
Towards Online Performance Model Extraction
in Virtualized Environments?

Simon Spinner1, Samuel Kounev1, Xiaoyun Zhu2, and Mustafa Uysal2

1 Karlsruhe Institute of Technology (KIT)
{simon.spinner,kounev}@kit.edu

2 VMware Inc.
{xzhu,muysal}@vmware.com

Abstract. Virtualization increases the complexity and dynamics of mod-
ern software architectures making it a major challenge to manage the
end-to-end performance of applications. Architecture-level performance
models can help here as they provide the modeling power and analy-
sis flexibility to predict the performance behavior of applications under
varying workloads and configurations. However, the construction of such
models is a complex and time-consuming task. In this position paper, we
discuss how the existing concept of virtual appliances can be extended to
automate the extraction of architecture-level performance models during
system operation.

1 Introduction

Modern IT systems have increasingly complex layered architectures composed of
loosely-coupled components deployed in virtualized environments. The use of vir-
tualization provides increased flexibility and efficiency by enabling the sharing of
resources among independent applications. However, managing the end-to-end
performance of applications in virtualized environments while ensuring efficient
resource usage is a challenge due to the increased system complexity and dy-
namics. Questions such as the following arise frequently during operation: How
quickly and at what granularity (e.g., vCores, virtual machine instances) should
resources be allocated/deallocated to applications as workloads change? How
much resources are required to ensure both efficient operation and compliance
with Service Level Agreements (SLAs)? To answer such questions, it is crucial
to be able to predict at run-time the system performance under varying work-
loads and system configurations, so that resource allocations can be adapted
dynamically to enforce SLAs while optimizing efficiency.

Existing approaches to online performance and resource management are
typically based on coarse-grained performance models abstracting applications
and system layers at a high level. Individual effects and complex interactions be-
tween the application workloads and the system layers are considered as static

? This work was funded by VMware Inc. We acknowledge the many fruitful discussions
with Pradeep Padala.



and viewed as a black box. This hinders fine-grained performance predictions
that are necessary for efficient resource management (e.g., predicting the effect
on the response time, if a virtual machine of an application tier is replicated
or migrated). Therefore, newer approaches to online performance and resource
management (e.g. DMM [1,2]) are based on the more powerful architecture-level
performance models for fine-grained performance predictions. However, building
architecture-level performance models that accurately capture the different as-
pects of system behavior is a time-consuming and challenging task when applied
manually to large real-world systems [3]. Often, no explicit architecture docu-
mentation of the system exists, and hence, the model must be built from scratch.
Additionally, experiments and measurements must be conducted to parameter-
ize and calibrate the model, such that it reflects the system behavior accurately.
Moreover, a major challenge is to ensure that models derived based on measure-
ments of the system in an offline setting would be representative of the actual
system behavior in the real production environment. Given the high costs of
building performance models, techniques for automated model extraction based
on observation of the system at run-time are highly desirable.

The contributions of this position paper are: a) we describe an extension
of the notion of virtual appliance with integrated logic for performance model
extraction, b) we propose an approach for how an end-to-end architecture-level
performance model can be obtained in virtualized environments with a hetero-
geneous software stack, and c) we present a research roadmap for implementing
the proposed approach. The paper is structured as follows: Section 2 gives a brief
overview of related work in the field of automatic model extraction and of our
preliminary work. Section 3 describes the vision and the approach in detail and
identifies research challenges.

2 State-of-the-Art

Related Work Current performance monitoring and management tools in indus-
try (e.g., Hyperic or Dynatrace Diagnostics) can provide large amounts of raw
performance data, however, they lack the ability to generate performance ab-
stractions of the monitored systems and applications. Approaches such as [4,5]
use systematic measurements to build black-box mathematical models. However,
they only serve as interpolation of the measurements. Predictive performance
models are extracted for example in [6], where run-time monitoring data is used
to derive the model parameters of predefined queueing Petri net models. Ex-
traction of structural information is considered for example for UML sequence
diagrams [7], and for LQNs [8,9].

Existing work on extracting architecture-level performance models is either
based on static code analysis or assumes a strictly controlled environment.
In [10], behavior models are extracted via static and dynamic analysis, however,
this is done in an offline setting requiring fine-grained manual instrumentation of
applications. The described approaches are focused on the application level and
do not explicitly consider the influences of the lower system layers. To quantify



the impact of the virtualization platform on the application performance, micro-
benchmarks are used in [11,12]. However, no explicit model of the performance
influence of the virtualization platform is proposed.

