
OpenStudy: Recommendations of the Following Ten

Lectures After Viewing a Set of Three Given Lectures

Vladimir Nikulin

Department of Mathematics
University of Queensland
vnikulin.uq@gmail.com

Abstract. We propose to use two lectures (out of the given triplet of three lec-
tures) in order to define a direction of prediction, which includes the set of pre-
dicted lectures accompanied by the corresponding frequencies. The relevance of the
whole predicted set is calculated according to the remaining third lecture. Further
improvements were achieved with homogeneous ensembles, based on the random
sampling known, also, as bagging. The experimental results were obtained online
during the VideoLectures.Net ECML/PKDD 2011 Discovery Challenge (Track
N2).

1 Introduction

VideoLectures.Net is a free and open access multimedia repository of video lectures,
mainly of research and educational character. The lectures are given by distinguished
scholars and scientists at the most important and prominent events like conferences,
summer schools, workshops and science promotional events from many fields of science.
The website is aimed at promoting science, exchanging ideas and fostering knowledge
sharing by providing high quality didactic contents not only to the scientific community
but also to the general public. All lectures, accompanying documents, information and
links are systematically selected and classified through the editorial process taking into
account also users’ comments1.

The tasks of the challenge were focused on making recommendations for video lec-
tures, based on historical data from the VideoLectures.Net website2.

According to [1], Open Social Learning Systems open new prospects for millions of
self-motivated learners to access online a high quality materials. It is estimated that there
will be 100 million students qualified to enter universities over next decade. Universities
have responded to this need with Open Education Resources: thousands of free, high
quality online courses, developed by hundreds of faculty, used by millions worldwide.
Unfortunately, online courseware does not offer a supporting learning experience or the
engagement needed to keep students motivated.

However, students today care deeply about their education. Four out of five stress
about their grades. To create a successful online learning experience for those students,
there are two main issues that need to be addressed: 1) creation of online study materials
(content), and 2) an engaging online interaction experience (community).

1 http://tunedit.org/challenge/VLNetChallenge
2 http://videolectures.net/



OpenStudy: Recommendations of the Following Ten Lectures.

The core problem (and the main subject of this study) lies around the second issue:
how to give the right direction to a generation of learners, who live on the Internet, in
the wide space of the available research/educational resources.

Recommender systems attempt to profile user preferences over items, and model the
relation between users and items. The task of recommender systems is to recommend
items that fit a users tastes, in order to help the user in selecting/purchasing items from
an overwhelming set of choices [2]. Such systems have great importance in applications
such as e-commerce, subscription based services, information filtering, etc. Recommender
systems providing personalized suggestions greatly increase the likelihood of a customer
making a purchase compared to unpersonalized ones. Personalized recommendations are
especially important in markets where the variety of choices is large, the taste of the
customer is important, and last but not least the price of the items is modest. Typical
areas of such services are mostly related to art (esp. books, lectures, movies, music),
fashion, food and restaurants, gaming and humor.

The most of the methods presented and discussed in [2] were motivated by the famous
Netflix Cup. Those methods, where matrix factorization is the most common, cannot be
applied in our case directly, because the structure of the data is different. In our case we
are dealing not with a specific users, but with abstract users who had seen in the past a
triplet as a set of three given lectures, where an exact sequence of lectures is not given.
We shall consider in Section 4 one suitable modification (as a prospective direction) of
the gradient-based matrix factorization (GMF) [6] as an example of stochastic gradient
descent algorithm.

Traditional data mining techniques such as association rules were tried with good
results at the early stages of the development of recommender systems [3]. Frequent item
sets, discovered as part of association rule mining, represent the least restrictive type of
navigational patterns, since they focus on the presence of items rather than the order
in which they occur within user session [4]. Frequency-based methods are the primary
tool in the following below Sections 3.1 - 3.6. Note, also, that Markov decision processes
provide a more advanced model for recommender systems (in the case if the sequence
of the states is given). According to the Markov Chain Model, we are dealing with a
finite space of possible states, and, using a maximum-likelihood estimate (applied to the
historical data) as a transition function, we can formulate a prediction [5].

