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Preface

This volume contains the peer-reviewed papers presented at BioPPN 2014 – the
5th International Workshop on Biological Processes & Petri Nets held on June
23, 2014 in Tunis as satellite event of PETRI NETS 2014.

The workshop had been organised to provide a platform for researchers aim-
ing at fundamental research and real life applications of Petri nets in Systems and
Synthetic Biology. Systems and Synthetic Biology are full of challenges and open
issues, with adequate modelling and analysis techniques being one of them. The
need for appropriate mathematical and computational modelling tools is widely
acknowledged.

Petri nets offer a family of related models, which can be used as a kind
of umbrella formalism – models may share the network structure, but vary in
their kinetic details (quantitative information). This undoubtedly contributes
to bridging the gap between different formalisms, and helps to unify diversity.
Thus, Petri nets have proved their usefulness for the modelling, analysis, and
simulation of a diversity of biological networks, covering qualitative, stochastic,
continuous and hybrid models. The deployment of Petri nets to study biological
applications has not only generated original models, but has also motivated
research of formal foundations.

There were six submissions to the BioPPN workshop. One of the papers
had been originally submitted to the PNSE workshop, and reviewed by the
PNSE programme committee. Following the recommendation of these reviews,
this paper has then been moved to the BioPPN workshop. In summary, each
submission was reviewed by at least three, and on the average four, program
committee members. The list of reviewers comprises 17 professionals of the field
coming from 12 different countries and writing in total 28 reviews, most of them
of substantial length.

The programme committees decided finally to accept five papers. The five ac-
cepted peer-reviewed papers (with an acceptance rate of 83%) involve 16 authors
coming from seven different countries.

The program also includes one invited talk on Mathematical models on cancer
progression given by Marco Beccuti from Università degli Studi di Torino. In
summary, the workshop proceedings enclose theoretical contributions as well as
biological applications, demonstrating the interdisciplinary nature of the topic.

For more details see the workshops website http://www-dssz.informatik.tu-
cottbus.de/BME/BioPPN2014.

We acknowledge substantial support by the EasyChair management system,
see http://www.easychair.org, during the reviewing process and the production
of these proceedings.

June 20, 2014
Cottbus

Monika Heiner
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tale de Québec, Canada

Monika Heiner Brandenburg University of Technology Cottbus-
Senftenberg, Computer Science Institute, Germany

Mostafa Herajy Port Said University, Mathematics and Computer
Science Department, Egypt

Peter Kemper College of William and Mary, Department of Com-
puter Science, USA

Sriram Krishnamachari Indraprastha Institute of Information Technology
(IIIT), India

Chen Li Zhejiang University, School of Medicine, Center for
Genetic & Genomic Medicine, China

Fei Liu Harbin Institute of Technology, Control and Simu-
lation Center, China

Wolfgang Marwan Otto von Guericke University Magdeburg & Magde-
burg Centre for Systems Biology, Germany

Hiroshi Matsuno Yamaguchi University, Graduate School of Science
and Engineering, Japan

P.S. Thiagarajan National University of Singapore, School of Comput-
ing, Department of Computer Science, Singapore

vi



Mathematical models on cancer progression

Marco Beccuti

Università degli Studi di Torino,
Dipartimento di Informatica, Italy

beccuti@di.unito.it

Abstract. The Cancer Stem Cell (CSC) involvement into tumor progression,
tumor recurrence, and therapy resistance is one of the most studied subject of
current cancer research [10,4,8,6]. Nevertheless, due to the complex dynamics
characterizing the CSC tumor, a comprehensive theory has not been established
yet. To this end, some advises can be obtained combining mathematical modeling
and experimental data [5,9,2,7]. Indeed, mathematical modeling is a powerful
instrument which may drive the comprehension of a biological system, providing
a clear description of its essential dynamics.

The aim of this talk is hence to show how the CSC tumor growth could be de-
scribed/studied through the application of mathematical models. In details two
different modeling approaches are presented: the former one consists in a mul-
tilevel/multiscale model [1], which details both molecular and cellular aspects.
By means of this framework we were able to reproduce the tumor growth trend
observed in mice, highlighting the strong connection existing between cellular
events and cell population dynamics. We were also able to reproduce molecular
vaccinations, correctly miming the in vivo vaccinations in animals. However, this
detailed approach can engender difficulties in the parameter estimation process
when only few kinetic information is available.

The second contribution [3] was designed really to address this complexity
issue. We defined a new compartmental mathematical framework only focusing
on the cell subpopulation dynamics. Indeed, the aim of this work was to describe
CSC tumor progression trying to identify its essential mechanisms at population
level. Through a quantitative and qualitative analysis of our model was hence
possible to define rules controlling the breast cancer progression.

Lastly, we point out that the CSC theory is applicable to several other human
cancers. Therefore, being our two model based on the key dynamics of the CSC
theory, they can be further adapted for the study of many other tumor cases
too.
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Overcoming unknown kinetic data for
quantitative modelling of biological systems

using fuzzy logic and Petri nets

Jure Bordon, Miha Moškon, Miha Mraz

University of Ljubljana,
Faculty of Computer and Information science,

Slovenia,
jure.bordon@fri.uni-lj.si

Abstract. Biological system modelling is used to guide experimental
work, therefore reducing the time and cost of in vivo implementation of
newly designed systems. We introduce an improved modelling method,
based on fuzzy logic and Petri nets. By using fuzzy logic to linguistically
describe a biological process, we avoid the necessity to use kinetic rates,
which are often unknown. We introduce a new set of transition func-
tions to enable the use of our method with existing Continuous Petri
nets. With this we achieve the extension of usability and applicability
of current Continuous Petri nets definition even for biological systems
for which exact kinetic data are unknown. We demonstrate the contri-
bution of our approach by using it to model the translation in a simple
transcription-translation system. We compare the results obtained to the
results of exiting ODE approaches.

Keywords: modelling biological systems, missing kinetic data, ODE,
fuzzy logic, Petri nets

1 Introduction

Advances in synthetic biology are consistently opening new possibilities for the
design and construction of complex biological systems. Because in vivo design
is costly and time-consuming, various modelling methods can be used to check
whether the desired behaviour of the system is achievable in silico first [1–3]. Fur-
thermore, modelling enables us to test in what way small or substantial changes
to the design of our system affects its behaviour and potentially change the design
before implementing it in vivo. Which modelling method to use depends on the
size of the system, the desired accuracy of simulation results and whether accu-
rate kinetic rates, which determine system’s dynamics, are known [4]. We usually
describe a biological system as a set of chemical species, which are connected by
interactions (chemical reactions). Once we define the desired behaviour of our
system by choosing the right chemical species and interactions among them, the
first step is to build a model. While existing deterministic and stochastic quan-
titative approaches [5–9] can produce a detailed prediction of system behaviour

M. Heiner (Ed.): BioPPN 2014, a satellite event of PETRI NETS 2014, 
CEUR Workshop Proceedings Vol. 1159, 2014.



4 J. Bordon, M. Moškon and M. Mraz

and therefore reduce the time and cost of such design, they heavily rely on kinetic
rates. In synthetic biology biological systems are usually newly designed and the
exact details of interactions (kinetic rates) are often unknown [10]. Consequently,
existing quantitative approaches can only be used to build a model of a limited
set of biological systems [11]. We can use parameter estimation techniques to
extract kinetic rates from experimental data. However, due to the complexity
of interactions, we often need to establish strict limitations on parameter values
in order to get biologically relevant and realistic parameters [12]. The diagram
on Figure 1 presents the role of modelling in designing a new biological system.
With existing methods the first step of the design process presented on the dia-
gram is only possible when we are building a model with well characterized parts
(left side), while our approach can be used for modelling biological systems in
the same way even if accurate kinetic data is unknown (right side). Existing
methods are often used within the framework of Petri nets, a formalism that
has been extended to suit the needs for continuous deterministic and stochastic
approaches [13].

Fuzzy modelling approach

𝑓𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝐹𝑢𝑧𝑧𝑦) 𝑡
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𝑓𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡

Experimental results

𝑓𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡
* * * *

*
*
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* * * ** * * * *

*
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Fig. 1. Sequence of steps which can significantly reduce the time and cost of in vivo
implementation. Because accurate kinetic data is needed for the first step, existing
approaches are often not usable (left side). Proposed modelling method uses the same
paradigm for model building (right side), but can be used even when accurate kinetic
rates are unknown.

Similarly to quantitative Petri nets, fuzzy logic Petri nets have been established
as a very promising modelling approach for qualitative analysis of biological
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Modelling biological systems using fuzzy logic and Petri nets 5

systems. Fuzzy logic uses linguistic terms and rules for system behaviour de-
scription, allowing intuitive design and model construction. It has been applied
to several research areas such as: extracting activator/repressor relationship from
micro-array data [14,15], searching for basic motifs in unknown gene regulatory
networks (positive/negative feedback loops, degradation, ...) [16] and qualita-
tive description of gene regulation [17]. Additionally, in [18] authors show that
fuzzy logic can serve as an alternative but more intuitive approach for modelling
biological systems. In their work they apply fuzzy logic and Petri nets to quan-
titative modelling of biological systems and successfully demonstrate that Hill,
Michaelis-Menten and mass-action functions can be approximated by fuzzy logic
systems if kinetic data is available. In this paper we propose an improved mod-
elling method that builds on established fuzzy logic and Petri nets approaches
but further extend its uses to allow us to obtain quantitative results even when
kinetic data is unknown. We inherit existing continuous Petri net definition and
extend it to include necessary transition functions for our fuzzy approach. In
addition, we can use the proposed method only for parts of the system where
kinetic data is unknown, while preserving the accuracy of ODEs in other parts.
Because the proposed method is based on linguistic description of the processes,
we can use rough estimations and general knowledge about the process to obtain
quantitative results. Rough estimations can be obtained by observing existing
systems with similar chemical species [19, 20]. Even though we use these esti-
mations and consequently obtain less accurate simulation results, they are still
comparable to results of existing methods, are biologically relevant and can be
used to guide experimental work.
This paper is organized as follows: in Section 2 we present the basics of fuzzy logic
modelling and how fuzzy logic is used in the Petri net framework. In Section 3
we demonstrate the proposed method by constructing a model of translation in a
simple transcription-translation system, in Section 4 simulation results obtained
with ODE and proposed method are compared and in Section 5 we summarize
what the main contribution of the method is and give some directions for future
research.

2 Petri Nets as a Framework for Fuzzy Logic

2.1 Fuzzy Logic as a Modelling Approach

Fuzzy logic uses linguistic terms and rules to describe current system state and
how the state of the system changes over time [21,22]. Numerical (crisp) values,
which are used for presenting chemical species’ concentrations, are converted to
fuzzy values. Fuzzy values are given by linguistic terms, presented as membership
degree to fuzzy sets, such as Low, Medium and High. Conversion from crisp to
fuzzy value is performed with fuzzification rules, which include the definitions
and number of fuzzy sets and the shapes and positions of their membership
functions. While a membership function can have arbitrary shape and position,
the most commonly used functions are simple triangular [23]. In order to simulate
system change and obtain fuzzy value of output variables, IF-THEN rules are

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



6 J. Bordon, M. Moškon and M. Mraz

Fig. 2. Fuzzy logic modelling. Input variables are first converted to fuzzy variables by
fuzzification. Once we have input fuzzy values, IF-THEN rules are applied to obtain
output fuzzy values. Output variable is then defuzzified to obtain the crisp value. This
sequence of steps can easily be translated to a Petri net.

applied to input fuzzy variables. Example of such rule is IF x is High THEN y
is Low, where x is the input variable and y is the output variable. Since biological
processes often have more than one input, we will need to use rules that combine
the effect of input variables with operators AND and OR. An example of such
rule is IF x1 is High AND x2 is Low THEN y is Low, where x1 and x2 are
input variables and y is the output variable. Final step of fuzzy logic reasoning
is obtaining crisp value of output variable, which is termed defuzzification and
is performed by applying center-of-gravity (COG) method. Figure 2 shows these
three steps as a sequence of actions: fuzzification, applying IF-THEN rules and
defuzzification. Fuzzy logic can be used to intuitively model biological processes.
IF-THEN rules are used to describe underlying dynamics where input variables
are presented by current concentrations of chemical species and output variables
define changes of concentrations. If we augment this description with rough
estimation of reaction speed and therefore introduce the component of time, we
can obtain quantitative results. In addition, the sequence of three steps can be
efficiently used within the Petri net framework [24,25].

2.2 Fuzzy Logic and Petri Nets

By using Petri net formalism it is possible to intuitively build the Petri net
graph of the model. Once the Petri net is constructed using different modelling
methods is easy. We only need to change the underlying transition function and
firing rules. Continuous Petri nets use real numbers in places (marking values),
meaning that transitions also no longer consume and produce whole tokens, but
instead change the marking of an input or output place by a real value. New
marking values in places are calculated by adding the contribution from input
transitions and subtracting the value that is consumed due to output transitions.
This allows a continuous flow throughout the Petri net, which can be used to
present a system of ODEs [13]. Similar approach is used with the proposed fuzzy
logic modelling method. Input and output of fuzzy part is identical to that of
existing continuous Petri net [26]. However, when using fuzzy logic, we first

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



Modelling biological systems using fuzzy logic and Petri nets 7

need to fuzzify the input variable (additional transition function) and calculate
the membership to each defined fuzzy set. By applying the defined IF-THEN
rules (one transition for each rule), we obtain the fuzzy value of output variable
and then defuzzify (center-of-gravity transition function) it to obtain the crisp
value. We use this crisp value to change the marking of a place the same way
we do in continuous Petri nets, by adding or subtracting a real value. We will
use existing continuous Petri net definition from [26]. We will add a new set
of functions that are needed for fuzzy logic. This set of functions will include
fuzzification functions, functions for applying IF-THEN rules and defuzzification
function. Existing definition PNContinuous = 〈P, T, f, v,m0〉 is extended by a
set of functions vfuzzy = (ffuzzification, fdefuzzification, fIF−THEN ). Functions
in ffuzzification define how we obtain fuzzy value from an input crisp value. An
example of such function is a triangular membership function for a fuzzy set A:

µA(x) =





x−a
b−a a ≤ x ≤ b,
c−x
c−b b ≤ x ≤ c,
0 otherwise,

(1)

where x is the crisp value of the input variable and parameters a, b, c the x-
coordinates of triangle vertices that define the shape of membership function.
Function fdefuzzification gives us the opposite rule and defines how we obtain
crisp value from fuzzy value by applying the center-of-gravity method (COG).

y =

∑n
i=1 yi · µ[i]∑n

i=1 µ[i]
, (2)

where y is the crisp value, yi x-coordinate at which membership function of fuzzy
set i has the highest possible degree of membership (parameter b from Eqn. 1)
and µ[i] current degree of membership for fuzzy set i. Output fuzzy value is
obtained by applying IF-THEN rules to the input variables. With basic (one
input and one output) IF-THEN rules fIF−THEN is simple. If we have an input
variable x, an output variable y and a rule IF x is Low THEN y is High, x
membership degree to its fuzzy set Low is assigned to y membership degree to its
fuzzy set High. This process is then repeated for all rules to obtain fuzzy value
of y. However, biological processes usually have more than one input chemical
species, therefore we need to use rules with more than one input variable. When
applying IF-THEN rules with more than one input variables we usually define
the rules using operator AND, which acts as a function Min(µ1[i], µ2[i], ..., µn[i]),
where µj [i] is a membership degree of variable j to its fuzzy set i. If we have two
input variables x1, x2, an output variable y and a rule IF x1 is Low AND x2
is High THEN y is High, y degree of membership to its fuzzy set High would
be assigned as a lower of the two values: x1 degree of membership to its fuzzy
set Low and x2 membership degree to its fuzzy set High, which we can also note
as µy[High] = Min(µx1 [Low], µx2 [High]). Once we define the set of these three
types of functions (fuzzification, defuzzification, IF-THEN rules), we have all the
tools needed to construct a fuzzy Petri net model of a biological process.

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



8 J. Bordon, M. Moškon and M. Mraz

3 Simple Transcription-Translation System: Modelling
Translation With Fuzzy Logic and Petri Nets (case
study)

We present model construction using proposed method on a simple transcription-
translation system introduced in [18] to verify a qualitative modelling technique
by qualitatively comparing its results with the results of an ODE approach.
This system consists of 5 chemical species: DNA, mRNA, Transcription resource
(TsR), Translation resource (TlR) and protein (GFP). The dynamics of the
system are governed by transcription (TsR consumption, mRNA production),
translation (GFP production) and the decay of mRNA and TlR as shown on
Figure 3.

Fig. 3. Petri net of a simple transcription-translation system. We use fuzzy approach
on the marked part of the Petri net (translation). Our simulations will observe how
concentration of GFP changes over time, if we insert DNA at different time points. The
limiting factors for system stability are limited amount of transcription and translation
resources: TsR consumption and TlR degradation.

We will adopt the ODE model of this system from [18]. It is defined as the
following set of differential equations:

d[mRNA]

dt
=
kts · [TsR] · [DNA]

mts + [DNA]
− δmRNA · [mRNA], (3)

d[TsR]

dt
= −kTsR · [TsR] · [DNA]

mts + [DNA]
, (4)

d[GFP ]

dt
=
ktl · [T lR] · [mRNA]

mtl + [mRNA]
− kmat · [GFP ], (5)

d[T lR]

dt
= − δTlR · [T lR]

mTlR + [T lR]
. (6)

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



Modelling biological systems using fuzzy logic and Petri nets 9

Fig. 4. Membership functions for input variable fuzzy sets: mRNA (left) is described
by 6 fuzzy sets - None, VeryLow, Low, Medium, High and VeryHigh - and TlR (right)
by 4 fuzzy sets - None, Low, Medium and High.

Fig. 5. Membership functions for output variable (concentration change) fuzzy sets -
None, VeryLow, Low, Medium, High, VeryHigh.

The ODE model from [18] assumes that concentration of TlR and mRNA do not
change as the result of translation. mRNA concentration increases as a result
of transcription and only decreases as a result of degradation. Additionally, TlR
concentration also only decreases as a result of degradation. To verify the pro-
posed method, we will assume that ktl and/or mtl from Eqn. (5) are unknown
when constructing the fuzzy logic model. We evaluate the fuzzy logic approach
by constructing a fuzzy Petri net model of translation, replace the translation
part of Eqn. (5) with our fuzzy description as shown on Figure 3 and compare the
simulation results to the initial ODE model. First step in constructing a fuzzy
logic model is to define membership functions for fuzzification and defuzzification
of our input variables (concentration of mRNA and TlR) and output variable
(concentration change of GFP). Membership functions we use for both input
and output variable fuzzy sets are shown on Figures 4 and 5.

