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Abstract—We discuss the dynamics of signatures in the light
of recent findings in motor learning, according to which a
signature is a highly automated motor task and, as such, it
is stored in the brain as both a trajectory plan and a motor
plan. We then conjecture that such a stored representation does
not necessarily include the entire signature, but can be limited
to only parts of it, those that have been learned better and
therefore are executed more automatically than others. Because
these regions are executed more automatically than others, they
are less prone to significant variations depending on the actual
writing conditions, and therefore should represent better than
other regions the distinctive features of signatures. To support
our conjecture, we report and discuss the results of experiments
conducted by using an algorithm for finding those regions in the
signature ink and eventually using them for automatic signature
verification.

Index Terms—motor learning and execution; stability region;
signature verification;

I. INTRODUCTION

According to the daily experience, a coordinated sequence
of ”elementary” movements is acquired and executed faster
and more accurately the more it is practiced. Early in lear-
ning, actions are attention demanding, slow and less accurate,
whereas after long-term practice performance becomes quick,
movements are smooth, automatic, and can be performed
effortlessly, using minimal cognitive resources.

Studies on motor control have shown that selection, exe-
cution and learning of the movements needed to perform a
motor task involve several brain areas and motor subsystems,
but their activation and cooperation depend on the kind of
movements that are being made and on the effector that is
being used [1].

Indeed, when a child starts learning handwriting by copying
letters or words, he attempts several trajectory patterns in
order to replicate the same shape of the letters, selecting the
points to reach through the visual system, and performing
the appropriate sequence of movements through the motor
system. During the initial phase of learning, the movements
are quite straight and aimed to reach a sequence of points (as
in Figure 1a). The executed motor plan is corrected according
to the information provided by the visual and proprioceptive
feedback, so that the actual trajectory corresponds to the
desired one, and the lowest energy is spent by the muscular
subsystem involved. As learning proceed, simple point-to-
point movements become continuous, curved and smoother,
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Fig. 1. Handwriting samples, written by a child (a) and a skilled writer (b).

the motor sequence comes to be executed as a single beha-
vior and is performed automatically, using minimal cognitive
resources (as in Figure 1b).

There is also strong evidence, supported by the results of
several experimental studies on motor learning, that a given
sequence of actions is learned from different perspectives. It
has been observed, first by Lashley [2] and then by Hebb
[3], that a generic movement, learned with one extremity,
can be executed by different effectors. Furthermore, other
studies have shown that writing movements learned through
the dominant hand could be repeated using different body
parts, such as non-dominant hand, the mouth (with the pen
gripped by teeth) and foot (with the pen attached to it), even if
the subject had essentially no previous experience writing with
any of this body parts [4], [5]. Despite the different muscular
and skeletal systems used and, even though the movements
are not smooth, it can be observed that the writing production
follows the same trajectory in all conditions [4] (see Figure 2).
The ability to perform the same movement pattern by different
muscular systems is called ”motor equivalence”. It suggests
that movements directed to perform a task are stored in the
brain in two ways: in an abstract form (effector-independent)
related to the spatial sequence of points representing the tra-
jectory plan, and as a sequence of motor commands (effector-
dependent) directed to obtain particular muscular contractions
and articulatory movements.

Other studies on motor learning have shown that when the
untrained hand is used to perform a given sequence, learned
with long-term practice with the other hand, performances are
poor, but this is not true for a newly learned sequence [6],



supporting the hypothesis that early in learning the execution
of the motor task is more based upon the trajectory plan
(effector independent), whereas late in learning upon the
sequence of motor commands (effector-dependent).

Execution of voluntary movements requires the interaction
between nervous and musculoskeletal systems, involving seve-
ral areas, from the higher cortical centers to the motor circuits
in the spinal cord [7].

In seeking to understand all the breadth and facets of motor
learning, many researchers have used different approaches and
methods, such as genetic analysis, neuroimaging techniques
(such as fMRI, PET and EEG), animal models and clinical
treatments (e.g. drugs administration and brain stimulation).
These studies have provided a large body of knowledge
that has led to several theories related to the role of the
central nervous system in controlling and learning simple
and complex movements. According to the results reported
by neuroimaging and experimental studies on motor learning,
several cortical and subcortical structures, including the basal
ganglia, cerebellum, and motor cortical regions, are thought
to be critical in different stages and aspects in the acquisition
and/or retention of skilled motor behaviors.

In order to locate which brain area, or areas, underlie
effector-independent representation of handwriting, Rijntjes
and colleagues [8] carried out an fMRI study to examine
patterns of brain activation associated with signing, using
either the hand or the big toe. Their results showed the
involvement of the parietal cortex in general, and posterior
parietal cortex and occipitotemporal junction in particular, in
the representation of written letter forms.