Bagging predictors is a method for generating multiple versions of a predictor and
using these to get an aggregated predictor. The aggregation averages over the versions
when predicting a numerical outcome and does a plurality vote when predicting a class
[7]. In Section 3.6 we consider method of random resampling: it is supposed that using the
hundreds of predictors (base learners) based on the subset of the whole training set we
shall reduce the random factors. According to the principles of homogeneous ensembling,
the final predictor represents an average of base predictors. As a reference, we mention
random forests as a well-known example of successful homogeneous ensemble. However,
the construction of random forests is based on another method, which is linked to the
features but not to the samples.

60



V. Nikulin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3
x 10

5

(a)

5 10 15 20 25 30 35 40 45 50
0

5

10

15

x 10
4

(b)

50 100 150 200 250 300 350 400 450 500
0

500

1000

(c)

Fig. 1. Histograms of (a) triplet’ frequencies; (b) pair’ frequencies truncated to the level of
50; (c) pair’ frequencies bigger than 50, and truncated to the level of 500, see for more details
Section 2.

2 Data and some definitions

The training database includes two sets named 1) pairs P and 2) triplets T with two parts
left and right, where the left part contains input triplets and the corresponding numbers
of views, the right part contains output lectures and the corresponding numbers of views.

2.1 Pair data

Let us denote by IP set of indexes corresponding to the pairs data. Any element of
IP represents a set (without order) of two lectures I = {a, b}, where I ∈ IP . We shall
understand under PI = Pab number of times lectures a and b were viewed/seen together.

61



OpenStudy: Recommendations of the Following Ten Lectures.

2.2 Triplet data

Let us denote by IT set of indexes corresponding to the triplets data. The element with
index I ∈ T has two values (one for the left, and one for the right parts): τI = {a, b, c} is
a triplet or a set of three lectures a, b and c. Under TI we shall understand the number
of times those three lectures were seen together. Further, LI is a set of single lectures,
which were seen after τI . Under TI(ℓ), ℓ ∈ LI , we shall understand the number of times
lecture ℓ was seen after the triplet τI .

2.3 Graphical illustrations

Figure 1(a) illustrates histogram of empirical probabilities or frequencies

rτ (ℓ) =
TI(ℓ)

TI
, ℓ ∈ LI , I ∈ IT , (1)

where we replaced I by τ in the left side of (1), because there is unique correspondence
between I and τ.

Figure 1(b-c) illustrates histogram of frequencies

PI , I ∈ IP ,

where all the values in Figure 1(b) were truncated to 50, Figure 1(c) illustrates histogram
of the values PI bigger than 50, which were truncated to 500.

3 Methods

3.1 Predictions with couples

The task of the Challenge was to make predictions according to the test dataset V ,
which has the same structure as T (left part). In more details, the task was to make a
recommendation of the ten the most appropriate lectures after viewing the given triplet.

Remark 1. As a particular and very important feature of this Challenge, we note the
absence of the same triplets in both training T (left part) and test V sets. At the same
time, we can report a very significant proportion of the same sets of two lectures (couples)
in both training and test sets.

In total, we found nc = 34756 couples, with number of record (which were extracted
from the right part of T ) per couple ranging from 1 to mc = 4020. Note that any triplet

may be considered as a set of three couples. There are NV = 60274 triplets in the test
set V , and 1) we did not find any related couples in the training set only in 116 cases,
2) we found one couple in 829 cases , 3) we found two couples in 4705 cases, and 4) we
found all three couples in an absolute majority of 54624 cases.

Remark 2. Any lecture is identified by the index, where the biggest index is nL = 13251.
However, not all nL lectures were used. We had assumed that the predicted lectures
should be found in the right part of T , where we identified only ns = 5209 different
lectures.