According to [27] we assume that mRNA concentration is the strongest factor of
maximum translation speed (maximum change in concentration). TlR therefore
reaches highest possible contribution before reaching its maximum concentra-
tion, while on the other hand even small amounts of mRNA should result in
GFP concentration change.

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



10 J. Bordon, M. Moškon and M. Mraz

When defining membership functions for output variables, we need to take into
account the rough estimation of translation speed. Our rough estimation is based
on data from different biological systems, using different chemical species. Con-
sidering translation rate, maximum concentration of mRNA and type of chemical
species from [18, 19, 27, 28], our rough estimation is that the maximum change
in concentration of a protein as a result of translation is 25nM/min. How input
variables affect output variable is defined by the IF-THEN rules shown in Table
1.

Table 1. The set of rules that defines how input variables affect output variable. If
either of the input variables is None change in concentration will also be None. In all
other cases, increasing both input variable concentration will increase the change in
concentration of GFP, reaching highest change when both inputs are at their highest
values.

TlR \ mRNA None VeryLow Low Med High VeryHigh

None None None None None None None

Low None VeryLow Low Low Low Med

Med None VeryLow Low Med Med High

High None VeryLow Low Med High VeryHigh

IF-THEN rules are defined so they reflect the descriptive knowledge we have
about translation. The more there is of either mRNA or TlR, the higher the
change in concentration of GFP should be; if one of the inputs is low, change in
concentration changes accordingly; if any of the inputs is missing, there should
not be any concentration change, etc. Once we obtain the fuzzy value of our
concentration change by applying IF-THEN rules, we need to defuzzify it in order
to get a crisp value, which we can then use in calculating the new concentration
of the GFP. Fuzzy output is translated into a crisp value according to the Eqn.
(2). This crisp value is then used just as it would have been if it was a result
of a step in numerical solving of system of ODEs. We constructed the Petri net
for our fuzzy description of translation as a series of three steps - fuzzification,
applying IF-THEN rules and defuzzification (Figure 6). We can use this PN to
replace the translation transition from Figure 3, if parameter values for Eqn. (5)
are unknown.
Using this constructed Petri net, we will observe how concentration of GFP
changes over time and when it reaches its maximum value if we add the DNA
at different time points and compare the simulation results to the ODE model.

4 Results

Both ODE and Fuzzy logic models were built in MATLAB Simulink. Petri nets
serve as a powerful framework for both approaches, however computing under-
lying numerical solutions can be done by an external engine like MATLAB. We

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014
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mRNA concentration
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Fig. 6. Translation model using fuzzy logic and Petri nets. Inputs and output of this
model are the same as with ODE: mRNA concentration, TlR concentration and change
in concentration of the protein (GFP). This Petri net can be inserted into 3 to get the
full model of the system. For reactions other than translation ODEs are used (Eqns.
(3),(4),(6) and degradation part of Eqn. (5).

used MATLAB Simulink built-in ode4 (Runge-Kutta) solver and set the simula-
tion time to 1000 minutes with a 0.1 minute fixed time step. Initial concentrations
of both TsR and TlR were set to 1 nM, all others were set to 0 nM. During the
simulation we inserted 3.4 nM of DNA at 6 different time points (six different
simulations with same initial concentrations): 0 minutes, 37 minutes, 73 min-
utes, 112 minutes, 153 minutes and 187 minutes (these concentrations and time
points were chosen according to [18] in order to make comparison of simulation
results relevant). To avoid discontinuity of ODE solving, the input and output of
the fuzzy component is evaluated for every step of the simulation. This slightly
increases computation time of the simulation. Figure 7 shows simulation results
of two different models.

Simulation results from both models show that the plateau of protein concen-
tration is reached at the same time (at about 200 minutes) which is the result
of translation resource degrading to 0, stopping translation entirely. Since we
did not include protein degradation, its concentration stays unchanged for the
remaining time of simulation. We see that even though we described transla-
tion with fuzzy approach we still get comparable quantitative results. The error
introduced due to using rough estimation of translation speed instead of ex-
act translation rate is noticeable. However, we did not use any exact parameter
values for translation with the proposed method and still managed to obtain
quantitatively and biologically relevant results, which are comparable to those
obtained with (strict) ODE approach. In addition, because we only changed how
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Fig. 7. We observed how GFP concentration changes if we add 3.4 nM of DNA at
different points when using strict ODE model (left) and when using the proposed
fuzzy approach for modelling translation (right).

we model translation, trajectories for other processes stay unchanged. Simula-
tion results indicate that fuzzy logic is a viable modelling approach even when
kinetic data is unknown. By exploiting information we have about the system
for similar models and biological systems, we can successfully build a quantita-
tive model even when accurate parameters are unknown. By using our approach
with Petri nets, we can easily change the underlying description of a process for
which kinetic data is unknown while preserving accuracy of ODEs for the parts
of system where it is possible.

5 Summary

We presented the Fuzzy logic approach for modelling biological processes, which
avoids using exact kinetic data. Proposed method uses a rough estimation of
process dynamic to obtain quantitative simulation results. This estimation is ex-
tracted from existing base of knowledge about modelling biological processes by
inspecting similar systems and chemical species. With introducing this method
to Petri nets we managed to further extend their usability and applicability to
continuous approaches, even when kinetic data is unknown. We showed its uses
on a simple transcription-translation system by substituting the ODE transla-
tion description with the proposed fuzzy approach, achieving quantitatively and
biologically relevant results, without using exact kinetic data. Adding additional
functions for fuzzification, application of IF-THEN rules and defuzzification in-
creases the complexity of the Petri net model. However, these functions are very
simple and can be evaluated the same way that ODEs are. In addition, these
three stages of fuzzy logic are repeated for every process for which we use the
proposed approach and while we need to manually define fuzzy sets, member-
ship functions and IF-THEN rules, once those are defined we could generate the
Fuzzy Petri net automatically. The number of transitions and edges for fuzzifica-
tion and defuzzification stages are defined by the number of fuzzy sets, while the
functions for these transitions are defined by the shape of membership functions.
Number of edge and transition functions in IF-THEN rule stage are defined by
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IF-THEN rules (e.g. IF x1 is High AND x2 is Low THEN y is Low would gener-
ate a transition with two input edges - from places x1High and x2Low - and one
output edge - to place yLow; the function in the transition would be Min(Input
1, Input 2)). Moreover, we could use hierarchical Petri net structure, where top
level would resemble the Petri net shown on Figure 3, while the fuzzification,
IF-THEN rules and defuzzification stages (Figure 6) would be presented as a
lower level Fuzzy Petri net that describes all three stages as one transition (in
our case translation). Our future research also includes using this approach on
a more complex system and observe how inaccuracy of our rough estimation
changes the overall trajectory of concentrations. We would also like to consider
using experimental data for fine tuning our estimations, which would bring the
accuracy of simulation results even closer to those of existing methods.
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Abstract. Mycobacterium tuberculosis is considered one of the most efficient 
intracellular pathogens responsible for chronic infection, resulting in over 
1.3 million of deaths a year. Exploring the host-cell signalling pathways, 
the bacteria evade host immune responses and enhance the infection inside 
the macrophage. Understanding how the bacteria interact with the im-
mune system is an important step in the development of new therapies for 
mycobacterium pathogen. The aim of this paper is to present a prototype 
draft of a Petri Net model that highlights the interference strategies used 
by mycobacteria to achieve intracellular survival. The hierarchical model 
presents an overview of the important host-cell signalling pathways that 
occur at multiple (molecular, intracellular and intercellular) scales. 

Keywords: mycobacterial infection, host-cell signalling pathways, extended 
Petri Net, multi-scale modelling 

1 Introduction 

Tuberculosis (TB) is the second greatest killer disease worldwide due to a single in-
fectious agent: mycobacterium tuberculosis (Mtb) [1]. Effective vaccination against 
tuberculosis is a challenge; a better understanding of the host-pathogen relationship 
provides an important key for new treatments. The host innate immune response is the 
first line of defence against invading microbes. It recognises the pathogen in the first 
stage of infection and initiates an appropriate immune response. Therefore it has been 
the subject of much scientific research involving mycobacterial infection [2–7] . 

The complex interactions between bacteria and the immune cell involve various 
structures and processes that control, activate and inhibit proteins and signalling 
pathways in a dynamical system that determines the outcome of an infection [8]. A 
systematic approach to modelling these interactions should help to comprehend the 
events that occur between the host and pathogen [9]. Different methods have been 
used to model the mycobacterial infection process: Gammack et al. [10] provided a 
mathematical model based on Ordinary Differential Equation (ODE) to investigate 
the early and initial immune response to Mtb. Such work has inspired Segovia-Juarez 
et al. [11] to implement the ODEs that regulate the interaction between host and path-
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ogen using an agent-based approach, and Warrender et al. [9] use the CyCells simula-
tor tool to simulate the interactions in Early mycobacterium infection. 

Mathematical models, like those based on differential equations, are difficult to 
obtain and analyse when the number of interdependent variables grows and when the 
relationship depends on qualitative events. The computational models used for this 
problem offer an additional avenue for exploring the infection dynamics through the 
visualization of a specific behaviour simulation. However in both cases the interac-
tions between bacteria and the immune cells and their structures are not intuitively 
described. The interactions are embedded in programing code and/or described in 
rules which are not straightforward to interact and comprehend their relationship.  

A graphical representation of the interactions and influences among the various 
molecular and cellular components that involve the bacteria and host immune cells 
that also captures the dynamics of the system should be very useful. The framework 
of Petri nets represents a well-established technique in computer science for model-
ling distributed systems [12] and they have been successfully used to model biologi-
cal behaviour. Heiner et al. [13] propose a methodology of incremental modelling 
using Petri Nets. They develop and analyse a qualitative model of the apoptotic path-
way. In our previous work [14] we have developed a qualitative model of the myco-
bacterial infection process and the innate immune response. We modelled the cell 
dynamics level, characterized by the steps that are involved in the Mycobactrium 
marinum infection and granuloma formation in zebrafish. 

In this paper, we extend our model and focus on interactions between the bacteria 
and the host immune cells - specifically the macrophages - in a multi-scale model. We 
identify and connect the important pathways involved in the host-pathogenic interac-
tions that act over different scales (molecular, intracellular, and intercellular) during 
the innate immune response. The model captures the quintessential functional pro-
cesses of the macrophage upon exposure to mycobacteria, their interconnections, 
subsequent signals and activation of the immune response. It provides a visualization 
of the signalling pathways that the host immune cell utilizes to terminate the infection 
as well as the way the pathogen exploits the pathways of the macrophages to enhance 
its intracellular survival persistence. This Petri net model makes it possible to perform 
“what-if” situations as part of the experimentation, simulating possible pathway dis-
ruptions and the consequences to the infection process. In this paper, we demonstrate 
the power of the Petri net formalism in modelling signalling and metabolic pathways 
that are involved in the host-pathogen interaction in a multi-scale model. We apply 
three different dynamics in the animation mode to mimic the alternatives that might 
occur once a bacterium is phagocytosed by a macrophage and the persistence of infec-
tion. As a next step we plan to consider a qualitative validation of the model so as to 
confirm consistency and correctness of its biological interpretation. 

2 Mycobacteria Interaction With Macrophage 

Macrophages play rather contradictory roles in infection and disease as they are likely 
the first host immune cells to respond to invading mycobacteria, and yet aid in subse-
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quent dissemination of the bacteria [15]. The successful parasitation of macrophages 
by mycobacteria involves the inhibition of several host-cell processes, which allows 
the bacteria to survive inside the host cells. The host processes that are inhibited by 
the pathogenic bacteria include fusion of Phagosomes with Lysosomes, antigen 
presentation, apoptosis and the stimulation of bactericidal response [16].  

Mycobacterial cells release a mixture of lipids and glycolipids that interfere on the 
macrophage response towards elimination and enabling bacterial survival [17]. Man-
nosylated Lipoarabinomannam (ManLAM) is one of the major modulators of phago-
some maturation [18]. It prevents fusion of mycobacterial phagosome with the late 
endosome and lysosome by inhibiting the Calmoduling-Ca2+ phosphotidol-inositol-3 
kinase [19]. Ca2+ also has influence in the apoptotic pathways since it increases the 
permeability of mitochondrial membranes releasing pro-apoptotic elements to facili-
tate apoptosis [16]. ManLAM also influences the apoptosis by phosphorylating the 
apoptotic protein Bad leaving the anti-apoptotic protein Bcl-2 free which inhibits 
caspase activity and functions as an anti-apoptotic regulator [20].  

Macrophages and T cells produce many cytokines that promote or inhibit protec-
tive response to the mycobacterial infection. An important family of cytokines are the 
interleukin-10 (IL-10) that regulates the pro-inflammatory (PICs) and anti-
inflammatory (AICs) cytokines. The bacteria can limit macrophage apoptosis by in-
ducing the production of IL-10 which blocks the synthesis of Tumor-Necrosis Factor 
(TNF), a stimulator of apoptosis in infected macrophage [21, 22]. It is likely that bac-
teria prevent apoptosis in the early phase of infection to allow them to replicate effi-
ciently. However, they induce or are unable to prevent cell death in the later phase, 
which might facilitate their systemic dissemination through uptake into immune cells 
[16]. 

2.1 Cell-cell Host Pathogen Interaction 

The modulation of host signalling mechanism is a dynamic process requiring myco-
bacterial components that trigger or inhibit the host response such as the fusion of 
Phagosomes with Lysosomes, antigen presentation, apoptosis and stimulation of bac-
tericidal responses due to the activation of pathways that leads to the bacterial surviv-
al. The immune cells can identify the pathogen through Pattern Recognition Recep-
tors (PRRs), which are found on the cell surface, on the endosomes and on cytoplasm. 
It triggers a cascade of events that leads to proinflammatory and antimicrobial re-
sponse through the phagosome maturation pathway. Van der Vaart et al. reviewed the 
PRRs that identify invading microbes, as well as the innate immune effector mecha-
nisms that they activate in zebrafish embryos [23]. The maturation of the phasosome 
forms the late-phagosome which fuses with the lysosome forming the phagolysosome 
which can digest the pathogen and leads to the bacterial death [24–26]. The mycobac-
teria are using several strategies to avoid the maturation of the phagosome and the key 
contributor is mannosylated lipoarabinomannan (ManLAM), a glycolipid of the my-
cobacteria cell wall.  ManLAM is involved in the inhibition the phagosome matura-
tion by inhibition of calcium (Ca2+) concentration rise in macrophage and also the 
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Calmoduling-Ca2+ phosphotidol-inositol-3 kinase (PI3K) which is responsible to lead 
the maturation of the phagosome and drives the fusion with the lysosome [19, 27, 28]. 
To accomplish complete arrest and prevent the phagosome maturation, a second my-
cobacterial macromolecule, SapM, is released degrading the existing Phosphatidylin-
ositol 3-phosphate (PI3P), a phospholipid found in the cell membrane involved on the 
phagosomal maturation [29]. A schematic representation of the phagosomal matura-
tion arresting by the pathogenic mycobacteria is given in Fig. 1. 

When the immune cell is not able to kill the bacteria through the phagolysosome, 
the macrophage activates the apoptosis thereby programming its own death and sig-
nalling to others defences mechanisms. Once the maturation fails, the apoptotic pro-
gramme is mainly activated by the extrinsic apoptosis pathway, which is initiated by 
binding of ligands to death receptors; and the intrinsic pathway, which involves trans-
location of cytochrome-C from mitochondria to the cytosol. The activation of the 
caspase cascade and degradation of genomic DNA are characteristics of apoptotic cell 
death [16]. Mycobacteria alter host apoptotic pathways interfering on the intrinsic 
death pathway preventing the increasing in cytosolic Ca2+ concentration and also 
inhibit caspase activity and functions by stimulating the phosphorylation of the apop-
totic protein Bad [28, 30]. It also limits macrophage apoptosis by inducing the pro-
duction of cytokines such as interleukin-10 (IL-10) which interferes in one of the 
apoptosis stimulators of the macrophage in the extrinsic apoptosis pathway, the tu-
mour-necrosis factor-α (TNF- α) [22, 31]. Mycobacteria take advantage of blocking 
these defence mechanisms of macrophages, phagocytosis and apoptosis, to proliferate 
inside the cell till a necrosis breakdown and dissemination of infection through the 
others immune cells that aggregate at that particular infected macrophage to take over 
the infection. The apoptotic pathway is depicted in Fig. 2. 

 

 
Fig. 1: Schematic overview of the phagosomal maturation pathway blocked by pathogenic 
mycobacteria according to Koul et al. [16]. Nascent phagosome acquires Rab5 recruiting 
PI3K which generate PI3P. Pathogenic mycobacteria block the rise in cellular Ca2+, re-
cruitment of PI3K to the phagosomes and degrading PI3P through Sap-M 
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2.2 Molecular Host Pathogen Interaction 

At the molecular level the most important interactions occur in the phagosomal matu-
ration pathway and also in the apoptosis pathway. In both cases, the mycobacteria 
interfere in different ways to guarantee their survival and proliferation. Ca2+ is a key 
messenger that is released from intracellular storage; an increase in cytosolic Ca2+ 
concentration promotes the phagosomal maturation process by regulating calmodulin 
and the multifunctional serine/threonine protein kinase CaMKII [28]. CaMKII is im-
portant to PI3K activation and recruitment of early endosomal antigen 1 (EEA1) to 
the phagosomal membrane that is extremely important in the process of phagosomal 
maturation. PI3K is also essential for the production of the lipid regulator phosphati-
dylinositol 3-phosphate (PI3P) which form a ligand together with EEA1 leading to an 
intermediate phagosome which maturates to the late the endosome after EEA1 disso-
ciation and acidic expression due to accumulation of the proton-ATPase [32, 33].  
Through releasing ManLAM, the mycobacteria inhibit the rise of  the Ca2+ concentra-
tion in macrophages and also the PI3K activation, preventing the generation of PI3P 
degrading the existing PI3P by the action of SapM.  

Despite the fact that phagosomes fail to fuse with the lysosomes to degrade the 
bacteria, pathogen-derived material is released in the host cell lysosomes and the cell 
surface of the infected macrophage which can induce the apoptosis process [34]. My-
cobacteria influence the host apoptosis through several mechanisms that interfere in 
the intrinsic and extrinsic apoptosis pathways. The cytosolic Ca2+ facilitates apoptosis 
by increasing the permeability of mitochondrial membranes that promote the release 
of pro-apoptotic elements such as cytochrome-C. In the cytosol, cytochrome-C asso-
ciates with procaspase-9 and apoptosis protease forming a signaling complex called 
the apoptome which activates the induction of apoptosis [35]. ManLAM interfere in 
the intrinsic apoptosis pathway not only inhibiting the concentration of Ca2+ but also 
stimulating the phosphorylation of the apoptotic protein Bad that leave BCL-2 free 
that also prevents the release of cytochrome c.  