Preliminary Work The approach we propose in this position paper is based on
the experiences we gained in our preliminary work. In [1,2], we describe the
Descartes Meta-Model (DMM) which is an architecture-level modeling language
for online performance and resource management. It enables to describe the per-
formance influence of different system layers in independent sub-models, which
can be automatically composed at run-time enabling online performance predic-
tion. The combined model can be automatically transformed to different alterna-
tive underlying stochastic models (queueing networks, stochastic Petri nets, and
fine-grained custom simulation models), which in turn can be solved using dif-
ferent solution techniques (exact analytical techniques, numerical approximation
techniques, simulation and bounding techniques). While DMM provides a pow-
erful and flexible tool for online predictions, the manual creation of these models
can be complex and time-consuming. Therefore in [13], we investigated the fea-
sibility of extracting architecture-level performance models at system run-time.
We used low-level monitoring data obtained through application instrumentation
to extract an architecture-level performance model of the SPECjEnterprise2010
standard benchmark. While the resulting models were able to predict the system
performance within an acceptable error margin (mostly 10-20 percent) [13], this
approach has two major drawbacks, limiting its practical applicability: (i) the
extraction is focused on the application level and does not construct detailed
models of the lower layers of a system (e.g., virtualization and middleware), and
(ii) the approach is restricted to a specific software stack (i.e., Java EE appli-
cation server, WebLogic Diagnostic Framework for the application instrumenta-
tion). The former limits the prediction accuracy of the extracted models in vir-
tualized environments and their usage for configuration-based what-if analysis.
The latter hinders its application in heterogeneous environments with different
software stacks. The goal of the proposed approach is to overcome these limi-
tations and enable the automatic model extraction in virtualized environments
with heterogeneous software stacks.

3 Vision and Approach

Vision To simplify the creation and maintenance of architecture-level perfor-
mance models, we envision a novel class of virtualization platforms with inte-
grated capabilities for the automatic extraction of such models at system run-
time. We assume an environment where a virtual machine monitor (VMM) hosts
a set of virtual appliances (VA) with heterogeneous software stacks. VAs are pre-
packaged VM images each containing a complete software stack ready to run
on a virtualization platform. VAs are becoming increasingly popular in system
management since they significantly reduce the effort and knowledge needed for
deploying software systems. For instance, there are VAs available providing a



pre-configured Tomcat application server or Zimbra collaboration server. These
VAs are built by experts of the respective system and can then be shared with
others (e.g., through online marketplaces, such as VMware Solution Exchange3).

We argue that the notion of a VA should be extended to include additional
logic for extracting performance models of the application as well as the mid-
dleware layers during run-time. A performance engineer, who has expertise in
performance modeling, can specifically design the extraction logic for the respec-
tive software stack. When such a VA is deployed in a virtualized environment,
the model extraction logic will start to monitor the application serving real pro-
duction workloads and will automatically built a performance model of the VA.

A virtualization platform that is aware of the model extraction logic within
the VA can then exploit the extracted performance models for online perfor-
mance and resource management. However, to evaluate the performance impact
of changes at the VMM level, we also need a model of the performance-relevant
factors of the VMM and their influence on the VAs. Therefore, the VMM also
needs to be extended with the capability of creating such models, so that an
end-to-end performance model of the VA and the VMM can be extracted.

Database
VA

OS

AppServer
VA

WebServer
VA

VA Model

VMM Model

OS OS

Instrumentation
ControllerVMM

Model Extraction Coordinator

V
A

 M
od

el
 

E
xt

ra
ct

io
n

VMM Model Extraction

HTTPD Java EE

V
A

 M
od

el
 

E
xt

ra
ct

io
n

V
A

 M
od

el
 

E
xt

ra
ct

io
n

DB

Fig. 1. Overview of proposed architecture

Approach Figure 1 gives an overview of the proposed architecture. The ma-
jor components are VA Model Extraction, VMM Model Extraction and Model
Extraction Coordinator. The VA Model Extraction component is delivered as
part of each VA. It contains pre-defined model skeletons that capture struc-
tural knowledge of the software stack, a set of monitoring probes, and an ex-
ecutable extraction process. The extraction process describes how to compose
and parameterize an end-to-end performance model of the VA based on model
skeletons, static configuration data (e.g., server configuration files or deployment
descriptors) and dynamic monitoring data (e.g., call path traces). Typically, an
extraction process consists of the extraction of the static and dynamic archi-
tecture (e.g., application components, active and passive resources, inter- and
intra-component control flow) and the model parameterization (e.g., resource
demands, and branching probabilities). The degree to which this information is
known beforehand and can be integrated as model skeletons, heavily depends
on the type of VA. For instance, if the VA contains a complete application (e.g.,

3 https://solutionexchange.vmware.com/store

https://solutionexchange.vmware.com/store


a wiki or a mail server), the architecture can be provided beforehand and at
run-time it is only necessary to estimate the model parameters for the current
environment. In contrast, in case of a Java EE application server, the creator
of the VA does not know the applications that will run on top of it. Therefore,
he needs to integrate logic to determine the current application components and
instrumentation probes to observe the control flow of the application.