62



V. Nikulin

Some preliminary definitions We shall explain how the system works in the terms
of the ns secondary indexes, because the transformation to the original nL indexes is a
trivial one. Our database was organised as follows. Squared matrix A with sizes ns × ns

contains nc different addresses of the matrix B with sizes nc ×mc.

Firstly, we shall find three couples αij , j = 1, . . . , 3, for any triplet τi, i = 1, . . . , NV ,

in the test dataset V . Then, for any couple αij we shall find (according to the matrix A)
the corresponding address β(αij) (in the matrix B) and the number of records n(αij),
where 1 ≤ β ≤ nc, 1 ≤ n ≤ mc.

Under the element of matrix B we shall understand predicted/recommended lecture
ℓ and the corresponding frequency

{ℓ, rτ (ℓ)}, (2)

where rτ is defined in (1).

Remark 3. The main advantage of the above method is its speed: the algorithm will go
through the whole test set V and will output required solution for the Track N2 within
5 min.

An update process Now, we shall describe the most critical step of the computational
process. Any particular triplet τ from the test dataset is to be considered in an identical
manner, so we omit index i in order to simplify notations.

Suppose that initially all the ratings are set to zero s(ℓ) = 0, ℓ = 1, . . . , ns, where s(ℓ)
is the rating of the corresponding lecture ℓ which will be used for the final ranking as an
output of this model.

This is the most important update formula

s(Bβk(1))+ = Bβk(2), k = 1, . . . , n(αj), j = 1, . . . , 3, (3)

where Bβk(1) is the lecture index, and Bβk(2) is the corresponding frequency defined in
(2).

After computation of the vector s according to (3), we shall sort it in a decreasing
order, and the arguments (indexes of the lectures) corresponding to the ten biggest s
(from the top to the bottom) are to be submitted as a solution.

Remark 4. In the case if the number of positive values in the vector s is smaller compared
to the required 10, we shall generate remaining indexes at random assuming that the
indexes are different compared to 1) the indexes of the input triplet τi plus 2) those
indexes which were selected already.

The method, as described above produced the score on the Leaderboard 0.49568,
where the detailed definition (with numerical examples) of the Competition score is
available from the web-site of the PKDD 2011 Contest.

3.2 Predictions with singles

Essentially, predictions with singles (single lectures) work similarly as predictions with
couples. However, there are some differences, which could be treated as simplifications.
We had found that the maximum number of the records corresponding to the single

63



OpenStudy: Recommendations of the Following Ten Lectures.

lecture is ms = 77798. Accordingly, the matrix B̂ (as a replacement to the matrix B in
the previous Section 3.1) has sizes ns ×ms.

The model works in the following way: by definition, any triplet represents a set of
three lectures ℓj, j = 1, . . . , 3. We shall find the number of records 1 ≤ n(ℓ) ≤ ms, where
1 ≤ ℓ ≤ ns.

An update process Again, initial ratings of lectures are set to zero: s(ℓ) = 0, ℓ =
1, . . . , ns.

This is the main update formula

s(B̂ℓjk(1))+ = B̂ℓjk(2), k = 1, . . . , n(ℓj), j = 1, . . . , 3. (4)

After computation of the vector s according to (4), we shall sort it in a decreasing
order, and the arguments (indexes of the lectures) corresponding to the ten biggest s
(from the top to the bottom) are to be submitted as a solution.

The method, as described above produced the score on the Leaderboard 0.33278.

3.3 Predictions with pairs

Definition 1. We shall call that the lectures a and b are P-linked if Pab ≥ 1. According
to the symmetric matrix P, we define set H(a) of all P-linked lectures to the lecture a.

An update process As before, initial ratings of lectures are set to zero: s(ℓ) = 0, ℓ =
1, . . . , ns. Then, we shall apply an update formula

s(d)+ = P (ℓj , d), d ∈ H(ℓj), j = 1, . . . , 3, (5)

where an interpretation/definition of the lectures ℓj is the same as in (4).

After computation of the vector s according to (5), we shall sort it in a decreasing
order, and the arguments (indexes of the lectures) corresponding to the ten biggest s
(from the top to the bottom) are to be submitted as a solution.