 
Fig. 2: Apoptotic pathway inhibition by pathogenic mycobacteria according to Koul et al. 
[16]. Pathogen mycobacteria interfere in intrinsic apoptotic pathway suppressing Ca2+ and 
releasing Bcl-2. In the extrinsic apoptotic pathway it inhibits binding ligands and DISC 
formation. 
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The extrinsic apoptosis pathway is induced by Toll-like receptors (TLRs) who 
identify the virulence mycobacterial pathogen and trigger the synthesis of tumor-
necrosis factor-α (TNF-α) - a stimulator of apoptosis – trough the TLR signaling 
pathway. To do so, an important adaptor factor protein, the Myleoid differentiation 
factor 88 (MYD88) recruits a family of kinases (IRAK) that will form “myddosome” 
signaling complex that activate nuclear factor kB (NF-kB) to transcript target gene to 
synthesize TNF-α. The tumor necrosis factor binds with death receptors leading to a 
cascade of events that will release caspase 8 and 10 and the formation of a death-
inducing signal complex (DISC) resulting on the formation of apoptotic vesicles [35, 
36]. Pathogen mycobacteria interfere in this process by inducing the production of 
immunosuppressive cytokine interleukin-10 (IL-10), which inhibit the phosphoryla-
tion of NF-kB, therefore the synthesis of TNF-α. It also inhibits the DISC formation 
and the extrinsic apoptotic pathway failure. 

3 Petri Net Model of the Bacterium–Macrophage Interaction 

We construct a Petri Net model of the process triggered in the macrophage in re-
sponse to mycobacterial infection, based on an extensive literature survey and extend-
ing our previous model [14]. The model captures the interactions between the immune 
cell and the pathogen once a bacterium is phagocyte. The model is hierarchical and 
has three different levels of representations to mimic the signal processing that acti-
vates/inhibits the pathways related to the macrophage response to the bacteria. The 
first level models the overall actions from the system started after the phagocytosis 
and it represents the cell-cell interaction between the macrophage and the bacteria. 
The second level representing the intracellular interaction models two important sig-
nalling pathways: the Phagosome Maturation which is responsible for the degradation 
of the infection through antimicrobial components; and the Apoptotic Pathway which 
is the macrophage mechanism responsible to resolve the infection in response to viru-
lence factors. It represents an alternative way to the phagolysosome. The third level 
represents the molecule-molecule interactions that occur on the Phagosome Matura-
tion and Apoptotic pathways. 

To model the host-pathogen interaction we use an Extended Petri Net implement-
ed in the Snoopy tool [37] with a maximal concurrency semantics. All formal defini-
tions can be found in [38]. The pathways described in section 2 represent a complex 
process involving various host-bacterial factors in a heavy cross-talk interaction. To 
get a consistent view of the entire interaction process, we express the most important 
reactions simplifying the pathways at different levels of abstraction. We define each 
biochemical compound or receptor as a place. The relations between biochemical 
substances are represented basically by transitions with corresponding arcs modeling 
biochemical reactions, inhibitions/degradations (using inhibitor arcs) or signal-
ing/catalytic atomic events (using read arcs). To hierarchically connect the subnets we 
use coarse transitions and coarse places structuring all the levels as a tree as shown in 
Fig. 3. The top level (the root) models an overall view of the system starting by inter-
actions that occur in the cellular wall and its consequences. It is connected to the sub-
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nets (mid-level) through coarse transitions which link to the molecular level modeled 
in coarse places (the leaves of the tree). 

 

3.1 Model Definition 

We start the modeling with the interaction between the bacteria inside the macro-
phage once it is in the host. The first level of our Petri net model is given in Fig. 4. 
The input place Infected_macrophage represents this situation. The sequence of in-
teraction events happens once there is a bacterium infecting the macrophage (a token 
is present at the input place) detected by three reading arcs to trigger the interactions. 
The macrophage uses the PRRs to detect the presence of the pathogen and starts the 
phagosome maturation process, the bacteria starts its protein secretion system and 
counter attack by releasing SapM to degrade existing PI3P in the cytosol and Man-
LAM to interfere in the maturation of the phagosome which is modeled in a lower 
level by the coarse transition Phagosome_Maturation_Pathway; and in the apoptosis 
process which is modeled in a lower level in the coarse transition Apopto-
sis_Pathway. The presence of ManLAM triggers the macrophage production of the 
cytokine IL10 and also interferes in both pathways. Phago-
some_Maturation_Pathway interacts with Apoptosis_Pathway releasing calcium and 
bactericidal material that was not degraded by the maturation.  

In our model there are three different scenarios: The phagosome maturation occurs 
in the Phagosome_Maturation_Pathway leading to a late phagosome that will fuse 
with lysosome digesting the bacteria and turning the macrophage healthy. The second 
scenario can occur if the maturation fails but the apoptosis process in the Apopto-

 
Fig. 3: Hierarchical structure of the net. The three levels are implemented in independent 
interconnected subnets 
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sis_Pathway, leading to a dead macrophage, which will signal for another defense 
mechanism. The third scenario occurs when both pathways are failing at the molecu-
lar level, in that case the bacteria proliferate and accumulate in the macrophage till a 
necrosis breakdown, releasing all the pathogenic material to the surrounding cells. To 
represent the proliferation and accumulation of bacteria, we use weighted arcs that 
double the amount of bacteria (accumulated in the place: Bacterial_accumulation). 
The breakdown of the macrophage occurs when it reaches a threshold of 50 bacteria 
(a weighted arc fires the transition Necrotic_breackdown). Here we should note that 
the weighted arcs (with weights 2 and 50) are examples to express the idea of bacteri-
al proliferation.  

Following the hierarchical tree, we have at the second level: Phago-
some_Maturation_Pathway and Apoptosis_Pathway, two subnets which basically 
connect the cellular interaction (top level) with the molecular interactions at the bio-
chemical pathways implemented in the coarse places (the leaves of the tree).  Fig. 5 
depicts these subnets. At this level we have the signaling started in the cell wall (top 
level) that will trigger the production/interaction between molecules. For example the 
production/releasing of calcium is triggered by the PRRs and this process occur at 
Ca_pathway; the PIP3 concentration and bactericidal material that are not degraded at 
the maturation_pathway and interact with the top level. We also have the interaction 
between the cytokine IL10 from the top level with the pro-inflammatory cytokines 
that will interfere in the TNF-α in the Extrinsic_Apopthosis_Pathway and ManLAM 
interfering in the BCL2 activation, which will act in the Intrin-
sic_Apopthosis_Pathway. 
 
 

 

Fig. 4: Petri Net of host-pathogen interaction at the top (root) level. The coarse transitions: 
Phagosome_Maturation_Pathway and the Apoptosis_Pathway contain the second level of the 
model and are represented here by a double square.  
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Fig. 5: Second level. A) The Maturation_Pathway Subnet which connects the cellular level 
with the molecular interactions in the production of calcium (Ca_pathway) and phagoso-
mal maturation (Maturation_pathway) implemented in another subnet level (coarse plac-
es). B) Apoptosis_Pathway Subnet which connects the cellular level with the molecular 
interactions in the pro inflammatory cytokines, Bcl2 activation and their influences in the 
extrinsic and intrinsic apoptosis pathway. 
 

At the lower level of the hierarchical model, we have six related but independent 
subnets. They represent the important molecular pathways responsible for: the pro-
duction of calcium/CMKII in ca_pathway and phagosome maturation and PI3P con-
centration in maturation_pathway, both implemented in coarse places; activation of 
pro-inflammatory cytokines in TLR_Signaling_Pathway and Bcl2 activation in 
Bad_Signalling_Pathway, both implemented in coarse transitions; and also the inter-
actions that occur in the intrinsic and extrinsic apoptosis pathways implemented in the 
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coarse places Extrinsic_Apopthosis_Pathway and Intrinsic_Apopthosis_Pathway 
respecivly. Fig. 6 depicts all subnets in the leaves of the proposed hierarchical model. 

 
 

A B 

 
 

C D 

 
 

E F 
Fig. 6: Subnets that implement the molecular pathway interaction. A) Ca2+ and CaMKII 
production/inhibition model. B) Phagosome maturation pathway (activation and inhibi-
tion) and PI3P concentration model. C) TLR signalling and pro-inflammatory cytokines 
activation/inhibition model. D) Bad/BCL2 complex phosphorylation model. E) Extrinsic 
apoptosis pathway model. F) Intrinsic apoptosis pathway model 

3.2 Animation and Validation 

Animation and validation are important tools to provide a consistent model of biolog-
ical behavior. They allow experimenting with different situations and possibilities of 
the model as well as checking for integrity and correspondence to the real world. 
Simulation and analysis for qualitative and quantitative behavior prediction are other 
steps necessary to certify a useful model. For the model presented here we also per-
formed some animation and validation. For this we employed the Animation mode 
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available in the Snoopy software. This feature allows animating the token flow of the 
net through all the subnets, visualizing the causality of the model and its behavior. 
Three different animations for the scenarios, previously discussed, were performed to 
experience the events that can occur in the model. For inspection and perusal, the 
animations can be found at http://bio-imaging.liacs.nl/galleries/epn-infection/. 

To validate the model, it is necessary to define validation criteria for a consistency 
check. To do so, we have to consider that our model is based on a heuristic procedure 
of collecting information from the literature, perhaps with different interpretations, 
modeled from the process perspective (top level) down to the molecule perspective 
(leaves). We built a large model composed of sub-models and to provide a complete 
analysis, it is necessary to verify each component individually and the system as a 
whole, which increases the complexity of the validation even with computational 
support. Basic qualitative behavior properties can be checked using the Charlie ana-
lyzer tool [39]. Heiner et al. have used as example, p-invariants and t-invariants to 
analyze case studies in biochemical pathways in [40]. We started to analyze the struc-
tural and behavior properties of our model based on results from the Charlie tool 
which should then be biological meaningful. As a first result, we found that our model 
is not structurally bounded and not reversible. This implies that indeed the net allows 
for the proliferation of the bacteria and the infection process is not reversible. 

4 Conclusion 

In mycobacterial infection, the dynamics of the interactions between the host and 
bacteria forms a complex system involving numerous activations, inhibitory and con-
trol structures that determine the outcome of the infection. A systems approach is 
essential to comprehend the significance of the multiple events that occur simultane-
ously among the various molecular and cellular components of the host and pathogen. 

Here, we seek to model the interaction of the macrophage upon exposure to path-
ogen mycobacteria, capturing important functional process and their interconnections 
including signaling and activation/inhibition of the immune responses on different 
levels of abstraction. The Petri net formalism has proved to be a useful modeling ap-
proach to describe and interconnect different abstract levels into a large and extensive 
model [13, 41] In our previous work [14] we have developed a Colored Petri net 
model to explore the early mycobacterial infection and the immune response, model-
ing the steps that regulates the infection process. In this paper we focus on the lower-
scale processes occurring in the cell and descend to molecular interactions relevant to 
the infection process. Therefore we use an Extended Petri net for the different path-
ways in subnets, interconnecting them in a hierarchical structured model. The model 
provides a visualization of the processes occurring at multiple scales using levels that 
can be operated independently. It also describes the interconnections and signals that 
influence the host pathogen interaction. 

This results in an Extended Petri net model implementation in the Snoopy tool 
[37]. The model expresses, at different levels of abstraction, the details that are in-
volved in the macrophage-mycobacterium interaction. Information about the proteins 
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released by the bacteria, their interference in the immune response and the pathways 
involved in this process are observed in our model. It is possible to visualize the dy-
namics of the molecular and cellular interaction as well as analyze different scenarios 
performing “what-if” simulation as part of the experimentation in the animation 
mode. The model represents the information about host-pathogen interaction available 
in the literature but the scalability of our model allows extension to a more complete 
system. 

As part of the modelling process, we started to use the Charlie analyzer [39] to 
check properties of the model and its consistency. As a next step, an extensive analy-
sis of more structural and behavior properties is necessary to validate the model. We 
also intend to extend to a quantitative model where, with support of experimental data 
rather than the examples we used until now, we can use analysis techniques for a 
prediction of qualitative as well as quantitative behavior. This can contribute, for 
example, in the prediction of results from new experiments and generation of further 
hypotheses about the innate immune system response to mycobacterial infection. 
Another challenge is to combine the models implemented in different classes of Petri 
nets in one system. One solution is to adapt each model in a Hybrid Petri Net, or ab-
stract the models in  a Nets-within-Nets approach where the communication of the 
tokens occurs via predefined interfaces which are dynamically bounded [42]. 

In summary we have presented in this paper a model that explores the interaction 
between mycobacterial pathogen and macrophage, modeling the dynamics in three 
different level of abstraction while interconnecting them in a hierarchical structure. 
We have checked the structural behavior of our model through an analysis tool. The 
interplay of hierarchical levels and qualitative/quantitative information has the poten-
tial to develop a powerful tool for the research in tuberculosis disease. 
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Abstract. A high-level Petri net framework is introduced for the toxic
risk assessment in biological and bio-synthetic systems. Unlike empirical
techniques mostly used in toxicology or toxicogenomics, we propose a
systemic approach consisting of a series of behavioral rules (reactions)
that depend on abstract discrete “expression” levels of involved agents
(species). We introduce a finite state high-level Petri net model allowing
exhaustive verification (model-checking) of properties related to equilib-
rium alteration or appearing of hazardous behaviors. The approach is
applied to the study of the impact of the aspartame assimilation into the
blood glucose regulation process.

1 Introduction

Toxicology [23] studies the adverse effects of the exposures to chemicals at various
levels of living entities: organism, tissue, cell or intracellular molecular systems.
During the last decade, the accumulation of genomic and post-genomic data to-
gether with the introduction of new technologies for gene analysis has opened the
way to toxicogenomics. Toxicogenomics combines toxicology with “Omics” tech-
nologies1 to study the mode-of-action of toxicants or environmental stressors on
biological systems. The mode-of-action is understood as the sequence of events
from the absorption of chemicals to a toxic outcome. Toxicogenomics potentially
improves clinical diagnosis capabilities and facilitates the identification of poten-
tial toxicity in drug discovery [10] or in the design of bio-synthetic entities [21].

The main approach used in toxicogenomics employs empirical analysis like in
the identification of molecular biomarkers, i.e., indicators of disease or toxicity in
the form of specific gene expression patterns [7]. Clearly, biomarkers remain ob-
servational indicators linking genes related measures to toxic states. In this pro-
posal, we complement these empirical methods with a computational technique
that aims at discovering the molecular mechanisms of toxicity. This way, instead
of studying the phenomenology of the toxic impacts, we focus on the processes
triggering adverse effects on organisms. Usually, the toxicity process is defined as
a sequence of physiological events that causes the abnormal behavior of a living
organism with respect to its healthy state. Healthy physiological states generally
correspond to homeostasis, namely a process that maintains a dynamic stability
of internal conditions against changes in the external environment. Hence, we

1 “Omics” technologies are methodologies such as genomics, transcriptomics, pro-
teomics and metabolomics.
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will consider toxicity outcomes as deregulation of homeostasis processes, namely
deviation of some intrinsic referential equilibrium of the system.

Biological processes are usually given in terms of pathways which are causal
chains of the responses to stimuli, this way the deregulation of homeostasis
appears as the activation or inhibition of unexpected but existing pathways.
Moreover, in the context of toxicogenomics it is crucial to take into account
at least two other parameters: the exposure time and the thresholds dosage
delimiting the ranges of safe and hazardous effects.

In this paper, we depict and analyze the mechanistic process of toxicology
using high-level Petri nets. Our work is inspired by the definition of reaction
systems as given in [1]. A reaction system is a set of reactions, each of them
defined as a triple (R, I, P ) where R is the set of reactants, I the set of inhibitors
and P the set of products, and R, I and P are taken from a common set of species
S. Reaction systems are based on three foundational principles:

1. a reaction can take place only if all the reactants involved are available but
none of the inhibitors is;

2. if a species is available then a sufficient amount of it is present to trigger a
reaction;

3. species are not persistent: they become unavailable if they are not sustained
by a reaction.

From this model we retain the idea of reactions but we significantly change
the semantics. The first change concerns principle 2: species are available at a
given discrete abstract level. This is mainly related to the need of expressing
toxicants doses. The corresponding discretization is built observing thresholds
levels in dose-response curves. The second and more fundamental change regards
the introduction of discrete time constraints. Time plays a role in the evolution
of species, more precisely, species are associated to a decay time δ, meaning that
their level diminishes with time. This accounts for the presence of a non-specified
environment that consumes and degrades species, thus allowing to abstract away
from reactions that may be neglected in the specified context. Each reaction
(R, I, P ) is extended with levels for all its reactants and inhibitors. Reactions
can take place only if each reactant is present at least at a given level and each
involved inhibitor is at a level strictly inferior to the given one. As a result, the
level of products of the reaction can be increased or decreased.

Summing up, systems are build out of a series of behavioral reactions among
involved agents or species. We model such systems into high-level Petri nets
and apply it to toxicogenomics problems, namely deregulation of homeostatic
processes. Toxicity questions are expressed using a suitable temporal logic like
CTL [9]. By observing that our modeling has a finite state space, it is therefore
natural to address the satisfiability of these formulae using classic verification
techniques such as model checking.

We apply the modeling and verification process on the example of blood glu-
cose regulation in human body showing the maintenance of the homeostasis. In
particular, we highlight how the interplay between the assimilation of aspartame
and glucose regulation causes the appearance of unwanted behaviors.

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



32 C.D. Giusto, H. Klaudel and F. Delaplace

Organization of the paper. The paper is organized as follows: Section 2
recalls basic definitions and notations on high-level Petri nets. Next, Section 3
describes our running example of blood glucose regulation. Section 4 introduces
the principles behind reaction networks and presents their high-level Petri net
modeling. Then Section 5 shows how to check toxicology properties and finally,
Section 7 concludes with some considerations on future work.

2 Preliminaries

We recall here the general notations together with some elements of the semantics
of high-level Petri nets [15].

Definition 1. A high-level Petri net N is a tuple (Q,T, F, L,M0) where:

− Q is the set of places,
− T is the set of transitions and Q ∩ T = ∅;
− F ⊆ (Q× T ) ∪ (T ×Q) is the set of arcs;
− L is the labeling function from places Q, transitions T and arcs F to a set

of labels defined as follows:
− ∀q ∈ Q, L(q) is the type of q, i.e., a (possibly infinite) set or Cartesian

product of sets of integer values;
− ∀t ∈ T , L(t) is a computable boolean expression with variables and integer

values;
− and ∀f ∈ F , L(f) is a tuple of variables and integer values compatible

with the adjacent place.
− M0 is the initial marking which associates to each place q ∈ Q a multiset of

tokens in L(q).

