b) ≥ ui(s−i, a)
and there is some s−i ∈ S−i(MG) such that ui(s−i, b) > ui(s−i, a).

So an action a is weakly dominated for player i if it is weakly dominated
with respect to all of i’s available actions and the (joint) strategies believed to
be still in play for i’s opponents.

More generally, we assume that given the beliefs about which strategies are in
play the players categorize their available options (i.e., the set Si) into “good” (or
“rationally permissible”) strategies and those strategies that are “bad” (or “irra-
tional”). Formally, a categorization for player i is a pair Si(MG) = (S+

i , S
−
i )

where S+
i ∪S

−
i ⊆ Si. (We write Si(MG) to signal that the categorization depends

on current beliefs about which strategies are in play.) Note that, in general, a
categorization need not be a partition (i.e., S+

i ∪S
−
i 6= Si) . See [18] for an exam-

ple of such a categorization algorithm. However, in the remainder of this paper
we focus on familiar choice rules where the categorization does form a partition.
For example, for weak dominance we let S−i = Swdi (MG) and S+

i = Si − S−i .
Given a model of a game MG and for each player i a categorization is

Si(MG); the next step is to incorporate this information into MG using some
model transformation. We start by introducing a simple propositional language
to describe a categorization.

Definition 4 (Language for a Game). Let G = 〈N, {Si}i∈N , {ui}i∈N 〉 be a
strategic game. Without loss of generality, assume that each of the Si is disjoint
and let AtG = {P ia | a ∈ Si} be a set of atomic formulas (one for each a ∈ Si).
The propositional language for G, denoted LG, is the smallest set of formulas
containing AtG and closed under the Boolean connectives ¬ and ∧.

Formulas of LG are intended to describe possible outcomes of the game. Given an
informational context of a game MG, the formulas ϕ ∈ LG is can be associated
with subsets of the set of states in the usual way:

10 This definition can be modified to allow for dominance by mixed strategies, but we
leave issues about how to incorporate probabilities to another occasion.



Definition 5. Let G be a strategic game, MG = 〈W,�, σ〉 an informational
context of G and LG a propositional language for G. We define a map [[·]]MG

:
LG → ℘(W ) by induction as follows: [[P ia]]MG

= {w | σ(w)i = a}, [[¬ϕ]]MG
=

W − [[ϕ]]MG
and [[ϕ ∧ ψ]]MG

= [[ϕ]]MG
∩ [[ψ]]MG

.

Using the above language, for each informational context of a game MG,
we can define Do(MG), which describes what the players are going to do ac-
cording to a fixed categorization procedure. To make this precise, suppose that
Si(MG) = (S+

i , S
−
i ) is a categorization for each i and define:

Doi(MG) :=
∨
a∈S+

i

P ai ∧
∧
b∈S−

i

¬P bi

Then, let Do(MG) =
∧
iDoi(MG).11

The general project is to understand the interaction between types of catego-
rizations (eg., choice rules) and types of model transformations (representing the
rational deliberation process). One key question is: Does a deliberation process
stabilize(and if so, under what conditions)? (See [8] for general results here.) In
this paper there are two main reasons why an upgrade stream would stabilize.
The first is from properties of the transformation. The second is because the
choice rule satisfies a monotonicity property so that, eventually, the categoriza-
tions stabilize and no new transformations can change the plausibility ordering.
We are now ready to give a formal definition of a “deliberation sequence”:

Definition 6 (Deliberation Sequence). Given a game G and an informa-
tional context MG, a deliberation sequence of type τ (which we also call an
upgrade sequence), induced by MG is an infinite sequence of plausibility models
(Mm)m∈N defined as follows:

M0 =MG Mm+1 = τ(Mm, Do(Mm))

An upgrade sequence stabilizes if there is an n ≥ 0 such that Mn =Mn+1.

3 Case Study: Iterated Admissibility

A key issue in the epistemic foundations of game theory is the epistemic analysis
of iterated removal of weakly dominated strategies. Many authors have pointed
out puzzles surrounding such an analysis [4, 31, 16]. For example, Samuelson [31]
showed (among other things) that “common knowledge of admissibility” may be
an inconsistent concept (in the sense that there is a game which does not have
a model with a state satisfying ‘common knowledge of rationality’ [31, Example
8, pg. 305]).12 This is illustrated by the following game:

11 There are other ways to describe a categorization, but we leave this for further
research.

12 Compare with strict dominance: it is well known that common knowledge that play-
ers do not play weakly dominated strategies implies that the players choose a strategy
profile that survives iterated removal of strictly dominated strategies.