The method, as described above produced the score on the Leaderboard 0.12677.

Remark 5. The solution, as described in this section, was recommended by the Organisers
on the forum as “simple pairs solution”.

Note, also, that during our numerous experiments we made a very interesting obser-
vation/discovery.

Remark 6. Statistics defined in (3-5) represent a sum of frequencies. It is very interest-
ing to note that the results will be significantly poorer if we shall apply an average of
frequencies as an alternative to the sums.

64



V. Nikulin

3.4 Predictions with weighted couples

According to the above three sections, predictions with the couples produced best results.
We decided to go further and to take into account remaining third lectures φ and ψ in
both training and test sets.

Motivation: in the case if remaining (“extra”) lectures φ and ψ are closer (have
bigger number of the joint views according to the pairs data), the predicted direction,
corresponding to the related couple, must be given bigger weight.

As it was discussed in Remark 1, lectures φ and ψ are different by definition. In other
words, the corresponding (“similar”) triplets in the training and test datasets may be
represented as

αj ∪ φj , αj ∪ ψj ,

where φj 6= ψj , j = 1, . . . , 3.

An update process As before, initial ratings of lectures are set to zero: s(ℓ) = 0, ℓ =
1, . . . , ns. Then, we can re-write (3) in this way

s(Bβk(1))+ = w(P (φj , ψj))Bβk(2), k = 1, . . . , n(αj), j = 1, . . . , 3, (6)

where w is an increasing weight function. In our final submission we used very simple
linear function: w(x) = 0.01 · x+ 0.005.

After computation of the vector s according to (6), we sort it in a decreasing order,
and the arguments (indexes of the lectures) corresponding to the ten biggest s (from the
top to the bottom) are to be submitted as a solution.

The method with weighted couples, as described above, produced very significant
improvement on the Leaderboard 0.58145.

3.5 Predictions with weighted singles

This section may be regarded as an extension of Section 3.2. In some sense, prediction
with weighted singles is similar to the prediction with weighted couples, Section 3.4.
However, there are some differences. In the case of singles, we are defining direction of
the prediction according to the single lectures. Accordingly, we have two other (“extra”)
lectures, which should be compared properly with two lectures in the corresponding
triplet of the training data.

An update process Updates were conducted according to

s(B̂ℓjk(1))+ = w(φ1j , φ2j ;ψ1j , ψ2j) · B̂ℓjk(2), k = 1, . . . , n(ℓj), j = 1, . . . , 3, (7)

where w(φ1j , φ2j ;ψ1j , ψ2j)

= 0.0005(P (φ1j, ψ1j)P (φ2j , ψ2j) + P (φ1j , ψ2j)P (φ2j , ψ1j)) + 0.01.

The motivation behind the above formula is a very simple: we must ensure that any
“extra” lecture from the test triplet is close to at least one “extra” lecture from the
train triplet.

65



OpenStudy: Recommendations of the Following Ten Lectures.

After computation of the vector s according to (7), we sort it in a decreasing order,
and the arguments (indexes of the lectures) corresponding to the ten biggest s (from the
top to the bottom) are to be submitted as a solution.

The method, as described in this section, produced the score 0.4529 on the Leader-
board.

3.6 Resampling method (the final recommender)

In this section computation of the single ranking vector s was based on 75% of randomly
selected samples. In an absolute majority of all 60274 test instances, the number of
positive components of the vector s defined in (6) is greater than 100. So we shall consider
this case only.

Let us denote vector of secondary ratings as z, which is set to zero at the beginning of
the whole resampling process. We conducted 200 random samplings (global iterations).
After any global iteration, only 100 top lectures (components of the vector z) received
increments ranging from 1 to 100 votes (bigger for better performance). The method
which we used within any global iteration (base learner) is described in Section 3.4.

After completion of all 200 global iterations, we sorted vector z in a decreasing order,
and the arguments (indexes of the lectures) corresponding to the ten biggest z (from the
top to the bottom) were submitted as a solution.