Observe that we are considering a subclass of high-level Petri nets where at
most one arc per direction for each pair place/transition is allowed and only
one token can flow through. The behavior of high-level Petri nets is defined as
usual: markings are functions from places in Q to multisets of possibly structured
tokens in L(q) and a transition t ∈ T is enabled at marking M , if there exists
an evaluation σ of all variables in the labeling of t such that the guard L(t)
evaluates to true (Lσ(t) = true) and there are enough tokens in all input places
q to satisfy the corresponding input arcs, i.e., Lσ((q, t)) ∈M(q). Then, the firing
of t produces the marking M ′:

∀q ∈ Q,M ′(q) = M(q)− Lσ((q, t)) + Lσ((t, q)).

with Lσ(f) = 0 if f /∈ F , − and + are multiset operators for removal and adding
of one element, respectively. We denote it by M [t:σ〉M ′.

By convention, primed version of variables (e.g. x′) are used to annotate out-
put arcs of transitions, their evaluation is possibly computed using unprimed
variables (e.g. x and y) appearing on input arcs. With an abuse of notation,
singleton markings are denoted without brackets, the same is used in arc an-
notations. An example of firing is shown in Figure 1. We say that a marking
M is reachable from the initial marking M0 if there exists a firing sequence
(t1, σ1), . . . , (tn, σn) such that M0[t1:σ1〉M1 . . .Mn−1[tn:σn〉M .
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Fig. 1. Example of firing with σ = {x = 7, y = 5, x′ = 12}.

3 Blood glucose regulation

Here we introduce our running example: glucose regulation in human body (Fig-
ure 2). In the following, we are always referring to the process under normal
circumstances in a healthy body.

Glucose regulation is a homeostatic process: i.e., the rates of glucose in blood
(glycemia) must remain stable at what we call the equilibrium state. Glycemia
is regulated by two hormones: insulin and glucagon. When glycemia rises (for
instance as a result of the digestion of a meal), insulin promotes the storing of
glucose in muscles through the glycogenesis process, thus decreasing the blood
glucose levels. Conversely, when glycemia is critically low, glucagon stimulates
the process of glycogenolysis that increases the blood glucose level by transform-
ing glycogen back into glucose.

We will focus on the assimilation of sweeteners: i.e., sugars or artificial sweet-
eners such as aspartame. Whenever we eat something sweet either natural or
artificial, the sweet sensation sends a signal to the brain (through neurotrans-
mitters) that in turns stimulates the production of insulin by pancreas. In the
case of sugar, the digestion transforms food into nutrients (i.e., glucose) that

Brain 

Food intake

Digestion

Pancreas

glucose level

Insulin

Glucagon

Fig. 2. Glucose metabolism
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are absorbed by blood. This way, sugar through digestion increases glucose in
blood giving the sensation of satiety. In case the income of glucose produces hy-
perglycemia, the levels of glucose are promptly equilibrated by the intervention
of insulin. Unlike sugar, artificial sweeteners are not assimilated by the body,
hence they do not increase the glucose levels in blood. Nevertheless the insulin
produced under the stimuli originated by the sweet sensation, although weak,
can still cause the rate of glucose to drop engendering hypoglycemia. In response
to that, the brain induces the stimulus of hunger. As a matter of fact this ap-
pears as an unwanted/toxic behavior, indeed the assimilation of food (even if it
contains aspartame) should calm hunger and induce satiety not the opposite.

This schema suggests that we should consider four levels for glycemia: low,
hunger, equilibrium and high. Likewise for insulin we assume three levels: inac-
tive, low and high. All other actors involved in glucose regulation, have only two
levels (inactive or active). In the following sections, we will see how to model
the glucose metabolism and how to verify the unexpected behaviors of artificial
sweeteners.

4 Petri net modeling

A reaction network is composed of a set of species S governed by a set of reactions
R. We begin by giving some intuitions on their dynamics.

Species in S represent the actors of the modeled system. In the example
introduced above, we have concrete species such as aspartame and also more
abstract ones representing ratios or concepts like glycemia. Species may have
several expression levels. Levels are determined by the observable behavior of
species, i.e., they refer to a change in the capability of action of species. In toxi-
cology, they may represent dosages. We assume, for each species s, an arbitrary
but finite number Ls of levels, and each s is initialized at a certain level ηs. For
certain species, we assume the presence of a non specified environment that acts
on them by decreasing gradually their expression levels. This special activity is
called decay and is modeled by various durations associated to expression levels.
Decay may be unbounded indicating that the level of the species can only change
by result of a reaction. It is formalized by a function that associates to each level
either ω (unbounded) or its finite duration:

δs : [0..Ls − 1]→ N+ ∪ {ω}.

For all species s ∈ S we require that δs(0) = ω meaning that the duration of the
basal level must be unbounded.

Example 1 (Glucose metabolism – species). Take the example from Section 3.
The set of involved species is

S = {Sugar,Aspartame,Glycemia,Glucagon, Insulin}
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and their expression levels and corresponding decays are:

levels durations
Lsugar = {0, 1} δsugar(1) = 2
Laspartame = {0, 1} δaspartame(1) = 2
Lglycemia = {0, 1, 2, 3} δglycemia(1) = 8

δglycemia(2) = 8
δglycemia(3) = 8

Lglucagon = {0, 1} δglucagon(1) = 3
Linsulin = {0, 1, 2} δinsulin(1) = 3

δinsulin(2) = 3

The levels of glycemia are: 0 corresponding to low, 1 to hunger, 2 to equilibrium
and 3 to high. Likewise for insulin we have 0 that corresponds to inactive, 1 to
low and 2 to high. All levels for the other species are 0 for inactive and 1 for
active. �

The evolution of species s ∈ S is governed by a set of reactions R, each being
of the form:

ρ ::= 〈Rρ, Iρ, Pρ〉 (1)

where Rρ (reactants), Iρ (inhibitors) are sets of pairs (s, ηs) and Pρ (products)
is a non empty set of pairs (s, z), where ηs ∈ [0..Ls − 1] and z ∈ Z. Species can
appear at most once in each set Rρ, Iρ and Pρ. They can be present in both Rρ
and Iρ but they must occur with different levels2. We write s ∈ Rρ to denote
(s, ·) ∈ Rρ similarly for Iρ and Pρ and we omit index ρ if it is clear from the
context (ρ = 〈R, I, P 〉).

Example 2 (Glucose metabolism – reactions). The set of reactions R = {ρk =
(Rk, Ik, Pk) | k ∈ [1..9]} for the glucose metabolism example is:

ρk Reactants Rk Inhibitors Ik Products Pk
ρ1 (Sugar, 1) ∅ (Insulin,+1), (Glycemia,+1)
ρ2 (Aspartame, 1) ∅ (Insulin,+1)
ρ3 ∅ (Glycemia, 1) (Glucagon,+1)
ρ4 (Glycemia, 3) ∅ (Insulin,+1)
ρ5 (Insulin, 2) ∅ (Glycemia,−1)
ρ6 (Insulin, 1),

(Glycemia, 3) ∅ (Glycemia,−1)
ρ7 (Insulin, 1) (Glycemia, 2) (Glycemia,−1)
ρ8 (Glucagon, 1) ∅ (Glycemia,+1)

ρ1 and ρ2 represent the assimilation of Sugar and Aspartame, respectively: while
Aspartame only increases the level of Insulin, Sugar also increases Glycemia.
ρ3 takes care of hypoglycemia, i.e., a Glycemia level equal to 0 (obtained by

2 Observe that a species can appear in the same reaction as reactant at level ηr,
inhibitor at level ηi > ηr and product.
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using (Glycemia, 1) as inhibitor) engenders the production of Glucagon. On the
contrary, hyperglycemia causes the production of Insulin (ρ4). The presence of
Insulin lowers Glycemia (reactions ρ5, ρ6, ρ7). In particular Insulin level equal to
1 plays a role in the decrease of Glycemia only in case of hyperglycemia ρ6 or
hypoglycemia ρ7, otherwise the signal is not strong enough and we need Insulin
at level 2 to see the effect on Glycemia (ρ5). Last reaction describes the role of
Glucagon which if active increases the level of Glycemia.

�
The dynamics of reaction networks is formalized using high-level Petri nets.

We represent the state of a species s as a pair 〈ls, us〉, where ls is an integer
value storing the current level from zero to Ls − 1, and us is a counter storing
the interval of time spent at level ls. The system is initialized by setting the level
of all species: i.e., each species s is set to 〈ηs, 0〉 where ηs is the given initial level.

Reaction networks can evolve in two ways:

Case 1. Time progression and Decay: Time progresses discretely of one
unit at once. It affects species with finite decay only. More precisely if
a species s has unbounded decay at level l (δs(l) = w) then its corre-
sponding tuple (ηs, us) remains unchanged. Otherwise, if the species has
a finite decay (δs(l) = d), it may stay at level l for d time units. Then,
degradation happens as soon as d time units are elapsed and is obtained
by decreasing the level to l − 1 and by setting us to zero.

Case 2. Reaction: A reaction ρ may happen if and only if all the reactants are
available at least at the required level and all the inhibitors are expressed
at a level strictly inferior to the required one. The triggering of a reaction
results in the update of the level of all its products. Depending on the
reaction, levels will be increased (+n) , maintained (0) or decreased (-n).
We assume that each reaction can take place only once per time unit.

We now comment on some specific design choices concerning reactions:

− the set of reactants and inhibitors R∪I is allowed to be empty. This accounts
for modeling an environment that is continuously sustaining the production
of a species.

− a species can appear in the same reaction simultaneously as a reactant and
an inhibitor. In such a case, we require them to occur with different levels:

({(s, η)} ∪R, {(s, η′)} ∪ I, P )

where η < η′. This means that the reaction can take place only if the level ls
of s belongs to the interval η ≤ ls < η′. In particular, if s has to be present
in a reaction exactly at level η, s should appear as a reactant at level η and
as inhibitor at level η′ = η + 1;

− species can appear only once in the set of products P . This implies that a
product cannot be increased and decreased in the same reaction.

It is also worth observing that if a species is continuously sustained by some
reactions then it remains available in the system at a certain level for a period
that could be longer than the corresponding decay time.
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Example 3 (Glucose metabolism – scenario). Take once again the example of
glucose metabolism and observe the behavior of Glycemia in the following sce-
nario:

initial state 〈3, 0〉
8 time units elapse, counter at level 3 updates 〈3, 8〉
one time unit elapses, Glycemia decays 〈2, 0〉
one time unit elapses, counter at level 2 updates 〈2, 1〉
reaction ρ5 decreases Glycemia level 〈1, 0〉
8 time units elapse, counter at level 1 updates 〈1, 8〉
one time unit elapses, Glycemia decays 〈0, 0〉
one time unit elapses, no effect since δglycemia(0) = ω 〈0, 0〉. �

More formally, we now introduce the high-level Petri net modeling. Each
species s ∈ S is modeled by a single place qs whose type L(qs) is the set of
tuples of the form 〈ls, us〉, where ls ∈ [0..Ls−1] and us ∈ [0..maxs], with max s =
max{δs(l) | δs(l) 6= ω and l ∈ [0..Ls− 1]}. In order to cope with time aspects we
introduce a transition tc (Figure 3(a)) connected to all species that is responsible
for time progression and takes care of the decay of concerned species (as described
in Case 1 above). Finally, every reaction ρ is modeled with a transition tρ (Figure
3(b)). To each transition tρ we associate a special place qρ that is used to ensure
that the same reaction is not executed more than once in the same time unit.
More detailed explanations for each type of transition follow Definition 2.

qρ

...

...

qs

...

...

tc

wρ

1

〈ls, us〉

〈l′s, u′s〉

(a) Clock transition with only one place of
each kind (qs for s ∈ S and qρ for ρ ∈ R).

qp· · ·

qr

...

qi

...

qρ

tρ
〈lr, ur〉 〈li, ui〉

〈lp, up〉 〈l′p, u′p〉

wρ 0

(b) Transition for reaction ρ =
(R, I, P ) with one place of each kind
(qρ, qr for r ∈ R, qi for i ∈ I, qp for
p ∈ P ).

Fig. 3. Scheme of Petri net modeling of reaction networks.

Definition 2. Given a network (S,R) with initial state (s, ηs) for each s ∈ S,
its high-level Petri net representation is defined as tuple (Q,T, F, L,M0) where
z, z′, l, l′, u, u′, w, w′ are variables and:
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− Q = {qs | s ∈ S} ∪ {qρ | ρ ∈ R};
− T = {tc} ∪ {tρ | ρ ∈ R};
− F = {(q, tc), (tc, q) | q ∈ Q} ∪

{(qs, tρ), (tρ, qs), (qρ, tρ), (tρ, qρ) | ρ ∈ R, s ∈ Rρ ∪ Iρ ∪ Pρ}
− Labels for places in Q:

L(qρ) = {0, 1} for each ρ ∈ R
L(qs) = [0..Ls − 1]× [0..max s] for each s ∈ S

− Labels for arcs in F :

L((qρ, tc)) = w L((tc, qc)) = 1
L((qs, tc)) = 〈ls, us〉 L((tc, qs)) = 〈l′s, u′s〉 for each s ∈ S

For each reaction ρ ∈ R and s ∈ Rρ ∪ Iρ ∪ Pρ:

L((qs, tρ)) = 〈ls, us〉 L((tρ, qs)) =

{
〈ls, us〉 if s /∈ Pρ
〈l′s, u′s〉 otherwise

L((qρ, tρ)) = w L((tρ, qρ)) = 0

− Labels for transitions in T :

L(tc) =
∧
s∈S

(
(δ(ls) = ω ∨ us + 1 ≤ δ(ls))→ 〈l′s, u′s〉 = 〈ls, us + 1〉 ∧
(δ(ls) 6= ω ∧ us + 1 > δ(ls))→ 〈l′s, u′s〉 = 〈ls − 1, 0〉

)
.

For each reaction ρ ∈ R:

L(tρ)= (w = 1) ∧∧(r,ηr)∈Rρ(lr ≥ ηr) ∧
∧

(i,ηi)∈Iρ(li < ηi) ∧∧
(p,z)∈Pρ(〈l′p, u′p〉 = 〈max(0,min(lp + z,Lp − 1)), 0〉

− For each q ∈ Q, s ∈ S and ρ ∈ R, the initial marking M0 is:

M0(q) =

{
1 if q = qρ,

〈ηs, 0〉 if q = qs.

We now comment on the transitions of the high-level Petri net. The result
of the firing of a transition is handled by guards (namely transition labels L(tc)
and L(tρ)) together with the evaluation σ as described after Definition 1. With
an abuse of notation, in the following, we refer to evaluated variables without
effectively mentioning the evaluation σ: i.e., we say that the current value of
the token in qρ is w instead of σ(w). Input and output arcs between the same
place and transition with the same label (read arcs) are denoted in figures with
a double-pointed arrow with a single label.

Clock transition tc, depicted in Figure 3(a), takes care of Case 1 above. tc is
responsible for the decay of concerned species and the related update of counters
us of each species. Moreover tc updates the tokens of all places qρ to 1, thus re-
enabling the possibility of performing a reaction ρ.

Next, we describe transitions for reactions, depicted in Figure 3(b). Given a
reaction ρ = (R, I, P ) we detail the conditions and the results of firing of tρ. As
described in Case 2 we have:
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− each reactant r ∈ R has to be present at least at level ηr, this is expressed
by guard lr ≥ ηr;

− each inhibitor i ∈ I has not to exceed level ηi, this is guaranteed by guard
(li < ηi);

− each product p ∈ P corresponding to place qp is updated to 〈l′p, u′p〉 =
〈max(0,min(lp + z,Lp − 1)), 0〉.

The role of place qρ is to forbid two consecutive executions of the same reaction
in the same time unit. Initially, the marking of qρ is set to 1 and it becomes 0
when the transition tρ is fired; then clock transition tc sets it to 1 again.

Observe that, because of the semantics of high level Petri nets, reaction may
not occur even if all constraints are satisfied. This is interpreted as the action
of an hostile (non-specified) environment (e.g., reactants are too far from each
other to react).

Example 4 (Glucose metabolism – reaction network).

Sugar Aspartame

GlycemiaGlucagon Insulin

1

R

+
+

2

R

+

3
I+

4
R +

5

R-

6

R R
-

7

I
R

-

8
R +

Fig. 4. Simplified reaction network of glucose metabolism.

Figure 4 shows a simplification of the reaction network (S,R) given in exam-
ple 1. It focuses only on the reaction schema linking inputs (i.e., reactants and
inhibitors) to products. Each input arc is labeled with either letter R or letter I
denoting whether the input place is a reactant or an inhibitor, respectively. Like-
wise, each output arc is labeled with a + or a - to denote increase or decrease
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of product levels by 1. For each reaction transition ρ, we have omitted place qρ
and all arcs in the opposite direction. The numbers inside each transition refers
to the corresponding reaction in Example 2.

(3, 0)

qglycemia

(0, 0)

qinsulin

1 qρ7tcL(tc)

〈lg, ug〉

〈l′g, u′g〉

〈li, ui〉

〈l′i, u′i〉

tρ7 L(tρ7)

〈lg, ug〉

〈li, ui〉

〈l′g, u′g〉

w

0

Fig. 5. A portion of the reaction network of glucose metabolism with an initial marking.

Figure 5, instead, shows a portion of the complete initially marked reaction
network for the glucose metabolism example, focusing only on reaction ρ7. �

From the above definition and the transition rule of high-level nets, we have
the following properties:

Proposition 1. Given a reaction network (S,R) with initial values ηs for each
species s ∈ S:

− its Petri net representation has a finite structure with |S| + |R| places,
|R| + 1 transitions and the number of arcs is bounded by 2(|S| + |R| +
Σρ=(Rρ,Iρ,Pρ)∈R(|Rρ|+ |Iρ|+ |Pρ|+ 1);

− each place type is a finite set;

− for each arc (q, t) ∈ F there is an arc in opposite direction, i.e., (t, q) ∈ F
and each arc label is a singleton;

− the initial marking and all reachable markings have exactly one structured
token per place;

− the number of all reachable markings from the initial one is finite.