More recently, other neuroimaging studies have investigated
the dynamics and functional connectivity of brain networks
associated with learning a novel sequence of hand stroke
movements to write ideomotor character [9]. Their results
also suggest that a novel sequence of movements is initially
mapped to form an internal representation of the sequence that
is progressively encoded and refined subcortically (in the basal
ganglia and in the cerebellum) as performance improves.

The imaging data reported by other studies on motor
learning support the notion that distinct regions of the basal
ganglia participate in different stages of learning. These studies
report increased activity within the striatum (the input nucleus
of the basal ganglia), in particular within the associative
striatum and sensorimotor striatum early and late in learning,
respectively. However, although there is solid evidence that
the initial learning of many skills depends on the striatum,
there are contrasting results in the literature regarding to the
role of the sensorimotor striatum in automatic responding. For
example, whereas some fMRI studies reported increased acti-
vity in the sensorimotor striatum with extended training, others
reported decreased activity. Moreover, Turner and colleagues
[10] reported that temporary inactivations of sensorimotor
regions of the internal segment of the globus pallidus (a basal
ganglia nucleus whose activity depends on the sensorimotor
striatum) did not impair the ability of monkeys to produce
previously learned motor sequences. Therefore, these results

Fig. 2. A sentence written by the same writer using different body parts.
Reproduced from [4].

Fig. 3. Neural scheme of the model for procedural motor learning.

sustain the hypothesis that the basal ganglia play an important
role in the initial stage of learning, whereas it is not well-
established their importance in the final stage of learning.

With regard to the cerebellum, many studies report increased
activity within the cerebellar cortex during learning, and
increased activity within the dentate nucleus (an output nucleus
of the cerebellar circuitry) until automaticity is achieved. A
detailed review of the imaging studies whose results are here
cited can be found in [11].

According to these results, we have proposed a neural
scheme, based on the hypothesis that acquiring new motor
skills requires two phases, in which two different processes
occur:

• during the early stage, humans learn the spatial sequence
associated to the motor task in visual coordinates, i.e. the
sequence of points to reach in order to generate the ink
trace.

• during the late, automatic phase, the sequence of motor
commands in motor coordinates is acquired and comes
to be executed as a single behavior.

The neural scheme for motor learning is shown in Figure 3
and incorporates the parietal and motor cortex, basal ganglia
and cerebellum [12].

Sensory information is provided by an input module (sen-
sory input in the figure) to the cerebral cortex, basal ganglia
and cerebellum. The parietal association cortex releases signals
that specify the position of targets in extrapersonal space
(according to the studies conducted by Andersen and Zipser
[13] and Rijntjes [8]). Therefore, the basal ganglia, interacting



with the parietal cortex, select the next target point in the
sequence. In turn, parietal cortex sends this information to the
cerebellum that, interacting with the motor cortex, selects the
appropriate motor command.

This model fits with the our hypothesis that motor learning
follows two distinct phases. During the early phase of learning,
the model learns the spatial sequence in visual coordinates (i.e.
the sequence of points to reach in order to realize the motor
task) through the interactions between the basal ganglia and
the parietal cortex. The spatial sequence is then converted into
motor commands through the interactions of the cerebellum
and the motor cortex. Therefore the cerebral cortex, basal
ganglia and cerebellum initially would work in parallel. The
basal ganglia, through the associative striatum, are involved
in the acquisition of the spatial sequence and the cerebellar
cortex starts working to acquire the motor sequence. As
learning proceeds, the sequence of motor commands in motor
coordinates is acquired and stored in the dentate nucleus.

II. SIGNATURES AND MOTOR LEARNING

The neural scheme illustrated in the previous section sug-
gests that after the learning, i.e. when the movement is execu-
ted fluently, the sequence of motor command is executed as a
single movement. It suggests also that the more a movement
is repeated the better is learned, i.e. the more it is automated.
When applied to handwriting, the model suggests that the
ultimate goal of the learning is that of producing a repertoire
of completely automated movements in correspondence of
the most frequently used sequences of characters. Such a
repertoire depends on the sequences of characters the writer
is most familiar with, which triggers the learning, and the
sequences of the corresponding motor commands. Thus, the
handwriting style emerges from both those aspects, the former
being mainly language and cultural dependent, the latter being
dependent on the physical and cognitive motor skills of the
subject. Accordingly, different subjects may develop diffe-
rent repertoires of completely automated movements, either
because the sequences of characters for which a completed
automated movement is learned are different or because a
different sequences of motor commands are learned for a
given sequence of characters. When a completely automated
movement has been learned for an entire message, multiple
executions of such a movement should produce similar re-
sults, the difference between them being mainly influenced
by the effector-dependent encoding of the learned sequence
rather than from the effector-independent one. On the other
hand, when more than one completely automated movement
needs to be used for encoding the entire message, further
variability may be observed in multiple execution of the same
movements because the movements introduced for smoothing
the transition between two successive completely automated
movements are planned on the fly during the execution, and
therefore may vary in both the effector-independent and the
effector-dependent component.