The final model with resampling, as described above, produced the following score
on the Leaderboard 0.58727. This solution was used as a final.

Table 1. Distances (8) between five solutions described in Sections 3.1 - 3.4 and 3.6.

N Method Score 1 2 3 4 5

1 couples 0.49568 0 0.2605 0.2137 0.6394 0.6517
2 singles 0.33278 0.2605 0 0.5832 0.4269 0.4327
3 pairs 0.12677 0.2137 0.5832 0 0.1565 0.1664
4 wgt-couples 0.58145 0.6394 0.4269 0.1565 0 0.91
5 resampling 0.58727 0.6517 0.4327 0.1664 0.91 0

3.7 Statistical comparison of different solutions

The distances in the above Table 1 were computer using simplified version of the PKDD
2011 Contest evaluation method. Any solution represents an integer matrix of NV × 10,
T = 10NV integer indexes in total. By comparing two matrices, we shall find the number
of common indexes (intersection) in any row. The total number of all intersections will
give us a numerator R, and the required distance represents a ratio

D =
R

T
. (8)

66



V. Nikulin

3.8 Computation time

A Linux multiprocessor workstation with speed 3.2GHz and 16GB RAM was used for
the most of the computations, which were conducted according to the specially devel-
oped codes in C. The computation of the final solution, as described in Section 3.6, was
conducted overnight and took about 12 hours.

4 Gradient-based matrix factorization

The main idea behind an approach of this section is to factorize the transition matrix X
of a Markov chain (or matrix of frequencies) [9].

By definition, X is a squared symmetrical matrix with size ns, and any element of
X reflects similarity between the corresponding lectures (the bigger value indicates the
higher level of similarity).

Further, we shall consider factorization of the matrix X

X ∼ GG′, (9)

where factor matrix G has sizes ns × k.
We shall compute matrix X according to an update formula, which is very similar to

(4). Initially, all the values of the matrix X are set to zero. The update process will be
conducted according to the formula

x(B̂ℓk(1), ℓ)+ = B̂ℓk(2), x(ℓ, B̂ℓk(1)) = x(B̂ℓk(1), ℓ), (10)

where k = 1, . . . , n(ℓ), ℓ = 1, . . . , ns.

In this section, boldface capital letters denote matrices or vector-columns, while nor-
mal letters denote elements of matrices. Also, it will be convenient for us to use notation
xab = x(a, b).

We now describe the procedure for undertaking the matrix factorization (9). The
matrix factorization represents a gradient-based optimisation process with the objective
to minimise the following squared loss function:

L(A) =
n−1∑

a=1

n∑

b=a+1

e2ab, (11)

where eab = xab −
∑k

f=1
gafgfb.

The above target function (11) includes in total kn regulation parameters and may be
unstable if we minimise it without taking into account the mutual dependence between
elements of the factor matrix G.

As a solution to the problem, we can go consequently through all the differences eab,
minimising them as a function of the particular parameters which are involved in the
definition of eab. Compared to usual gradient-based optimisation, in our optimisation
model we are dealing with two sets of parameters, and we should mix uniformly updates
of these parameters, because these parameters are dependent.

67



OpenStudy: Recommendations of the Following Ten Lectures.

Algorithm 1: Gradient-based matrix factorization.

1. Input: X - similarity matrix.
2. Select M - number of global iterations; k ≥ 1 - number of factors; λ > 0 - learning rate.
3. Initial similarity matrix G is generated randomly.