Proof. Follows by definition and by induction on the length of a firing sequence.
ut
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5 Toxicology analysis

Such a Petri net representation of a reaction network is used to detect and
predict toxic behaviors related to the dynamics of bio-molecular networks. In
order to verify toxicology properties, we resort to temporal logics and model
checking techniques [5]. For the sake of the present paper computation tree logic
(CTL) allows to express properties of interest. Nonetheless different scenarios
may require other more appropriate modal logic which we could be handled by
our framework.

We recall here the basic concepts of CTL, provide the formal definition of
the syntax and give some intuitions on the semantics, formally defined in [9].

A CTL formula is defined as:

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ
EXϕ | EGϕ | E(ϕUϕ) | EFϕ | AGϕ | AFϕ

where a ∈ A is an atomic proposition.
CTL is used to state properties on branching time structures. It uses usual

boolean operators, path quantifiers and temporal operators. Path quantifiers can
be of two kinds: Aϕ means that ϕ has to hold on all paths starting from the
current state, while Eϕ stands for there exists at least one path starting from
the current state where ϕ holds. We have four temporal operators: Xϕ holds if
ϕ is true at the next state, Gϕ means that ϕ has to globally hold on the entire
subsequent path, Fϕ stands for eventually (or finally) ϕ has to hold (at some
point on the subsequent path), and ϕ1Uϕ2 means that ϕ1 has to hold at least
until at some position ϕ2 holds. In our context atomic formulae are represented
by pairs of species and levels: A = {(s, ηs) | s ∈ S}, for instance (Glucose, 2).

As mentioned in the introduction, we are mainly interested in checking
whether the inner equilibrium of an organism (tissue, cell, . . . ) is maintained
when administrating drugs or applying stressors. More in detail, toxicology prop-
erties can be classified into two categories:

− properties checking for the appearance of particular symptoms, and
− properties characterizing causal relations between events.

The former class of properties basically consists in verifying reachability of some
states, while the latter concerns pathways that highlight sequences of events
leading to toxic outcomes. For instance, in the case of glucose regulation, we
could verify whether glycemia levels are kept stable and whether they change in
case of ingestion of aspartame. More precisely, we could examine the causes and
the symptoms of the hypoglycemia induced by the assimilation of aspartame.
Hence hypoglycemia is treated as a toxic state.

Example 5 (Glucose metabolism – properties). Take our running example of
blood glucose regulation. The following properties can be expressed in CTL:

Symptoms: Is it possible to have an anomalous decrease of glucose levels in
blood (revealing hypoglycemia)?

EF(Glycemia, 0)
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Mode-of-action: Recalling that the blood glucose regulation process normally
maintains glycemia at equilibrium (level 2), is there an abnormal behavior
leading to hypoglycemia?

E(EF(Glycemia, 2) U (EF(Glycemia, 0)))

Causality: Does assimilation of sweeteners cause hypoglycemia?

EF[((Sugar, 1) ∨ (Aspartame, 1)) ∧ (Glycemia, 1)]→ AF(Glycemia, 2)

For the third formula we show two paths given as sequences of reactions
(abstracting away from time transitions), one that satisfy the formula and the
other that contradicts it. The first one corresponds to the assimilation of sugar.
As described in Section 3, the digestion of sugar induces an increase of the pro-
duction of insulin and an augmentation of the blood glucose levels. Nonetheless
the levels of insulin produced are not enough to cause the glycemia to drop and
the formula is satisfied.

(Sugar, 1), (Aspartame, 0), (Glycemia, 1), (Insulin, 0), (Glucagon, 0)
ρ1−→

(Sugar, 1), (Aspartame, 0), (Glycemia,2), (Insulin, 1), (Glucagon, 0)

Unlike previous path, the assimilation of aspartame causes only an increase of
insulin. Unfortunately, this increment is sufficient to induce a decrease of blood
glucose levels thus contradicting the formula above.

(Sugar, 0), (Aspartame, 1), (Glycemia, 1), (Insulin, 0), (Glucagon, 0)
ρ2−→

(Sugar, 0), (Aspartame, 1), (Glycemia, 1), (Insulin, 1), (Glucagon, 0)
ρ7−→

(Sugar, 0), (Aspartame, 0), (Glycemia,0), (Insulin, 1), (Glucagon, 0)

This illustrates the toxic behavior caused by aspartame described in Section 3.
�

6 Related work

The main application of our work concerns the verification of properties of sys-
tems defined in terms of rules or reactions. From a technical point of view, the
closest related work is on reaction systems [1] or their Petri net representation
[17]. Although we use a similar definition for reactions, the semantics that we
have proposed is inherently different: in [1] all enabled reactions occur in one
step while we have considered an interleaving semantics. In [2], the authors con-
sider an extension of reaction systems with a notion of decay, this concept is
different from the one considered here as we refer to an independent time pro-
gression while they count the number of maximally concurrent steps. In fact,
our representation of time is considerably different from the approaches tradi-
tionally used in time and timed Petri nets ([3] presents a survey with insightful
comparison of the different approaches). The main difference lies on the fact that
the progression of time is implicit and external to the system. By contrast, in
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our proposal we have assumed the presence of an explicit way of incrementing
durations (modeled by synchronized counters). This is also different from the
notion of timestamps introduced in [12] that again refers to an implicit notion
of time. Indeed, our approach is conceptually closer to Petri nets with causal
time [22] for the presence of an explicit transition for time progression. Never-
theless, in reaction networks time cannot be suspended under the influence of
the environment (as is the case in [22]).

In a broader sense, our work could also be related to P-systems [18,16] or
the κ-calculus [6] that describe the evolution of cells through rules. Both these
approaches are mainly oriented to simulation while we are interested in verifi-
cation aspects. Finally, always related to the modeling in Petri nets but with a
different aim, levels have been used in qualitative approaches to address prob-
lems related to the identification of steady states in genetic networks such as
in [4]. Nevertheless these contributions abstract away from time related aspects
that are instead central in our proposal.

7 Conclusion and future work

We have introduced a high-level Petri net modeling of reaction networks to ad-
dress problems related to toxicogenomics. In reaction networks, systems consist
of a set of species present in the environment at a given level. Species can degrade
with time progression and their presence is governed by a set of rules (reactions).
In a reaction, species can have the role of reactants, inhibitors or products. A
reaction can take place only if all reactants are available and all inhibitors are
not. Depending on the type of reaction, products levels are either increased or
decreased. We have shown that properties of biological systems can be expressed
in a suitable temporal logic and verified on the finite state space of the network.
We have illustrated our framework in the modeling of blood glucose regulation.

We are currently investigating how to enrich reactions with response time,
representing the required time for yielding products [8]. This poses new questions
on how our model with time constraints could be compared to other existing time
concepts for instance that in timed automata or that in stochastic models like
in [13,11].

Finally, we have a prototype implemented with Snakes [19] and we plan to
use Snoopy [14] and connected tools (Marcie [20]) to simulate and analyze CTL
formulae.
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18. A. Paun, M. Paun, A. Rodŕıguez-Patón, and M. Sidoroff. P systems with pro-
teins on membranes: a survey. International Journal of Foundations of Computer
Science, 22(1):39–53, 2011.

19. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. Petri net
newsletter, (10-2008):1–18, 10 2008. SNAKES is available here.

20. M. Schwarick, M. Heiner, and C. Rohr. Marcie - model checking and reachability
analysis done efficiently. In QEST, pages 91–100. IEEE Computer Society, 2011.

21. L. Serrano. Synthetic biology: promises and challenges. Molecular Systems Biology,
3(158), 2007.

22. C. B. Thanh, H. Klaudel, and F. Pommereau. Petri nets with causal time for
system verification. ENTCS, 68(5):85–100, 2002.

23. M. D. Waters and J. M. Fostel. Toxicogenomics and systems toxicology: aims and
prospects. Nature reviews. Genetics, 5(12):936–48, Dec. 2004.

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



Integrating prior knowledge in automatic
network reconstruction

Marie C.F. Favre1?, Wolfgang Marwan2, Annegret K. Wagler1

{marie.favre,wagler}@isima.fr, wolfgang.marwan@ovgu.de

1 Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes
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Abstract. The reconstruction of models from experimental data is a
challenging problem due to the inherited complexity of biological sys-
tems. We developed an exact, exclusively data-driven approach to re-
construct Petri nets from experimental time-series data. Our approach
aims at reconstructing all such netwoks that fit the given experimen-
tal data, to provide all possible alternatives of mechanisms behind the
experimental observations, which typically results in a large set of solu-
tion alternatives. To keep this solution set reasonably small while still
guaranteeing its completeness, we firstly generate only Petri nets being
minimal in the sense that all other networks fitting the data contain the
reconstructed ones. We further aim at avoiding the generation of mini-
mal solutions which are “technically correct” but would be ruled out later
during a subsequent verification process to check whether the returned
solutions are “biological meaningful” or even contradict well-established
biological knowledge. For that, we propose to extent the considered input
(beyond the information given with the experimental time-series data)
for the reconstruction process and demonstrate with the help of a run-
ning example the influence on the generated solution set.

1 Introduction

Systems biology aims at the integrated experimental and theoretical analysis of
molecular or cellular networks to achieve a holistic understanding of biological
systems and processes. To gain the required insight into the underlying biological
processes, experiments are performed and experimental data are interpreted in
terms of models. Depending on the biological aim, the type and quality of the
available data, different types of mathematical models are used and correspond-
ing reconstruction methods have been developed. Our work is dedicated to Petri
nets which turned out to coherently model both static interactions in terms of
networks and dynamic processes in terms of state changes, see e.g. [7,10].
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In fact, a network P = (P, T,A,w) reflects the involved components by places
p ∈ P and their interactions by transitions t ∈ T , linked by weighted directed arcs
(p, t), (t, p) ∈ A. Each place p ∈ P can be marked with an integral number xp of

tokens defining a system state x ∈ Z|P |+ , i.e., we obtain X := {x ∈ Z|P | : xp ≥ 0}
as set of potential states. A transition t ∈ T is enabled in a state x if xp ≥ w(p, t)
for all p with (p, t) ∈ A, we denote the set of all such transitions by T (x).
Switching t ∈ T (x) yields a successor state succ(x) = x′ with x′p = xp − w(p, t)
for all (p, t) ∈ A and x′p = xp + w(t, p) for all (t, p) ∈ A. Dynamic processes are
represented by sequences of such state changes.

Our central question is to reconstruct models of this type from experimental
time-series data by means of an exact, exclusively data-driven approach. This
approach takes as input a set P of places and discrete time-series data X ′ ⊆ X
given by sequences (x0; x1, . . . ,xk) of experimentally observed system states.
The goal is to determine all Petri nets (P, T,A,w) that are able to reproduce
the data, i.e., that perform for each xj ∈ X ′ the experimentally observed state
change to xj+1 ∈ X ′ in a simulation. Hence, in contrast to the normally used
stochastic simulation, we require that for states where at least two transitions
are enabled, the decision between the alternatives is not taken randomly, but a
specific transition is selected. Thus, (standard) Petri nets have to be equipped
with additional activation rules to force the switching of specific transitions (to
reach xj+1 from xj), and to prevent all others from switching. For that, different
types of additional activation rules are possible.

On the one hand, control-arcs are used to represent catalytic or inhibitory
dependencies. An extended Petri net P = (P, T, (A ∪ AR ∪ AI), w) is a Petri
net which has, besides the (standard) arcs in A, two additional sets of so-called
control-arcs: the set of read-arcs AR ⊂ P × T and the set of inhibitor-arcs
AI ⊂ P ×T ; we denote the set of all arcs by A = A∪AR∪AI . Here, a transition
t ∈ T (x) coupled with a read-arc (resp. an inhibitor-arc) to a place p ∈ P can
switch only if at least w(p, t) tokens (resp. less than w(p, t) tokens) are present
in p; we denote by TA(x) the set of all such transitions.

On the other hand, in [9,12,13] priority relations among the transitions of a
network are employed to reflect the rate of the corresponding reactions, where
the fastest reaction has highest priority and, thus, is taken. In Marwan et al. [9]
it is proposed to model such priorities with the help of partial orders O on
the transitions. We call (P,O) an (extended) Petri net with priorities, if P =
(P, T,A, w) is an (extended) Petri net and O a priority relation on T . Priorities
can prevent enabled transitions from switching: For each state x, a transition
t ∈ TA(x) is allowed to switch only if there is no other enabled transition in
TA(x) with higher priority; we denote by TA,O(x) the set of all such transitions.

We call (P,O) X ′-deterministic if TA,O(x) contains at most one element
for each experimentally observed state x ∈ X ′. Based on earlier results in
[3,4,5,9,13], an integrative method to reconstruct all X ′-deterministic extended
Petri nets with priorities fitting given experimental time-series data X ′ was pro-
posed in [6] (see Section 2).
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Our approach aims at reconstructing all netwoks of the studied type that fit
the given experimental data, to provide all possible alternatives of mechanisms
behind the experimentally observed phenomena. Typically, this results in a large
set of solution alternatives. To keep this solution set reasonably small while
still guaranteeing its completeness, we generate only Petri nets being minimal
in the sense that all other networks fitting the data contain the reconstructed
ones. Here, we propose a method to insert only minimal sets of control-arcs
during the reconstruction process (see Section 2). We further aim at avoiding
the generation of minimal solutions which are “technically correct” but would
be ruled out later during a subsequent verification process to check whether the
returned solutions are “biological meaningful” or even contradict well-established
biological knowledge. For that, we extent the considered input by integrating
biological prior knowledge (beyond the information given with the experimental
time-series data) into the reconstruction process and demonstrate with the help
of a running example the influence on the generated solution set (see Section 3).
We close with some concluding remarks and lines of future work.

2 Reconstructing extended Petri nets with priorities

We describe the input, the main ideas, and the output of our approach from [6].

Input. A set of components P (standing for proteins, enzymes, genes, receptors
or their conformational states, later represented by the set of places) is chosen
which is expected to be crucial for the studied phenomenon. If P contains known
P -invariants (subsets P ′ ⊆ P of places where the sum of the number of all tokens
on all the places in P ′ is constant, e.g., different functional states of a cell or
conformational states of a molecular complex), they are collected in a set IP .

To perform an experiment, one first triggers the system in some state x0 (by
external stimuli like the exposition to a pathogen), to generate an initial state
x1. Then the system’s response to the stimulation is observed and the resulting
state changes are measured for all considered components at certain time points.
This yields a sequence of (discrete or discretized) states xj ∈ Z|P | reflecting the
time-dependent response of the system to the stimulation in x1, which typically
terminates in a terminal state xk where no further changes are observed. The
corresponding experiment is X ′(x1,xk) = (x0;x1, . . . ,xk). Several experiments
starting from different initial states in a set X ′ini ⊆ X ′, reporting the observed
state changes, and ending at different terminal states in a set X ′term ⊆ X ′ de-
scribe the studied phenomenon, and yield experimental time-series data of the
form X ′ = {X ′(x1,xk) : x1 ∈ X ′ini,xk ∈ X ′term}. Thus, the input of the recon-
struction approach is given by (P, IP ,X ′).
Example 1. As running example, we will consider experimental biological data
from the light-induced sporulation of Physarum polycephalum as in [6,13]. In P.
polycephalum plasmodia, the photoreceptor involved in the control of sporula-
tion Spo is a protein which occurs in two stages PFR and PR. The develop-
mental decision of starving P. polycephalum plasmodia to enter the sporulation
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pathway is controlled by environmental factors like visible light [11]. If the dark-
adapted form PFR absorbs far-red light FR, the receptor is converted into its
red-absorbing form PR, which causes sporulation after several hours [8]. If PR is
exposed to red light R, it is photo-converted back to the initial state PFR (pho-
toreversion), which prevents sporulation if the red light pulse is given shortly
after the far-red pulse, but not if the red pulse is delivered after more than an
hour when the phytochrome photoreceptor has had sufficient time to cause the
formation of a biochemical downstream signal G that subsequently causes the
sporulation of the cell. The changes between the stages PFR and PR only require
fractions of seconds and can be experimentally observed due to a change of color
of the phytochrome protein. The experimental setting consists of

P = {FR,R, PFR, PR, G, Spo}, X ′(x1,x4) = (x0;x1,x2,x3,x4), X ′
ini = {x1,x5,x6},

IP = {PFR, PR}, X ′(x5,x0) = (x2;x5,x0), X ′
term = {x4,x0,x8}

X ′(x6,x8) = (x3;x6,x7,x8),

as input for the algorithm, we present all observed states schematically in Fig 1.
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FR
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Fig. 1. Experimental time-series data X ′ for the light-induced sporulation of Physarum
polycephalum. The experimental setting uses the set P = {FR,R, Pfr, Pr, G, Spo}
of studied components, observed states are represented by vectors of the form x =
(xFR, xR, xPFR , xPR , xG, xSpo)T having 0/1-entries only. Dashed arrows represent a
stimulation or perturbation of the system, solid arrows the observed responses.

For a successful reconstruction, the data X ′ need to satisfy two properties: re-
producibility and monotonicity. The data X ′ are reproducible if for each xj ∈ X ′
there is a unique observed successor state succX ′(xj) = xj+1 ∈ X ′. Reproducibil-
ity is obviously necessary and can be ensured by preprocessing [15]. Whether a
state xj ∈ X ′ and its observed successor succX ′(xj) = xj+1 ∈ X ′ are also con-
secutive system states depends on the chosen time points to measure the states
in X ′. In fact, xj+1 may be obtained from xj by a switching sequence of some
length, where the intermediate states are not reported in X ′. The data X ′ are
monotone if for each pair (xj ,xj+1) ∈ X ′, the values of the elements do not
oscillate in the possible intermediate states between xj and xj+1. It was shown
in [4] that monotonicity has to be required, too (which is equivalent to demand
that all essential responses are indeed reported in X ′).
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Output. An extended Petri net with priorities (P,O) with P = (P, T,A, w)
fits the given data X ′ when it is able to perform every observed state change
from xj ∈ X ′ to xj+1 ∈ X ′. For that, associate with P an incidence matrix
M ∈ Z|P |×|T | whose rows correspond to the places p ∈ P and whose columns
M·t to the update vector rt of the transitions t ∈ T :

rtp = Mpt :=





−w(p, t) if (p, t) ∈ A,
+w(t, p) if (t, p) ∈ A,
0 otherwise.

Reaching xj+1 from xj by a switching sequence using the transitions from a
subset T ′ ⊆ T is equivalent to obtain xj+1 from xj by adding the corresponding
columns M·t of M for all t ∈ T ′, i.e., xj +

∑
t∈T ′ M·t = xj+1.