What do these observations suggest in case of signatures?
A signature is a movement the subject is very familiar with,

that has been learned through repeated practice, and therefore
it will have triggered a learning process whose final result is
the repertoire of completely automated movements used by
the subject while signing. If the entire signature is encoded
in a single completely automated movement, it is expected
that signatures produced by using the effector under the same
condition result in very similar traces. In such a condition,
in fact, the effector-independent part of the movement does
not change because it has been completely learned and the
effector-dependent component is supposed to be the same
during all the execution. On the contrary, if the signature is
produced by executing more than one completely automated
movement, repeated execution may produce different traces,
even under the assumption that the effector is used under
the same condition, because there will be differences in the
movements, and therefore in the traces, for connecting two
successive completely automated movements. It follows from
the observations reported above that whatever (dis)similarity
measure is adopted for deciding whether a signature is genuine
or not, it should be handled with care. In particular, it can be
used successfully only after it has been decided which one are
the parts of the signature that correspond to the execution of
completely automated movements, and only the (dis)similarity
between those parts of the signatures at hand should be
evaluated by the adopted measure, because only those parts
are expected to be ”stable” across multiple executions of the
signature. In other words, the signature verification should be
conducted by weighting differently the (dis)similarity between
”stable” regions and the (dis)similarity between other regions
of the signature. In the following sections, we will briefly
illustrate a procedure we have designed for finding the stability
regions and then results obtained in a signature verification
experiment.

III. FINDING THE STABILITY REGIONS

It follows from our definition of stability regions that they
are sequences of strokes produced as a single behavior and
therefore should be embedded into any execution of the
signature. Let us recall that a completely learned movement
is stored in two forms, a sequence of target points, and a
sequence of motor commands, and that the former is effector-
independent, while the latter is effector-dependent. When the
same effector is used in multiple executions, therefore, the only
source of variability is the actual state of the effector, which
may give raise to local variations in the shape of the ink traces.
These traces, however, are composed of the same number of
strokes and aimed at reaching the same sequence of target
points. Assuming such a perspective, the stability regions are
the longest common sequences of similar strokes found in two
signatures, where similar means that they are aimed at reaching
the same sequence of target points by following the same path.
The method we have developed for finding the stability regions
assumes that the signature signal has been segmented into a
sequence of strokes, and the detection of the stability regions
is achieved by an ink matcher that finds the longest common
sequences of strokes with similar shapes between the inks of



(a) Genuine n. 16 (b) Genuine n. 19

Fig. 4. Genuine signatures produced by the user n. 22. The stability region
is in red.

a pair of signatures [14]. For deciding when two sequences
are similar enough, i.e. when they match, the method exploits
the concept of saliency that has been proposed to account
for attentional gaze shift in primate visual system [15]. The
rationale behind this choice is that, by evaluating the similarity
at different scales and then combining this information across
the scales, sequence of strokes that are globally more similar
than other will stand out in the saliency map. The global nature
of the saliency guarantees that its map provides more reliable
estimation of trace similarity with respect to that provided
by local criteria, as it is usually proposed in the literature
[16]. According to the definition of stability regions, one
would expect that the sequences of similar strokes provided
by the ink matching appear in all the signatures. In practice,
however, both the stroke segmentation and the ink matching
may introduce errors, in locating the segmentation points (i.e.
estimating the trajectory) and/or deciding when a sequence of
strokes is similar to another (i.e. estimating the motor plan),
that may produce different stability regions for the set of signa-
tures. To decide which sequences correspond to the stability
regions, we consider that longer stability region correspond
to longer sequence of elementary movements executed in a
highly automated fashion. Because the level of automation is
the result of the learning process described above, and because
the learning is an individual feature, long stability regions are
more subject specific than short ones. Accordingly, we remove
the stability regions that are subsequences of longer ones.

IV. EXPERIMENTAL RESULTS

We have two experimental results to support our conjec-
ture about the role of stability regions in signature learning
and execution and their effectiveness in signature verifica-
tion. In both cases, the experiments were conducted on the
SVC2004 dataset, adopted in the literature for writer verifica-
tion/identification [17].