Ann

Bob
L R

u 1, 1 1, 0
d 1, 0 0, 1

The key issue is that the assumption that players only play admissible strategies
conflicts with the logic of iteratively removing strategies deemed “irrational”.
The general framework introduced above offers a new, dynamic perspective on
this issue, and on reasoning with admissibility more generally.13 Dynamically,
Samuelson’s non-existence result corresponds to the fact that the players’ ra-
tional upgrade streams do not stabilize. That is, the players are not able to
deliberate their way to a stable, common belief in admissibility. In order to show
this we need the “right” notion of model transformation.

Our first observation is that the model transformations we discussed in Sec-
tion 2.2 do not explain Samuelson’s result.

Observation 1 Suppose that the categorization method is weak dominance and
that Do(M) is defined as above. For each of the model transformations discussed
in Section 2.2 (i.e., public announcement, radical upgrade and conservative up-
grade), any deliberation sequence for the above game stabilizes.

The proof of this Observation is straightforward since the language used to
describe the categorization does not contain belief modalities14. This observation
is nice, but it does not explain the phenomena noticed by Samuelson [31]. The
problem lies in the way we incorporate information when there is more than one
element of S+

i (M) for some agent i.
It is well known that, in general, there are no rational principles of decision

making (under ignorance or uncertainty) which always recommend a unique
choice. In particular, it is not hard to find a game and an informational con-
text where there is at least one player without a unique “rational choice”. How
should a rational player incorporate the information that more than one action
is classified as “choice-worthy” or “rationally permissible” (according to some
choice rule) for her opponent(s)? Making use of a well-known distinction due
to Edna Ullmann-Margalit and Sidney Morgenbesser [33], the assumption that
all players are rational can help determine which options the player will choose,
but rationality alone does not help determine which of the rationally permissible
options will be “picked”15. What interests us is how to transform a plausibility

13 We do not provide an alternative epistemic characterization of this solution concept.
Both [16] and [20] have convincing results here. Our goal is to use this solution
concept as an illustration of our general approach.

14 An interesting extension would be to start with a multiagent belief model and allow
players not only to incorporate information about which options are “choice-worthy”,
but also what beliefs their opponents may have. We leave this extension for future
work, focusing here on setting up the basic framework.

15 This line of thought led Cubitt and Sugden to impose a “privacy of tie breaking”
property which says that players cannot know that her opponent will not pick an



model to incorporate the fact that there is a set of choice-worthy options for
(some of) the players.

We suggest that a generalization of conservative upgrade is the notion we are
looking for (see [21] for more on this operation). The idea is to do an upgrade
with a set of propositions {ϕ1, . . . , ϕn} by letting the most plausible worlds be
the union of each of the most plausible ϕi worlds:

ϕ2

ϕ1
A B

C D
E

F G

↑{ϕ1, ϕ2} : A ∪ E ≺ B ≺ C ∪D ≺ F ∪G

We do not give the formal definition here, but it should be clear from the example
given above. It is not hard to see that this is not the same as ↑ϕ1 ∨ · · · ∨ ϕn,
since, in general, Min�([[ϕ1]] ∪ · · · ∪ [[ϕn]]) 6=

⋃
iMin�([[ϕi]]). We must modify

our definition of Do(M): for each i ∈ N let:

Doi(Si(MG)) = {P ia | a ∈ S+
i (MG)} ∪ {¬P ib | b ∈ S−i (MG)}

Then defineDo(S(MG)) = Doi(Si(MG))
∧
Do2(S2(MG)) · · ·

∧
Don(Sn(MG)),

where if X and Y are two sets of propositions, then let X ∧ Y := {ϕ ∧ ψ | ϕ ∈
X,ψ ∈ Y }.

Observation 2 Suppose that the categorization method is weak dominance as
explained in Section 2.3 and that Do(M) is defined as above. Then, starting with
the initial full model of the above game,16 a generalized conservative upgrade
stream does not stabilize.

The following upgrade stream illustrates this observation:

option that is classified as “choice-worthy” [17, pg. 8] (cf. also [4]’s “no extraneous
restrictions on beliefs” property). Wlodeck Rabinovich takes this even further and
argues that from the principle of indifference, players must assign equal probability
to all choice-worthy options [27].