T has to contain enough transitions to perform all experimentally observed
switching sequences. The underlying standard network P = (P, T,A,w) is con-
formal with X ′ if, for any two consecutive states xj ,xj+1 ∈ X ′, the linear equa-
tion system xj+1 − xj = Mλ has an integral solution λ ∈ N|T | such that λ
represents a sequence (t1, ..., tm) of transition switches, i.e., there are intermedi-
ate states xj = y1,y2, ...,ym+1 = xj+1 with yl+M·tl = yl+1 for 1 ≤ l ≤ m. The
extended Petri net P = (P, T,A, w) is catalytic conformal with X ′ if tl ∈ TA(yl)
for each intermediate state yl, and the extended Petri net with priorities (P,O)
is X ′-deterministic if {tl} = TA,O(yl) holds for all yl.

The desired output consists of all minimal X ′-deterministic extended Petri
nets (P,O) (all having the same set P of places as part of the input).

Example 2. We represent in Fig. 3 (page 54) several alternative X ′-deterministic
extended Petri nets fitting the experimental data X ′ from our running example.

We now briefly sketch the reconstruction procedure.

Representing the observed responses. As initial step, extract the observed changes
of states from the experimental data. For that, define the set

D :=
{
dj = xj+1 − xj : xj+1 = succX ′(xj) ∈ X ′

}
.

Generating the complete list of all X ′-deterministic extended Petri nets P =
(P, T,A, w) includes finding the corresponding standard networks and their in-
cidence matrices M ∈ Z|P |×|T |. Due to monotonicity [4], it suffices to represent
any dj ∈ D using sign-compatible update vectors from the following set only:

Box(dj) =




r ∈ Z|P | :

0 ≤ rp≤ dp if djp > 0
dp ≤ rp≤ 0 if djp < 0

rp = 0 if djp = 0∑
p∈P ′ rp = 0 ∀P ′ ∈ IP




\ {0}.

Next, we determine for any dj ∈ D, the set Λ(dj) of all integral solutions of

dj =
∑

rt∈ Box(dj)

λtr
t, λt ∈ Z+, (1)
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and for each λ ∈ Λ(dj), the (multi-)set R(dj , λ) = {rt ∈ Box(dj) : λt 6= 0} of
update vectors used for this solution λ. By construction, Box(dj) and Λ(dj) are
always non-empty since dj itself is always a solution due to reproducibility [6].
Every permutation π = (rt1 , . . . , rtm) of the elements of a set R(dj , λ) gives rise
to a sequence of intermediate states xj = y1,y2, ...,ym,ym+1 = xj+1 with

σ = σπ,λ(xj ,dj) =
(
(y1, rt1), (y2, rt2), . . . , (ym, rtm)

)
.

Example 3. For the running example we obtain as sequences

x0 x1

x2 x3 x4x5

x9x11 x0x2

x6

x10 x3

x7 x8

FR

R

R

d1

d2 d3

d4

d3 = d6

r1.1r1.2

r4.1 r4.2 r1.1 r1.2

r4.1r4.2 d4 = d5

r4.1r4.2

r4.1 r4.2

with x9 = (1, 0, 0, 1, 0, 0)T , x10 = (0, 1, 1, 0, 1, 0)T and x11 = (0, 1, 1, 0, 0, 0)T .

To compose all possible standard networks, we have to select exactly one
solution λ ∈ Λ(dj) for each dj ∈ D and to take the union of the corresponding
sets R(dj ,λ) in order to yield the columns M·t = rt of an incidence matrix M
of a conformal network. To ensure that the generated conformal networks can
be made X ′-deterministic, we proceed as follows.

Detecting priority conflicts between sequences. By construction, every sequence
σπ,λ(xj ,dj) induces a priority relation Oσ, since it implies which transition ti is
supposed to have highest priority (and thus switches) for every intermediate state
yi. To impose valid priority relationsO among all transitions of the reconstructed
networks, we have to take conflicts between priority relations Oσ induced by
different sequences σ into account. Two sequences σ and σ′ are in priority conflict
if there are update vectors rt 6= rt

′
and intermediate states y,y′ such that

t, t′ ∈ T (y) ∩ T (y′) and (y, rt) ∈ σ but (y′, rt
′
) ∈ σ′ (since this implies t > t′ in

Oσ but t′ > t in Oσ′). We have a weak (resp. strong) priority conflict if y 6= y′

(resp. y = y′) which can (resp. cannot) be resolved by adding control-arcs.
We construct a priority conflict graph G = (VD∪Vterm, ED∪EW ∪ES) whose

nodes correspond to all possible sequences σπ,λ(xj ,dj) and whose edges reflect
weak and strong priority conflicts (WPC and SPC for short):

– VD contains the sequences σπ,λ(xj ,dj) for all xj ∈ X ′ \ X ′term and dj =
succX ′(xj)− xj , for all λ ∈ Λ(dj) and all permutations π of R(dj ,λ).

– Vterm contains for all xk ∈ X ′term the trivial sequence σ(xk,0).
– ED contains all edges between two sequences σ, σ′ stemming from the same

difference vector.
– ES (resp. EW ) reflects all SPCs (resp. WPCs) between sequences σ, σ′ stem-

ming from distinct difference vectors.
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In G, we generate all node subsets S selecting exactly one sequence σπ,λ(xj ,dj)
per difference vector dj ∈ D such that no SPCs occur between the selected se-
quences and the nodes in Vterm. Clearly, a node σ ∈ VD can never be selected for
any solution S if it is in SPC with a terminal state sequence or with all sequences
σ′ stemming from one difference vector dj ∈ D. Removing all such nodes and
their incident edges from G yields the reduced priority conflict graph G′. We can
show that the sets of suitable selections S obtained in G and G′ are equal and
that there is always at least one feasible selection.

Example 4. We obtain the following reduced priority conflict graph G′ for the
running example, where bold edges indicate SPCs and thin edges WPCs.

Q1

Q3

Q3

σ1(x
1,d1)

σ3(x
1,d1)

σ1(x
2,d2)σ1(x

5,d4)

σ3(x
5,d4)

σ1(x
6,d4)

σ3(x
6,d4)

σ1(x
3,d3)σ1(x

7,d3)

σ(x0, 0)

σ(x4, 0)σ(x8, 0)

From G′, we obtain as feasible subsets Si = S′ ∪ S′i with

S′ = {σ1(x2,d2), σ1(x3,d3), σ1(x7,d3)}

S′
1 = {σ1(x1,d1), σ1(x5,d4), σ1(x6,d4)},

S′
2 = {σ1(x1,d1), σ1(x5,d4), σ3(x6,d4)},

S′
3 = {σ1(x1,d1), σ3(x5,d4), σ1(x6,d4)},

S′
4 = {σ1(x1,d1), σ3(x5,d4), σ3(x6,d4)},

S′
5 = {σ3(x1,d1), σ1(x5,d4), σ1(x6,d4)},

S′
6 = {σ3(x1,d1), σ1(x5,d4), σ3(x6,d4)},

S′
7 = {σ3(x1,d1), σ3(x5,d4), σ1(x6,d4)},

S′
8 = {σ3(x1,d1), σ3(x5,d4), σ3(x6,d4)}.

Constructing X ′-deterministic Petri nets. Every selected subset S corresponds
to a conformal standard network PS = (P, TS , AS , w): we obtain the columns of
the incidence matrix MS of the network by taking the union of all sets R(dj ,λ)
corresponding to the sequences σ = σπ,λ(xj ,dj) selected by σ ∈ S.

Example 5. We apply the method to the feasible sets S1 and S4 from Exp. 4 and
obtain the standard networks presented in Fig. 2 with TS1

= D and in Fig. 3
with TS4

= {d1,d2,d3, r4.1, r4.2}, respectively.

If there are weak priority conflicts σσ′ ∈ EW for nodes σ, σ′ ∈ S ∪ Vterm,
denoted by WPC(σ, σ′), the constructed standard network PS needs to be made
X ′-deterministic by inserting appropriate control-arcs. By [6], a WPC(σ, σ′) be-
tween two sequences σ and σ′ involving update vectors rt 6= rt

′
and intermediate

states y 6= y′ with t, t′ ∈ T (y) ∩ T (y′) such that (y, rt) ∈ σ but (y′, rt
′
) ∈ σ′

has to be resolved by adding appropriate control-arcs that either turn rt into a
transition t which is disabled at y′ (then t > t′ forces t to switch in y whereas
only t′ is enabled at y′), or vice versa. Let P (y,y′) be the set of places where y
and y′ differ and CA(σ, σ′) the set of all possible control-arcs that can resolve
WPC(σ, σ′). Then CA(σ, σ′) partitions into two subsets CAt>t′(σ, σ

′) disabling
t at y′ containing
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– a read-arc (p, t) ∈ AR with weight w(p, t) > y′p ∀p ∈ P (y,y′) with yp > y′p,
– an inhibitor-arc (p, t) ∈ AI with w(p, t) < yp ∀p ∈ P (y,y′) with yp < y′p,

and CAt<t′(σ, σ
′) disabling t′ at y containing

– a read-arc (p, t′) ∈ AR with weight w(p, t′) > yp ∀p ∈ P (y,y′) with y′p > yp,
– an inhibitor-arc (p, t′) ∈ AI with w(p, t′) < y′p ∀p ∈ P (y,y′) with y′p < yp.

Remark 1. If one of y,y′ is a terminal state, say y′, then CAt<t′(σ, σ
′) = ∅

follows since t has to be disabled at y′ and t > t′ = 0 holds automatically.
Moreover, if y = y′ then P (y,y′) = ∅ follows which is the reason why SPCs
cannot be resolved by adding control-arcs.

Due to [6], inserting one control-arc from CA(σ, σ′) resolves the WPC(σ, σ′) in
PS . Here, we further discuss mutual influences of control-arcs in the resulting
extended Petri nets as well as the issue of only constructing minimal catalytic
conformal networks.

On the one hand, inserting a control-arc (p, t) ∈ CA(σ, σ′) in PS might disable
t at a state in another sequence σ′′ ∈ S \ σ, σ′ where t is supposed to switch.
In this case, (p, t) has to be removed from CA(σ, σ′), resulting in a reduced set
CAS(σ, σ′). On the other hand, one control-arc may resolve several WPCs in PS
if the corresponding sets CAS(σ, σ′) intersect.

Therefore, we propose the following consideration: Introduce one variable
z(p,t) ∈ {0, 1} for each possible control-arc (p, t) ∈ CAS(σ, σ′) for all WPCs in
PS . Construct a 0/1-matrix AS whose columns correspond to all those variables
(resp. control-arcs) and whose rows encode the incidence vectors of the sets
CAS(σ, σ′) for all WPCs in PS . Then any 0/1-solution z of the system ASz ≥ 1
encodes a suitable set of control-arcs resolving all WPCs in PS and, thus, a hitting
set or cover of AS . By [14], we are only interested in finding minimal models
fitting X ′, where minimality is interpreted in the sense that all non-minimal
models contain another one also fitting the data. We can show that using non-
minimal covers of AS yields non-minimal extended Peri nets but that we need
all of them for the sake of completeness, which corresponds to determining the
so-called blocker b(AS) of AS .

Example 6. We list all WPCs between sequences in our running example:

WPC1 between σ1(x
2,d2) and σ(x0,0) due to d2,0 ∈ T (x0) ∩ T (x2)

WPC2 between σ1(x
3,d3) and σ(x0,0) due to d3,0 ∈ T (x0) ∩ T (x3)

WPC3 between σ1(x
7,d3) and σ(x0,0) due to d3,0 ∈ T (x0) ∩ T (x7)

WPC4 between σ3(x
1,d1) and σ1(x

7,d3) due to d3, r1.2 ∈ T (x1) ∩ T (x7)

WPC5 between σ3(x
1,d1) and σ(x0,0) due to r1.2,0 ∈ T (x0) ∩ T (x1)

WPC6 between σ3(x
1,d1) and σ(x8,0) due to r1.2,0 ∈ T (x8) ∩ T (x1)

WPC7 between σ1(x
2,d2) and σ3(x

5,d4) due to d2, r4.2 ∈ T (x2) ∩ T (x5)

WPC8 between σ3(x
5,d4) and σ1(x

3,d3) due to d3, r4.2 ∈ T (x3) ∩ T (x5)

WPC9 between σ3(x
5,d4) and σ(x4,0) due to r4.2,0 ∈ T (x4) ∩ T (x5)

WPC10 between σ3(x
6,d4) and σ1(x

3,d3) due to d3, r4.2 ∈ T (x3) ∩ T (x6)

WPC11 between σ3(x
6,d4) and σ(x4,0) due to r4.2,0 ∈ T (x4) ∩ T (x6)

WPC12 between σ1(x
5,d4) and σ3(x

6,d4) due to d4, r4.2 ∈ T (x5) ∩ T (x6)

WPC13 between σ3(x
5,d4) and σ1(x

6,d4) due to d4, r4.2 ∈ T (x5) ∩ T (x6)
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We obtain the following control-arcs to resolve WPCs between sequences:

CA(WPC1) = {(PFR,d
2) ∈ AI , (PR,d

2) ∈ AR},
CA(WPC2) = {(PFR,d

3) ∈ AI , (PR,d
3) ∈ AR, (G,d3) ∈ AR},

CA(WPC3) = {(G,d3) ∈ AR},
CA(WPC4) = {(FR,d3) ∈ AI , (G,d3) ∈ AR, (FR, r1.2) ∈ AR, (G, r1.2) ∈ AI},
CA(WPC5) = {(FR, r1.2) ∈ AR},
CA(WPC6) = {(Spo, r1.2) ∈ AI , (G, r1.2) ∈ AI},
CA(WPC7) = {(R, r4.2) ∈ AR, (R,d2) ∈ AI},
CA(WPC8) = {(R, r4.2) ∈ AR, (G, r4.2) ∈ AI , (R,d3) ∈ AI , (G,d3) ∈ AR},
CA(WPC9) = {(R, r4.2) ∈ AR, (Spo, r

4.2) ∈ AI , (G, r4.2) ∈ AI},
CA(WPC10) = {(R,d3) ∈ AI , (R, r4.2) ∈ AR},
CA(WPC11) = {(R, r4.2) ∈ AR, (Spo, r

4.2) ∈ AI},
CA(WPC12) = {(G,d4) ∈ AI , (G, r4.2) ∈ AR},
CA(WPC13) = {(G,d4) ∈ AR, (G, r4.2) ∈ AI}.

The following reductions of sets of possible control-arcs are necessary: for all
standard networks PSi

, we have σ1(x3,d3) and σ1(x7,d3) selected simultane-
ously, which both are in WPC with σ(x0,0), see WPC2 and WPC3. To resolve
WPC2, we have CA(WPC2) = {(PFR,d3) ∈ AI , (PR,d3) ∈ AR, (G,d3) ∈ AR}.

However, (PFR,d
3) ∈ AI and (PR,d

3) ∈ AR do not only disable d3 at x0,
but also d3 at x7 (due to x0

PFR
= x7

PFR
= 1 and x0

PR
= x7

PR
= 0). Since

d3 is supposed to switch at x7, we obtain CASi
(WPC2) = {(G,d3) ∈ AR}

as reduced set of possible control-arcs to resolve WPC2 in all networks P(Si).
Similarly, (G, r4.2) ∈ AI has to be excluded from CA(WPC8) and CA(WPC9)
in PS4

and PS8
as otherwise r4.2 would be disabled at x6 where it is supposed

to switch by σ3(x6,d4) ∈ S4, S8.
For the feasible set S4, we obtain as matrix AS4 :

(PFR,d
2) ∈ AI (PR,d

3) ∈ AR (G,d3) ∈ AR (R,r4.2) ∈ AR (R,d2) ∈ AI (R,d3) ∈ AI (Spo,r4.2) ∈ AI

WPC1 X X
WPC2 X
WPC3 X
WPC7 X X
WPC8 X X X
WPC9 X X
WPC10 X X
WPC11 X X

The blocker b(AS4
) contains four minimal covers of AS4

which correspond to the
different sets of control-arcs in the four extended Petri nets depicted in Fig. 3,
all arising from the standard network PS4

.
For S1, the matrix AS1 contains the first 3 rows and columns of AS4 , the

blocker b(AS1) contains two minimal covers of AS1 which correspond to the
control-arcs in the two extended Petri nets in Fig. 2 arising from PS1

.

Note that b(AS) is non-empty if and only if none of the sets CAS(σ, σ′) is
empty. We can show that there is at least one catalytic conformal network for any
given X ′. All catalytic conformal extended Petri nets PS,P ′ = (P, TS ,AS,P ′ , w)
based on PS can be made X ′-deterministic by taking all the priorities Oσ for all

σ ∈ S, where Oσ is defined by Oσ =
{
ti > t : t ∈ TAS,P ′ (y

i) \ ti, 1 ≤ i ≤ m
}
.

By construction, there are no priority conflicts in the extended network PS,P ′

between Oσ and Oσ′ for any σ, σ′ ∈ S, thus we obtain the studied partial order

OS,P ′ =
⋃

σ∈S
Oσ.

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014



54 M.C.F. Favre, W. Marwan and A.K. Wagler

This finally implies:

Theorem 1. Every extended network PS,P ′ = (P, TS ,AS,P ′ , w) together with
the partial order OS,P ′ is an X ′-deterministic extended Petri net, and there are
no other minimal extended Petri nets with priorities fitting the given data X ′.
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R FR
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G

PR

d4

d2

d1

d3
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R FR

Spo

G
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d2

d1

d3
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R FR

Spo

G

PR

d4

d2

d1

d3

Standard network PS1 PS1a PS1b

Fig. 2. Standard network PS1 = (P, TS1 , AS1 , w) from solution S1 and the two catalytic
conformal extended Petri nets resulting from PS1 .

PR

FR R

Spo

G

PFR

d1

d3

d2

r4.2 r4.1

PFR

R

FR

Spo

G

PR

r4.2

r4.1

d2

d3

d1

PR

FR

R

Spo

G

PFR

d1

d2

d3

r4.2

r4.1

Standard network PS4 PS4a PS4b
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r4.1

d1

PR

FR

R

d3

d2

Spo

G

PFR

d1 r4.2

r4.1

PS4c PS4d

Fig. 3. Standard network PS4 = (P, TS4 , AS4 , w) from solution S4 and the four cat-
alytic conformal extended Petri nets resulting from PS4 .

Example 7. For the two extended Petri nets based on PS1 in Fig. 2, no priorities
are needed to obtain X ′-deterministic extended Petri nets (PS1a , ∅) and (PS1b

, ∅).
For the four extended Petri nets in Fig. 3 based on PS4

, the priority relation
O4 = {(r4.2 > d2)} is required for PS4a

and PS4b
, whereas O4 = {(d2 >

r4.2), (d3 > r4.2)} is required for PS4c
and PS4d

, to obtain X ′-deterministic
extended Petri nets.