The first one was carried on by 3 subjects independently.
They were provided with a written definition of stability
regions in terms of sequence of strokes and asked to find
them between 100 pairs of genuine signatures previously
segmented by our algorithm. We then compared their outputs
and removed 13 pairs for which there was some disagreement
among them. This 87 pairs were then processed as above and
the provided output compared with the one provided by the
experts. In all the cases we have found a perfect correspon-

(a) Genuine n. 8 (b) Genuine n. 10

Fig. 5. Genuine signatures produced by the user n. 40. The stability region
is in red.

(a) Genuine n. 14

(b) Genuine n. 18

Fig. 6. Genuine signatures produced by the user n. 6. The stability region is
in red, the pen-up in magenta.

dence between the machine and the expert. As an illustration
of the results, the figures 4-6 show the stability regions found
by the algorithm in case of signatures of different complexity.
Figure 4 shows two signatures produced without any pen-up
and pen-down occurring between the beginning and the end of
the signature. The two traces are divided into the same number
of strokes, and the stroke segmentation points, represented in
figure as black dot, are located on the shape so as to roughly
preserve their relative positions. According to our model, thus,
the subjects concluded that the two shapes have been generated
by the same motor plan, because it aims at reaching the same
sequence of target points (estimated by the relative position
of the segmentation points, as described in [18]) by means of
the same sequence of elementary movements with the same
time superimposition between successive ones (as estimated
by the similarity between sequence of strokes). In this case,
one would expect the algorithm to find just one stability
region covering the whole signature, as it happens. Figure
5 shows two signatures produced by another writer without
lifting the pen, as in the previous case, but with the end-
effector in a different initial condition. Again, by looking at
the segmentation points and at the similarity between sequence
of strokes, the experts (and the machine as well) concluded
that there was a difference in the initial parts of the signature
(depicted in blue in the figure) and therefore they were not
include in the stability region. Eventually, figure 6 depicts
two long and complex signatures produced by a third writer.



Because of the pen-up within the trace, depicted in magenta,
and according to our conjecture, we expect that this signature
is less automated and that stability regions may be found
only during pen-down, as it happens. When requested to
explain why they did not include the beginning of the ink
trace (in blue) in the stability regions, the experts told us that
the movement at the beginning of the sequence were very
different, since in the first case the first stroke was directed
top left, while in the second it was directed to left, showing
also a sign of hesitation at the very beginning, as the subject
started a movement directed down-left and suddenly corrected
it. Similarly, in the first case it appears to be a stop-and-go
or an hesitation while drawing the letters. In both cases, they
were interpreted as sign of difference between the sequence
of strokes constituting the motor plan.

The second result comes from a signature verification
experiment we have designed and performed on the same
dataset [14]. In such an experiment, we have used the stability
regions provided by our algorithm for both selecting the
genuine signatures to be used as reference and classifying
the questioned signatures as both genuine or forged. Each
questioned signatures was compared with the stability regions
of the references. If a match was found, the similarity between
the sequence(s) of strokes of the stability region(s) in the
reference and the matching sequences of strokes in the que-
stioned was compared with two thresholds, to decide whether
the questioned was genuine or not. Despite this very simple
decision criteria, and the exploitation of shape information
only for measuring the similarity between sequence of strokes,
the experimental results showed that our method was the
5th among the 15 methods considered in the final ranking,
but also that it exhibited the lowest standard deviation of
the performance. This latter finding suggests that the method
captures the common aspects of signatures as they derive from
the model, and therefore is quite robust in providing similar
performance independently of the distinctive signing habit of
each subject. Even more interesting, most of the errors are
found in case of signatures with many pen-up and pen-down,
and whose stability regions are made of a few strokes, further
supporting our claim that the more the signature is automated
the longer are the stability regions.

All together, those results show that stability regions, as we
have defined and implemented them, do seems to exist and that
they can represent a promising way to root signature verifica-
tion within the framework of motor learning and execution.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have discussed some recent findings in neurocomputa-
tional modeling of motor learning and execution and suggested
that they may provide a new perspective for handwriting ana-
lysis. Under such a perspective, we have conjectured that si-
gnatures are represented as a motor plan, stored in a distributed
fashion between the basal ganglia and the cerebellum, which
encodes both the target points to be reached and the motor
program to execute for producing the desired handwriting.
From this conjecture we have derived a definition of stability

regions by globally evaluating the traces shape similarity by
means of a saliency map.

Our conjecture is supported by two experiments showing
that: human subjects may actually find stability regions that fits
with our definition and that such regions provide a plausible
estimate of the motor plans used to produce the observed
traces; the proposed algorithm finds the same stability regions
as the human subjects; the stability regions may be used for
both selecting the reference signature and performing signature
verification, providing very promising results even when a
very simple criterion is used to decide whether a questioned
signature is genuine or not.

In the future we will investigate to which extent our model
can deal with disguising writers. We would also like to
understand whether there is any relation between legibility and
learning of signatures.
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