16 A full model is one where it is common knowledge that each outcome of the game
is equally plausible.



u, L u,R

d, L d,R

M0

d, L d,R

u, L u,R

M1

↑D0

d, L d,R

u,R

u,L

M2

↑D1 ↑D2

d,R

u,R

u,L d, L

M3

u, L u,R

d, L d,R

M4 =M0

↑D3

Intuitively, from M0 to M2 the agents have reasons to exclude d and R,
leading them to the common belief that u, L is played. At that stage, however,
d is admissible for Ann, canceling the reason the agents had to rule out this
strategy. The rational response here is thus to suspend judgment on d, leading
to M3. In this new model the agents are similarly led to suspend judgment on
not playing R, bringing them back to M0. This process loops forever: the agents’
reasoning does not stabilize.

A corollary of this observation is that common belief in admissibility is not
sufficient for the stabilization of upgrade streams. Stabilization also requires that
all and only those profiles that are most plausible are admissible.

4 Stabilization Theorem

In this section we informally state and discuss a number of abstract principles
which guarantee that a rational deliberation sequence will stabilize. The prin-
ciples ensure that the categorizations are “sensitive” to the players’ beliefs and
that the players respond to the categorizations in the appropriate way.

We start by fixing some notation. Let U be a fixed set of states and G a fixed
strategic game. We confine our attention to transformations between models of
G whose states come from the universe of states U . Let MG be the set of all
such plausibility models. A model transformation is then a function that maps
a model of G and a finite set of formulas of LG to a model in MG:

τ : MG × ℘<ω(LG)→MG

where ℘<ω(LG) is the set of finite subsets of LG. Of course, not all transforma-
tions τ make sense in this context.



The first set of principles that τ must satisfy ensure that the categorizations
and belief transformation τ are connected in the “right way”. One natural prop-
erty is that the belief transformations treat equivalent formulas the same way.
A second property we impose is that receiving exactly the same (ground) infor-
mation twice does not have any effect on the players’ beliefs. These are general
properties of the belief transformation. Certainly, there are other natural proper-
ties that one may want to impose (for example, variants of the AGM postulates
[1]), but for now we are interested in the minimal principles needed to prove a
stabilization result.

The next set of properties ensure that the transformations respond “prop-
erly” to a categorization. First, we need a property to guarantee that the cate-
gorizations depend only on the players’ beliefs. Second, we need to ensure that
all upgrade sequences respond to the categorizations in the right way:

C2− For any upgrade sequence (Mn)n∈N in τ , if a ∈ S−i (Mn) then ¬P ai is
believed in Mn+1.

C2+ For any upgrade sequence (Mn)n∈N in τ , if a ∈ S+
i (Mn) then ¬P ai is not

believed in Mn+1

Finally, we need to assume that the categorizations are monotonic:

Mon− For any upgrade sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N ,
S−i (Mn) ⊆ S−i (Mn+1)

Mon+ Either for all models MG, S+
i (MG) = Si − S−i (MG) or for any up-

grade sequence (Mn)n∈N, for all n ≥ 0, for all players i ∈ N , S+
i (Mn) ⊆

S+
i (Mn+1)

In particular, Mon− means that once an option for a player is classified as “not
rationally permissible”, it cannot drop this classification at a later stage of the
deliberation process.

Theorem 3. Suppose that G is a finite game and all of the above properties are
satisfied. Then every upgrade sequence (Mn)n∈N stabilizes.

The proof can be found in the full version of the paper. The role of mono-
tonicity of the choice has been noticed by a number of researchers (see [3] for
a discussion). This theorem generalizes van Benthem’s analysis of rational dy-
namics [10] to soft information, both in terms of attitudes and announcements.
It is also closely related to the result in [3] (a complete discussion can be found
in the full paper).

5 Concluding remarks

In this paper we have proposed a general framework to analyze how “proper”
informational contexts my arise. We have provided general conditions for the sta-
bilization of deliberation sequences in terms of structural properties of both the



decision rule and the information update policy. We have also applied the frame-
work to admissibility, giving a dynamic analysis of Samuelson’s non-existence
result.

Throughout the paper we have worked with (logical) models of all out atti-
tudes, leaving aside probabilistic andgraded beliefs, even though the latter are
arguably most widely used in the current literature on epistemic foundations of
game theory. It is an important but non-trivial task to transpose the dynamic
perspective on informational contexts that we advocate here to such probabilistic
models. This we leave for future work.

Finally, we stress that the dynamic perspective on informational contexts is
a natural complement and not an alternative to existing epistemic characteri-
zations of solution concepts [37], which offer rich insights into the consequences
of taking seriously the informational contexts of strategic interaction. What we
have proposed here is a first step towards understanding how or why such con-
texts might arise.
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