In total, the complete solution set contains 66 minimal X ′-deterministic ex-
tended Petri nets with priorities, see Table 1.
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3 Integrating prior biological knowledge

3.1 Indecomposability of difference vectors

In the step Representing the observed responses, the set of potential update
vectors which might constitute the incidence matrices of the networks are con-
sidered. Hereby, for each dj ∈ D, the set Box(dj) contains only sign-compatible
vectors due to monotonicity (which avoids homogeneous solutions in (1) accord-
ing to minimality) and takes P -invariants into account (which avoids infeasible
intermediate states according to prior biological knowledge). In some cases, one
could restrict Box(dj) further, e.g., if

– dj exactly corresponds to a well-known biochemical reaction (including the
correct stoichiometry) or to a well-known mechanism (that a certain trigger
is detected by a suitable receptor),

– experiments have shown that subsets of the input components of dj do not
lead to the observed response,

– dj is treated as black box-like reaction where only input and output matter,
but not the intermediate mechanism due to the chosen level of detail.

In such cases, we propose to exclude the corresponding response dj ∈ D from
decomposition and, instead, just define Box(dj) := {dj} in accordance with the
existing knowledge.

Example 8. Since the light-dependent reactions of the photoreceptor are so much
faster than the subsequent processes that are considered in the reconstruction
process, the difference vector describing the phytochrome photoconversion will
not be decomposed into different reaction vectors.

Thus, for the difference vectors d1, d4 and d5 only the canonical sequences
σ1(x1,d1), σ1(x5,d4) and σ1(x6,d4) remain in the priority conflict graph, and
S1 remains as only possible selection. Accordingly, the total number of solutions
reduces from 66 to the 2 presented in Fig. 2, see Table 1.

3.2 Treating equal difference vectors in the same way

In the step Detecting priority conflicts between sequences, all observed responses
dj ∈ D are treated independently from each other, so far. If, however, two
difference vectors di,dj ∈ D are equal, we clearly have Box(di) = Box(dj)
and, thus, Λ(di) = Λ(dj). Here, it is natural to require that both di,dj are
decomposed in the same way (i.e., by the same λ ∈ Λ(di) = Λ(dj)) and that the
involved reactions are applied in the same order (i.e., by the same permutation
π of the elements in the sets R(di, λ) = R(dj , λ)) to obtain the same transitions
(with equal control-arcs and priorities) in both cases. Indeed, using the same

– λ ∈ Λ(di) = Λ(dj) corresponds to the fact that the same subset of molecules
involved in a reaction will not interact according to different mechanisms,
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– permutation π of the elements in R(di, λ) = R(dj , λ) corresponds to the fact
that the order in which the reactions are applied reflects the relative rates of
the reactions in R(di, λ) = R(dj , λ), so the same relation between reaction
rates shall lead to the same priorities within the resulting sequences.

We call two sequences σπ,λ(xi,di) and σ′π,λ(xj ,dj) twin sequences if di = dj

and the same λ and π has been used. To force that twin sequences are always
selected together, we propose to add strong priority conflicts between all other
sequences stemming from a pair di,dj of equal difference vectors while creating
the priority conflict graph, since no two sequences in strong priority conflict are
selected for the same network.

Example 9. In our running example, we have d3 = d6 and d4 = d5. The latter
vectors can be decomposed in different ways, among the resulting sequences we
have σ1(x5,d4), σ1(x6,d5) and σ3(x5,d4), σ3(x6,d5) as pairs of twin sequences.
Forcing to select these pairs together rules out the four selections S2, S3, S6, S7

so that only S1, S4, S5, S8 remain as possible selections. Accordingly, the total
number of solutions reduces from 66 to 18, as reported in Table 1.

3.3 Knowledge on relative reaction rates

In the step Constructing X ′-deterministic Petri nets, to resolve a WPC(σ, σ′)
between σ, σ′ involving update vectors rt 6= rt

′
and intermediate states y 6=

y′, either transition t has to be disabled at y′ or transition t′ at y, while the
decision between t and t′ on the other state can be handled by a priority. Here,
prior knowledge about the relative reaction rates of t and t′ (e.g. gained from
the time-scales during the experiments) could help to decide whether t > t′ or
t < t′ better reflects the reality, and than choose between control-arcs either
from CAt>t′(σ, σ

′) or from CAt′>t(σ, σ
′).

So far, this idea is already applied for WPCs involving a terminal state:
if y′ is a terminal state and σ′ = σ(y′,0) its trivial sequence, then t > 0
holds automatically at y, but t has to be disabled at y′ using control-arcs from
CAt>0(σ, σ′) whereas CAt<0(σ, σ′) is empty.

This idea can be generalized to any WPC(σ, σ′) where the time-scale of the
corresponding experimental observations clearly differs in order to deduce the
correct priority t > t′ or t < t′. In such cases, we propose to reduce CA(σ, σ′)
accordingly either to CAt>t′(σ, σ

′) or to CAt′>t(σ, σ
′).

Example 10. In our running example, we have WPC1, WPC2, WPC3, WPC5,
WPC6, WPC9, WPC11 involving a terminal state; the according reductions of
the sets CA(σ, σ′) to CAt>0(σ, σ′) are already applied in Exp. 6.

Moreover, WPC4, WPC7, WPC8, WPC10 involve reactions with clearly dif-
ferent time-scales during the experimental observations:

– d1 and d4 = d5 need only milliseconds to occur,
– d2 needs about 1 hour to occur, and
– d3 = d6 need at least 10 hours.
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Accordingly, we can reduce the sets CA(σ, σ′) as follows:

– due to r1.2 > d3, for WPC4 only (FR, r1.2) ∈ AR and (G, r1.2) ∈ AI remain;
– due to r4.2 > d2, for WPC7 only (R, r4.2) ∈ AR remains;
– due to r4.2 > d3, for WPC8 only (R, r4.2) ∈ AR and (G, r4.2) ∈ AI remain,

while for WPC10 only (R, r4.2) ∈ AR is left.

At least one of these WPCs occurs in the standard networks coming from the
selected sets S2 − S4, S6 − S8. Note that in the two remaining WPCs the time-
scale of the involved responses is equal (see Exp. 6). Consequently, the number
of extended Petri nets decreases from 66 to 36 as reported in Table 1.

4 Discussion

The subject of this paper was an approach from [6] that aims at reconstructing
all X ′-deterministic extended Petri nets that fit given experimental data X ′, to
provide all possible alternatives of mechanisms behind the experimentally ob-
served phenomena. This typically results in a large set of solution alternatives.
To keep this solution set reasonably small while still guaranteeing its complete-
ness, we firstly generate only Petri nets being minimal in the sense that all
other networks fitting the data contain the reconstructed ones. In the presented
approach, the minimality concept is applied twice:

– monotone data: using only sign-compatible vectors in Box(dj) avoids homo-
geneous solutions during the decomposition of (dj) (and superflous transi-
tions in the networks), see [4].

– minimal hitting sets: we here proposed to use only minimal sets of control-
arcs to resolve all weak priority conflicts in a standard network which avoids
unnecessary control-arcs (and artificial dependencies), see Section 2.

This ensures that the presented approach exactly generates all minimal extended
Petri nets with priorities (Theorem 1). We further avoid generating minimal
solutions which are “technically correct” but would be ruled out later during
a subsequent verification process to check whether the returned solutions are
“biological meaningful” or even contradict well-established biological knowledge
as in [2]. For that, we extent the considered input by integrating prior biological
knowledge beyond the information given with the experimental time-series data
into the reconstruction process. We propose to integrate prior knowledge in the
following way:

– P-invariants: helps to obtain feasible intermediate states in all sequences
which avoids the generation of solutions contradicting known facts, see [13].

– indecomposable difference vectors: help to keep already known subnetworks
or mechanisms, see Section 3.1.

– treating equal difference vectors in the same way : helps to keep consistency
in the interpretation of experimental observations, see Section 3.2.

– obeying terminal states and reaction rates: helps to chose meaningful prior-
ities and to avoid artificial control-arcs, see Section 3.3.
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So far, the algorithmic procedure due to [6] takes as input (P, IP ,X ′) where
the list of P -invariants and the monotonicity of X ′ are already used in the first
step Decomposing difference vectors to determine Box(dj). To integrate further
knowledge in the reconstruction procedure to force the algorithm to make “the
right decisions” in some intermediate steps, we suggest, based on the previous
discussions, to extend the input to (P, IP ,X ′,Din,Deq,OD) where

– Din contains all indecomposable difference vectors (for that, carefully select
them according to the before mentioned critera, e.g., to preserve known
subnetworks or mechanisms or to take a certain level of detail into account);

– Deq contains all pairs of equal difference vectors that shall be treated in the
same way (for that, only chose equal difference vectors where also the time
elapsed during the experimental observation was equal);

– OD contains information about the reaction rates between difference vectors
(for that, only impose priorities for sufficiently different rates according to
clearly different time scales during the experiments).

Example 11. The three examples from Section 3 can be interpreted as follows:

– Exp. 8 shows the result taking (P, IP ,X ′,Din = {d1,d4,d5}, ∅, ∅) as input;
– Exp. 9 shows the result with (P, IP ,X ′, ∅,Deq = {d3 = d6,d4 = d5}, ∅);
– Exp. 10 the result with (P, IP ,X ′, ∅, ∅,OD = {d1,d4,d5 > d2 > d3,d6}).

Whereas the first setting reduces the number of solution alternatives to 2, the
combination of the two latter scenarios reduces the number of solution alterna-
tives to 12, see Table 1 below.

S1 S2 S3 S4 S5 S6 S7 S8 TOTAL
minimal 2 8 8 4 4 16 16 8 66
Din 6= ∅ 2 0 0 0 0 0 0 0 2
Deq 6= ∅ 2 0 0 4 4 0 0 8 18
OD 6= ∅ 2 4 4 2 4 8 8 4 36

Deq, OD 6= ∅ 2 0 0 2 4 0 0 4 12

Table 1. Number of solutions depending on different input settings.

To conclude, we notice that providing indecomposable difference vectors has
the largest impact on the solution set. However, even if no indecomposable dif-
ference vectors can be identified, treating equal difference vectors in the same
way and deducing relative reaction rates from the time-scale of the experimental
observations leads to a substantial reduction of the solution set, keeping only
“biological meaningful” network alternatives.

The further goal is to provide an implementation for the presented reconstruc-
tion method, including the option of integrating prior knowledge as additional
input during the reconstruction. For that, we will use Answer Set Programming
as done for the reconstruction of standard networks in [1]. Finally, we plan to
apply the presented reconstruction approach to different biological experimen-
tal data. We expect an important impact of Automatic Network Reconstruction
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on the integrated experimental and theoretical analysis of biological systems
towards their holistic understanding, since computational models derived from
experimental data by our exact, exclusively data-driven approach have predic-
tive ability due to completeness of the solution set guaranteed by mathematical
proofs.
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Abstract. Coloured Petri nets are imperative for studying bigger bio-
logical models, particularly, those which expose repetition of components.
Such models can be easily scaled by minor changes of a few parame-
ters. Similarly, studying certain biological phenomena necessitates the
existence of discrete and continuous variables as well as continuous and
stochastic processes in one and the same model. Thus, hybrid modelling
and simulation is indispensable to deal with these challenges. In this pa-
per we introduce a generic Petri net class, Coloured Generalised Hybrid
Petri Nets (GHPN C) by combining coloured Petri nets and Generalised
Hybrid Petri Nets (GHPN ), which integrates discrete and continuous
places as well as stochastic and deterministic transitions on the coloured
level. Moreover, we present a case study which illustrates a possible and
typical application where such a Petri net class is highly required.

Keywords: coloured Petri nets; hybrid Petri nets; stochastic and con-
tinuous simulation

1 Introduction

Petri nets have been widely used for modelling and analysis of biological systems,
see e.g.,[2,10,18,21,31,33,34,35,36,39,40]. Their intuitive graphical representation
makes them easily approachable by biologists. Furthermore, Petri nets possess
well-established mathematical notations which may render them as the future
de facto standard for modelling biological systems compared to other graphical
languages currently in use. Nevertheless, with the rapid progress of systems
biology, standard place/transition Petri nets become insufficient to accommodate
the needs of systems biologists to study larger models. Therefore, many different
extensions have been adapted for their potential contribution to systems biology.
Among such promising extensions are hybrid Petri nets (HPN ) [1,6] and coloured
Petri nets (PN C) [23].
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Hybrid Petri nets [1,6] have been increasingly motivated for their contribution
to systems biology [17,18,35,36]. On the one hand (biological) systems may occur
at different time scales: slow and fast [14,25]. Using one modelling paradigm (i.e.,
discrete or continuous paradigm alone) tends to be inefficient for studying multi-
timescale biological models [18]. On the other hand the integration of discrete and
continuous variables as well as deterministic and stochastic processes in the same
model is necessary in certain application scenarios to implement particular model
semantics [18,36]. For instance, in [21] discrete places and immediate transitions
were employed to implement the part related to cell division of the eukaryotic
cell cycle while continuous and stochastic transitions were used to represent and
quantitatively simulate biological reactions. Additionally, the HPN formalism
provides a different approach to control the accuracy and the speed of biological
models during simulation [18]. Thus, they provide the modeller with a tool to
make a trade-off between the simulation’s efficiency and the result’s accuracy.

Another, yet powerful extension of standard Petri nets is coloured Petri nets
(PN C) [23,31,40], where a group of similar components are represented by one
component, each of which is defined as and thus distinguished by a colour [27].
PN C are very useful for modelling larger biological systems where low-level Petri
nets do not scale well, while a (biological) system modelled via coloured Petri
nets can easily be scaled with minor modifications of certain coloured variables.
Furthermore, modelling of biological systems is moving from single to multiple
scales (multi-scale modelling), which introduces a series of challenges such as
repetition of components, communication between components, organisation of
components, and pattern formation of components [27]. All these challenges
potentially could be tackled by coloured Petri nets rather than standard Petri
nets.

Nevertheless, with the rapid change of type and size of models of biological
systems which have to be analysed, a Petri net class that integrates all the features
of hybrid Petri nets and coloured Petri nets is highly required. The high-level
representation of coloured Petri nets can be used to model larger biochemical
networks and stochastic and continuous components can be simultaneously used
to facilitate the efficient simulation of multi-timescale models.

Thus, in this paper we introduce a class of Petri nets, Coloured Generalised
Hybrid Petri Nets (GHPN C) by combining all features of Generalised Hybrid
Petri Nets (GHPN ) [18] and the merits of Coloured Petri Nets (PN C) [27].
The new class supports a rich set of transition types as well as discrete and
continuous places. Moreover, it permits the full interplay between stochastic
and deterministic processes at the coloured level. All the feature of GHPN C are
implemented in Snoopy [15] – a unifying Petri net tool which is available free of
charge for academic use.

The paper is structured as follows: first we briefly discuss the related work of
hybrid Petri nets and coloured Petri nets followed by a brief background of each of
those net types. Next, we present the formal definition of the new Petri net class
followed by its semantic as well as an outline of the simulation algorithm used to
produce the dynamic of GHPN C . Afterwards, we present one possible and typical
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application of GHPN C in the context of systems biology, the repressilator model,
which is an engineered synthetic system encoded on a plasmid. We conclude by
summarizing possible extensions of Coloured Generalised Hybrid Petri Nets.

2 Related Work

In this section, we will briefly describe related work on hybrid and coloured Petri
nets for systems biology.

2.1 Hybrid Petri Nets for Systems Biology

Hybrid Petri nets have been introduced in [1] to deal with situations where
discrete and continuous entities exist in the same model. The motivation given in
early publications was in modelling technical systems whereby discrete places are
used to model the states of switch-like components while continuous places are
used to represent their fluid counterparts. The pioneer work of introducing hybrid
Petri nets to systems biology was done by Matsuno et al., in [36]. They had
noticed that using equal inflow and outflow in the fluid part of hybrid Petri nets
is not natural to use them to model biological processes. Thus, they introduced
Hybrid Functional Petri Nets (HFPN) [36,35]. Many successful models have been
implemented using HFPN (e.g., see [8,34]).

In [18], we have used Hybrid Petri nets in a different way whereby stochastic
transitions are used to model slow biological processes, while fast processes are
modelled via continuous transitions. In [21], this approach is used to model the
eukaryotic cell cycle.

2.2 Coloured Petri Nets for Systems Biology

The early applications of coloured Petri nets for systems biology were limited,
which, to our knowledge, can almost only be seen in [2,3,5,11,26,38,40,41,42].
These studies are rather small and usually resort to Design/CPN [4] or its successor
CPN Tools [23]. However these tools were not specifically designed with the
requirements of systems biology in mind. Thus they are not suitable in many
aspects, e.g., they do not directly support stochastic or continuous modelling,
nor stochastic or deterministic simulation.

Since coloured Petri nets were introduced to our Petri net modelling tool,
Snoopy, we have extensively explored the application of coloured Petri nets for
(multiscale) systems biology. For example, in [29], we used coloured stochastic
Petri nets to model and analyse stochastic membrane systems, where each
compartment is encoded as a colour. In [30], we described the multiscale modelling
of coupled Ca2+ channels using coloured stochastic Petri nets by considering two
levels: Ca2+ release sites and Ca2+ channels. In [10], Coloured stochastic and
coloured continuous Petri nets are used for multiscale modelling and analysis of
Planar Cell Polarity in the Drosophila wing, and the built model consists of more
than 800 cells. In [37], a case study of phase variation in bacterial colony growth
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is given, in which cells are distributed on a two-dimensional grid represented by
both Cartesian and polar coordinate systems.

3 Background

3.1 Generalised Hybrid Petri Nets

In [18] we have introduced a special class of Hybrid Petri nets called Generalised
Hybrid Petri Nets (GHPN ). The main two objectives of GHPN are: to provide
systems biologists with a convenient and flexible graphical tool to model and
simulate biological processes with different time scales and to facilitate the process
of constructing hybrid models where stochastic and deterministic (i.e, continuous)
processes are tightly coupled. To fulfil such objectives, GHPN contain a rich
set of element types: places (discrete, and continuous), transitions (stochastic,
immediate, deterministic, stochastic, and continuous), and arcs (standard, read,
inhibitor, equal, and reset) [18,17]. Figure 1 depicts the graphical representation
of the different element types of GHPN .

Discrete places (single line circle) hold non-negative integer numbers which
may represent the number of molecules of a given species (tokens in Petri net
notions). On the other hand, continuous places - which are represented by
the shaded line circle - hold non-negative real numbers which represent the
concentration of a certain species. Please note that, except when otherwise
mentioned, the number which a place pi holds, also called its marking, is referred
to by m(pi).