4. Global cycle: repeat M times the following steps 5 - 15:
5. external-cycle: for a = 1 to ns − 1 repeat steps 6 - 15:
6. internal-cycle: for b = a+ 1 to ns repeat steps 7 - 15:

7. compute prediction S =
∑k

f=1
gafgfb;

8. compute error of prediction: ∆ = xab − S;
9. internal factors-cycle: for f = 1 to k repeat steps 10 - 15:

10. compute α = gafgfb;
11. update gaf ⇐ gaf + λ ·∆ · gfb (see (12a));
12. ∆ ⇐ ∆+ α− gafgfb;
13. compute α = gafgfb;
14. update gfb ⇐ gfb + λ ·∆ · gaf (see (12b));
15. ∆ ⇐ ∆+ α− gafgfb;

16. Output: G - matrix of latent factors.

The following partial derivatives are necessary for Algorithm 1:

∂e2ab
∂gaf

= −2eabgfb, (12a)

∂e2ab
∂gfb

= −2eabgaf , (12b)

where a = 1, . . . , ns − 1, b = a+ 1, . . . , ns.

Remark 7. The content within this section represents rather a direction for a prospective
work.We are thinking that transformation by the logit function of the values of the matrix
X will work better with Algorithm 1.

4.1 Ranking of the lectures with the matrix of latent factors

As an outcome, Algorithm 1 produces the matrix G of latent factors. Accordingly, we
can characterize any lecture by the corresponding vector-row of k numerical values, and
can compute a proximity measure with the given three lecture (triplet) from the test set
V . The smaller value of the distance indicates higher preference.

5 Concluding remarks

We fully agree with [10] that the superiority of new algorithms should always be demon-
strated on an independent validation data. In this sense, an importance of the data

68



V. Nikulin

mining contests is unquestionable. The rapid popularity growth of the data mining chal-
lenges demonstrates with confidence that it is the best known way to evaluate different
models and systems.

In general terms, we are satisfied with our results. However, due to the lack of available
time, we did not find an efficient way how to construct heterogeneous ensembles. For
example, the outcomes of the methods of weighted singles and couples are very different.
Nevertheless, both results are competitive, and it is very important to find out how to
exploit the differences in order to produce more advanced solution.

Also, we did not explore in details gradient-based matrix factorization, which is pre-
sented in Section 4. We can expect that this method may lead (after proper adjustment
and modification) to the solution, which will be different and competitive at the same
time.

Acknowledgments

This work was supported by a grant from the Australian Research Council. Also, we
are grateful to the Organisers of the PKDD 2011 data mining Contest for this stimulat-
ing opportunity. Many thanks to the reviewers for very helpful comments and advices,
including some very important references.

References

1. Ram A.,Ai H.,Ram P. and Sahay S. (2011) Open Social Learning Communities. In Interna-

tional Conference on Web Intelligence, Mining and Semantics, Sogndal, Norway.
2. Takacs G., Pilaszy I., Nemeth B. and Tikk D. (2009) Scalable Collaborative Filtering Ap-

proaches for Large Recommender Systems. Journal of Machine Learning Research, 10, 623-
656.

3. Agrawal R. and Srikant R. (1994) Fast Algorithms for Mining Association Rules. Proc. 20th
Int. Conf. Very Large Data Bases, VLDB, 32p.

4. Mobasher B., Dai H., Luo T. and Nakagawa M. (2002) Using Sequential and Non-Sequential
Patterns in PredictiveWeb Usage Mining Tasks. ICDM 2002, 4p.

5. Shani G., Heckerman D. and Brafman R. (2005) An MDP-Based Recommender System.
Journal of Machine Learning Research, 6, 1265-1295.

6. Nikulin V., Huang T.-H., Ng S.-K., Rathnayake S. and McLachlan G.J. (2011) A Very Fast
Algorithm for Matrix Factorisation. Statistics and Probability Letters, 81, 773-782.

7. Breiman L. (1996) Bagging Predictors. Machine Learning, 24, 123-140.
8. Breiman L. (2001) Random Forests. Machine Learning, 45, 5-32.
9. Rendle S., Freudenthaler C. and Schmidt-Thieme L. (2010) Factorizing Personalized Markov

Chains for Next-Basket Recommendation. WWW 2010, North Carolina, USA, 811-820.
10. Jelizarow M., Guillemot V., Tenenhaus A., Strimmer K. and Boulesteix A.-L. (2010) Over-

optimism in bioinformatics: an illustration. Bioinformatics, 26(16), 1990-1998.

69