The VMM Model Extraction is tightly coupled with the VMM and observes
its internal state and configuration to build a model that captures the overhead of
the VMM and contention effects due to the sharing of physical resources. We plan
to derive regression-based models describing the overhead and contention effects
depending on the current utilization of the physical resources and the VMM
configuration (e.g., caps, priority and affinity settings of the scheduler). The
models will be extracted based on online monitoring data provided by the VMM.
If necessary, we also consider to use micro-benchmarks in order to determine
certain performance characteristics of the VMM (e.g., to determine the overhead
for certain workload mixes). Such micro-benchmarks can either be run in an
initial step, when installing a new virtual host, or during system operation in
phases of low workload intensity.

The Model Extraction Coordinator controls the model extraction compo-
nents in the VMM and VAs and triggers the initial extraction or the update of
the performance models. It also validates the extracted models continuously by
comparing the model predictions with observations on the real system. If the
predictions deviate significantly from the actual performance, the current model
will be updated by repeating the model parameterization or changing the model
structure. Furthermore, it monitors the state of the environment and triggers the
model extraction process if it observes any changes (e.g., configuration changes
in the VA or the VMM).

The extracted models of the VMM and VA are based on the Descartes Meta-
Model (DMM) [1,2]. The latter allows to dynamically compose the automatically
extracted submodels of the VA and the VMM in order to answer configuration-
based what-if questions. Using DMM as the output model for the model ex-
traction offers the flexibility to employ different analysis techniques for model
solution depending on the required accuracy and speed.

Research Challenges The described approach raises a number of research chal-
lenges targeted as part of our on-going work:
◦ A generic mechanism to package the model extraction logic in the VAs needs

to be defined including an interface for exchanging information between the
VMM and VAs during model extraction.

◦ New languages to simplify the implementation of the model extraction for
various VAs will be designed (e.g., for specifying instrumentation probes in a
technology-agnostic manner, or for specifying rules for abstracting the control
flow of an application).

◦ Techniques for reliably estimating resource demands in virtualized systems are
necessary (e.g., influence of virtualization effects, and parallel processing on
multi-core processors).



◦ Methods for autonomic online validation and calibration of performance mod-
els are crucial to ensure the representativeness of the extracted models.

◦ Methods to quantify the performance influence of the virtualization platform
during system operation are necessary to extract the VMM models.

◦ Automatic techniques to detect configuration changes and to determine their
influence on the performance models are desirable.

References

1. Brosig, F., Huber, N., Kounev, S.: Architecture-Level Software Performance Ab-
stractions for Online Performance Prediction. Elsevier Science of Computer Pro-
gramming Journal (SciCo) (2013)

2. Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., Kounev, S.: Modeling Run-
Time Adaptation at the System Architecture Level in Dynamic Service-Oriented
Environments. Service Oriented Computing and Applications (2013) In print.

3. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-
Based Systems Using Queueing Petri Nets. IEEE Trans. on Softw. Eng. 32(7)
(2006) 486–502

4. Westermann, D., Happe, J.: Towards Performance Prediction of Large Enterprise
Applications Based on Systematic Measurements. In: Proc. of the 15th Intl. Work-
shop on Component-Oriented Programming. (2010)

5. Courtois, M., Woodside, M.: Using Regression Splines for Software Performance
Analysis. In: Proc. of the 2nd Intl. Works. on Software and Performance. (2000)

6. Kounev, S., Bender, K., Brosig, F., Huber, N., Okamoto, R.: Automated
Simulation-Based Capacity Planning for Enterprise Data Fabrics. In: 4th Intl.
ICST Conf. on Simul. Tools and Techniques . (2011)

7. Briand, L.C., Labiche, Y., Leduc, J.: Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Trans. on Softw. Eng.
32(9) (2006) 642 – 663

8. Hrischuk, C.E., Woodside, M., Rolia, J.A., Iversen, R.: Trace-Based Load Char-
acterization for Generating Performance Software Models. IEEE Trans. on Softw.
Eng. 25(1) (1999) 122 – 135

9. Israr, T., Woodside, M., Franks, G.: Interaction Tree Algorithms to Extract Ef-
fective Architecture and Layered Performance Models from Traces. J. Syst. Softw.
80(4) (2007) 474–492

10. Krogmann, K., Kuperberg, M., Reussner, R.: Using Genetic Search for Reverse
Engineering of Parametric Behaviour Models for Performance Prediction. IEEE
Trans. on Softw. Eng. 36(6) (2010) 865–877

11. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.: Profiling and Modeling Resource
Usage of Virtualized Applications. In: Proc. of the 9th ACM/IFIP/USENIX Intl.
Conf. on Middleware. (2008)

12. Lu, L., Zhang, H., Jiang, G., Chen, H., Yoshihira, K., Smirni, E.: Untangling Mixed
Information to Calibrate Resource Utilization in Virtual Machines. In: Proc. of
the 8th ACM Intl. Conf. on Autonomic Computing. (2011)

13. Brosig, F., Huber, N., Kounev, S.: Automated Extraction of Architecture-
Level Performance Models of Distributed Component-Based Systems. In: 26th
IEEE/ACM Intl. Conf. On Automated Softw. Eng. (2011)


	Towards Online Performance Model Extraction in Virtualized Environments