Furthermore, GHPN offer five transition types: stochastic, immediate, de-
terministically delayed, scheduled, and continuous transitions [18]. Stochastic
transitions, which are drawn in Snoopy as a single line square, fire randomly with
an exponentially distributed random delay. The user can specify a set of firing
rate functions that determine the random firing delay. The transitions’ pre-places
can be used to define the firing rate functions of stochastic transitions. Immediate
transitions (black bar) fire with zero delay, and have always highest priority in the
case of conflicts with other transitions. They may carry weights (which can also
be defined by state-dependent functions) that specify the relative firing frequency
in the case of conflicts between immediate transitions. Deterministically delayed
transitions (represented as black squares) fire after a specified constant time delay.
Scheduled transitions (grey squares) fire at user-specified absolute time points.
Continuous transitions (shaded line square) fire continuously in the same way
as in continuous Petri nets. Their semantics are governed by a set of ordinary
differential equations (ODEs) which define the changes in the transitions’ pre- and
post-places. More details about the biochemical interpretation of deterministically
delayed, scheduled, and immediate transitions can be found in [16].

The connection between those two types of nodes (places and transitions)
takes place using a set of different arcs. GHPN offer six types of arcs: standard,
inhibitor, read, equal, reset, and modifier arcs. Standard arcs connect transitions
with places or vice versa. They can be discrete, i.e., carry non-negative integer-
valued weights (stoichiometry in the biochemical context), or continuous, i.e.,
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Discrete

Standard

Continuous

Stochastic

Inhibitor Equal ResetRead

Continuous Immediate Deterministic

<1>

Scheduled

[_SimStart,1,_SimEnd]

Modifier

Places

Transitions

Arcs

Fig. 1. Graphical representation of the GHPN elements [18]. Places are classified as
discrete and continuous; transitions as continuous, stochastic, immediate, determinis-
tically delayed and scheduled; and arcs as standard, inhibitor, read, equal, reset, and
modifier.

carry non-negative real-valued weights. In addition to their influence on the
enabling of transitions, they also affect the place marking when a transition fires
by adding (removing) tokens from the transition’s post-places (pre-places).

Extended arcs such as inhibitor, read, equal, reset, and modifier arcs can
only be used to connect places to transitions, and not vice versa. A transition
connected with an inhibitor arc is enabled (with respect to the corresponding
pre-place) if the marking of the pre-place is less than the arc weight. In contrast,
a transition connected with a read arc is enabled if the marking of the pre-place
is greater than or equal to the arc weight. Similarly, a transition connected using
an equal arc is enabled if the marking of the pre-place is equal to the arc weight.

The other two remaining arcs do not affect the enabling of transitions. A reset
arc is used to reset a place marking to zero when the corresponding transition fires.
Modifier arcs permit one to include any place in the transitions’ rate functions
and simultaneously preserve the net structure restriction. Besides, the markings
of places connected using read, inhibitor, equal, or modifier arcs does not change
when the corresponding transition fires.

3.2 Coloured Petri nets

Coloured Petri nets [22] consist, as standard Petri nets, of places, transitions and
arcs that connect places and transitions. Additionally, a coloured Petri net is
characterised by a set of finite colour sets. Each place gets assigned a colour set
and may contain distinguishable tokens; each token has a colour of this colour set.
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As there can be several tokens of the same colour on a given place, the tokens on
a place define a multiset over the place’s colour set.

Each transition gets a guard, which is a Boolean expression over variables,
constants, functions, etc. The guard of a transition must be evaluated to true for
the enabling of the transition. The trivial guard “true” is usually not explicitly
given.

Each arc gets assigned an expression, rather than an integer number in
standard Petri nets; the result type of this expression is a multiset over the colour
set of the connected place.

4 Coloured Generalised Hybrid Petri Nets

In this section we present the definition of coloured generalised hybrid Petri nets.
GHPN C reuse all elements of GHPN , however on the coloured level. We start
off by defining GHPN C . Afterwards, we present the semantics of GHPN C that
governs the execution of models constructed by it.

4.1 Formal Definition

Definition 1 A Coloured Generalised Hybrid Petri Net GHPN C is a nine-tuple
N =< P, T,A,

∑
, C, F, V,G,m0 >[27,18], where:

– P = Pdisc ∪ Pcont whereby Pdisc is the set of discrete places and Pcont is the
set of continuous places.

– T = Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled ∪ Tcont with:
1. Tstoch is the set of stochastic transitions, which fire stochastically after

an exponentially distributed waiting time.
2. Tim is the set of immediate transitions, which fire with waiting time zero;

they have higher priority compared with other transitions.
3. Ttimed is the set of deterministically delayed transitions, which fire after

a deterministic time delay.
4. Tscheduled is the set of scheduled transitions, which fire at predefined time

points.
5. Tcont is the set of continuous transitions, which fire continuously over

time.
– A = Adisc ∪ Acont ∪ Ainhibit ∪ Aread ∪ Aequal ∪ Areset ∪ Amodifier is the set

of directed arcs, with:

1. Adisc ⊆ ((P × T ) ∪ (T × P )) defines the set of discrete arcs.
2. Acont ⊆ ((Pcont × T ) ∪ (T × Pcont)) defines the set of continuous arcs.
3. Aread ⊆ (P × T ) defines the set of read arcs.
4. Ainhibit ⊆ (P × T ) defines the set of inhibit arcs.
5. Aequal ⊆ (Pdisc × T ) defines the set of equal arcs.
6. Areset ⊆ (P × TD) defines the set of reset arcs,
7. Amodifier ⊆ (P × T ) defines the set of modifier arcs.

where TD = Tstoch∪Tim∪Ttimed∪Tscheduled is the set of discrete transitions.
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–
∑

is a finite, non-empty set of colour sets.
– C : P →∑

is a colour function that assigns to each place p ∈ P a colour set
C(p) ∈∑

.
– F : A → EXP is an arc function that assigns to each arc a ∈ A an arc

expression of a multiset type C(p)MS, where p is the place connected to the
arc a.

– V is a set of functions V = {g, d, w, f} where :

1. g : Tstoch → Hs is a function which assigns a stochastic hazard function
hst to each stochastic transition instance tj ∈ Tstoch, whereby Hs =

{hst |hst : R|
•tj |
0 → R+

0 , tj ∈ Tstoch} is the set of all stochastic hazard
functions, and g(tj) = hst ,∀tj ∈ Tstoch.

2. w : Tim → Hw is a function which assigns a weight function hw to
each immediate transition instance tj ∈ Tim, such that Hw = {hwt

|hwt
:

R|
•tj |
0 → R+

0 , tj ∈ Tim} is the set of all weight functions, and w(tj) =
hwt ,∀tj ∈ Tim.

3. d : Ttimed ∪ Tscheduled → R+
0 , is a function which assigns a constant

time to each deterministically delayed and scheduled transition instance
representing the (relative or absolute) waiting time.

4. f : Tcont → Hc is a function which assigns a rate function hc to each
continuous transition instance tj ∈ Tcont, such that Hc = {hct |hct :

R|
•tj |
0 → R+

0 , tj ∈ Tcont} is the set of all rates functions and f(tj) =
hct ,∀tj ∈ Tcont.

– G : T → EXP is a guard function that assigns to each transition t ∈ T a
guard expression of the Boolean type.

– m0 : P → EXP is an initialisation function that assigns to each place p ∈ P
an initialisation expression of a multiset type C(p)MS.

Here, R+
0 denotes the set of non-negative real numbers, •tj denotes the set of

pre-places of a transition tj.

�

4.2 Semantics

The formal semantics of GHPN C is defined by unfolding the coloured hybrid
Petri nets into the equivalent low level one. Thus we firstly discuss how GHPN C
can be unfolded into GHPN . Then, we extend the formal semantics which has
been presented in [18] and apply it to GHPN C .

Unfolding Uncoloured Petri nets can be folded into coloured Petri nets, if
partitions of the place and transition sets are given. Vice versa, coloured Petri
nets with finite colour sets can be automatically unfolded into uncoloured Petri
nets, which then allows the use of all of the existing powerful standard Petri net
analysis techniques. The conversion between uncoloured and coloured Petri nets
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changes the style of representation, but does not change the actual net structure
of the underlying biological reaction network.

In [32], we have presented an efficient unfolding method for coloured Petri
nets with finite coloured sets, in which we provide two approaches to compute
transition instances. For a transition, if the colour set of each variable in its guard
has a finite integer domain, a constraint satisfaction approach is used to obtain
all valid transition instances. Otherwise, a general unfolding algorithm is adopted,
in which some optimisation techniques are used like partial binding–partial test
and pattern matching [27,32].

Hybrid semantics The semantics of GHPN C is given in terms of the discrete
and continuous transitions. To harmonise the mathematical notations, let TC =
T − TD = Tcont denote the set of continuous transitions. Before we proceed, we
assume that the coloured expression which is assigned to an arc is evaluated to a
numeric value. Likewise the initial marking.

Definition 2 (Enabling condition) Let N =< P, T,A,
∑
, C, F, V,G,m0 >

be a coloured generalised hybrid Petri net and m be the marking of N at time τ .
A transition tj ∈ T is enabled in the marking m, denoted by m[tj〉, iff ∀pi ∈ •tj :

– m(pi) ≥ F (pi, tj), if (pi, tj) ∈ Acont ∪Adisc ∧ tj ∈ TD,

– m(pi) > 0, if (pi, tj) ∈ Acont ∧ tj ∈ TC ,

– m(pi) ≥ F (pi, tj), if (pi, tj) ∈ Aread,

– m(pi) < F (pi, tj), if (pi, tj) ∈ Ainhibit,
– m(pi) = F (pi, tj), if (pi, tj) ∈ Aequal.
– G(tj) = true.

�

Definition 3 (Firing rule of discrete transitions) Let N =< P, T,A,
∑
, C, F, V,G,m0 >

be a coloured generalised hybrid Petri net, m a marking of N , and tj ∈ TD a
transition enabled in the marking m, m[tj〉, at time τ . The transition tj can fire
and reach a new marking m′, denoted by m[tj〉m′, at time τ + dj if it is still
enabled at that new time, with:

– ∀pi ∈ •tj

m′(pi) =





m(pi)− F (pi, tj) if (pi, tj) ∈ Acont ∪Adisc
0 if (pi, tj) ∈ Areset
m(pi) else

– ∀pi ∈ t•j

m′(pi) = m(pi) + F (tj , pi)
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where

dj =





d(tj) if tj ∈ Ttimed
τ + d(tj) if tj ∈ Tscheduled
dstoch(tj) if tj ∈ Tstoch
0 if tj ∈ Tim

is a delay which is associated to the discrete transition tj and dstoch(tj) is
the random firing delay with negative exponential probability density function
calculated for each stochastic transition tj using its rate g(tj).

�
According to the above enabling and firing definitions, discrete transitions

follow a policy which is called an enabling memory policy [24].
Moreover, when multiple immediate transitions are concurrently enabled,

conflicts are solved by computing the relative firing frequencies of each enabled
immediate transition. That is if an immediate transition tj is enabled in the
current marking m, then it fires with the probability given by (1).

w(tj)(m)∑

tk∈Tim∧isEnabled(tk,m)

w(tk)(m)
(1)

where w is the weight assigned to immediate transitions.

Firing of continuous transitions The semantics of continuous transitions
is analogue to the ones in continuous Petri nets with maximal firing speeds
depending on time as introduced in [6] and tailored to the specific needs in
systems biology. The transitions’ current firing rates (instantaneous firing speeds)
depend on the current marking of their pre-places (i.e., species concentrations).
In what follows, the firing semantics of continuous transitions is formally given.

We introduce the following notation. Let vj(τ) represent the current firing rate
of a transition tj ∈ TC at time τ , mi(τ) = m(pi) denotes the current marking
of a place pi at time τ , and fj(τ)=f(tj) denotes the maximal firing rate of a
transition tj at time τ , then:

vj(τ) =

{
fj(τ) if tj is enabled

0 else
(2)

Equation (2) implies that a continuous transition can fire with its maximal
rate if it is enabled or its rate will be zero otherwise.

When a continuous transition is enabled, it fires as soon as possible and its
effect on the connected places can be given by the following definition.

Definition 4 (Firing of continuous transitions) Let N =< P, T,A,
∑
, C, F, V,G,m0 >

be a coloured generalised hybrid Petri net, m a marking of N , tj ∈ TC a transition
enabled in the marking m, m[tj〉, at time τ , and vj(τ) denotes the current firing
rate of the transition tj. The transition tj fires with:
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– ∀pi ∈ •tj
mi(τ + dτ) = mi(τ)− F (pi, tj) · vj(τ)dτ (3)

– ∀pi ∈ t•j

mi(τ + dτ) = mi(τ) + F (tj , pi) · vj(τ)dτ (4)

�
Equations (3) and (4) are called outflow and inflow of a place pi, respectively,

due to the firing of a transition tj [6].

Generation of the corresponding ODEs For a given transition tj ∈ TC , the
functions read(u, pi), inhibit(u, pi) are defined as follows:

read(u,m(pi)) =

{
1 if m(pi) ≥ u
0 else

with u = F (pi, tj) ∧ (pi, tj) ∈ Aread, and

inhibit(u,m(pi)) =

{
1 if m(pi) < u

0 else

with u = F (pi, tj) ∧ (pi, tj) ∈ Ainhibit .

Then the ODE corresponding to each continuous place in GHPN C can be
generated using (5)

dm (pi)

dτ
=

∑

tj∈•pi

F (tj , pi) · vj (τ) · read(u,m(pi)) · inhibit(u,m(pi))−

∑

tj∈pi •
F (pi, tj) · vj (τ) · read(u,m(pi)) · inhibit(u,m(pi))

(5)

4.3 Simulation

The semantics of GHPN C which we have discussed in Section 4.2 can be produced
via simulation. In simulating GHPN C models, the following two main issues
need be considered: the partitioning of the net’s transitions into stochastic and
continuous ones, and the synchronisation between the stochastic and continuous
regimes.

The partitioning of the net elements has an important influence on both
the accuracy and the efficiency of GHPN C simulation. The more continuous
transitions we use, the faster the simulation speed we get. However, this will
have a high impact on the result accuracy. Thus, it is important to appropriately
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partition the model transitions into stochastic and continuous ones. This can be
done using either static or dynamic partitioning. In static partitioning, the process
of assignment of each transition to either the stochastic or continuous category
is done off line (i.e., before the simulation starts). Transitions with high firing
rate will be considered continuously while transitions with low firing rates are
considered stochastically. Additionally, the number of tokens of the transition’s
pre-places plays a role in determining the transition type. An important merit
of this approach is that there is no additional overhead to the simulation due
to the partitioning process. However, transition rates can dramatically change
during the simulation. This motivates the use of dynamic partitioning. Using
dynamic partitioning, transitions can change their type during simulation from
stochastic to continuous or vice versa. Such change is usually based on either
the transition rate and/or the number of tokens in the transition’s pre-paces.
Nevertheless, dynamic partitioning will result in additional overhead due to the
repeated check of fulfilment of the partitioning conditions. Therefore, if the gain
due to the use of dynamic partitioning is less than the partitioning overhead,
static partitioning should be used instead. A detailed discussion about this issue
can be found in [18].

Similarly, the synchronisation between stochastic and continuous regimes
is vital for the accuracy of the simulation result. At the end, stochastic and
continuous transitions are not isolated from each other. They mutually affect
each other. Thus, we need a mechanism to better perform the synchronisation.
One choice is to use (6) to detect the occurrence of a stochastic event while the
numerical integration is progressing [12],

g(x) =

∫ t+τ

t

as0(x)dt− ξ = 0 , (6)

where ξ is a random number exponentially distributed with a unit mean, and
as0(x) is the cumulative rate of all stochastic transitions.

Once we agreed on a selection of a partitioning algorithm and a synchronisation
approach we can execute the GHPN C model by repeating a set of steps. In [18],
we have presented a hybrid simulation algorithm based on (6) using both static
and dynamic partitioning. The main steps are outlined here while the details can
be found in [18].

Starting from an initial marking, the simulation algorithm computes state
changes over the time which are regarded as the current marking at each simula-
tion step. Initially, the rates of stochastic and continuous transitions are calculated.
Next, the accumulated rate function of stochastic transitions is calculated. When
the model contains one or more continuous transitions, the simulation algorithm
constructs an ODE for each place. ODE construction is done via (5). Afterwords,
the simulator numerically integrates the resulting set of ODEs simultaneously
with (6) until an event occurs. The event can be one of the following: the enabling
of an immediate transition, the enabling of a deterministically delayed transition,
a deterministically delayed transition has finished its delay, or a stochastic event
has occurred (i.e., Equation (6) is satisfied).
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In all cases the ODE integrator is interrupted and the appropriate action
is taken (e.g., by firing a discrete transition). After that the ODE integrator is
restarted with the new marking to account for the discontinuity which is due to
the firing of a discrete transition.

When there is no continuous transition in the system being simulated, the
simulation of GHPN C model is simplified to the simulation of stochastic Petri nets
which can be carried out using, e.g., Gillespie’s stochastic simulation algorithm
[13].

5 Implementation

All features of GHPN C which have been discussed in this paper are implemented
in Snoopy [15] – a unifying Petri net tool that supports the construction and
execution of different Petri net classes among them are: standard, extended,
continuous, stochastic, and hybrid Petri nets. Those classes are available both on
the uncoloured and coloured level. Snoopy is platform-independent and provided
free of charge for academic purposes.

Snoopy also supports the automatic unfolding of GHPN C. In Snoopy, we
can explicitly unfold a coloured stochastic/continuous/hybrid Petri net to its
counterpart, a stochastic/continuous/hybrid Petri net, or we can do this implicitly
during the execution of the Petri net model.

Furthermore, we have recently released a server-based version of the Snoopy
simulator called S4 (Snoopy Steering and Simulation Server) [19,20]. S4 also
supports the simulation of GHPN C . Besides, an GHPN C model submitted to S4

can be steered (i.e., key simulation parameters can be changed on the fly), and
collaboratively executed by different users. Snoopy and S4 can be downloaded
from http://www-dssz.informatik.tu-cottbus.de/snoopy.html.

6 Applications

In this section we present one case study as a typical application of Coloured
Generalised Hybrid Petri Nets.

We will demonstrate the GHPN C using an example of a synthetic circuit –
the repressilator, which is an engineered synthetic system encoded on a plasmid,
and designed to exhibit oscillations [7]. The repressilator system is a regulatory
cycle of three genes, denoted by, e.g., gene a, gene b and gene c, where each gene
represses its successor, namely, gene a inhibits gene b, gene b inhibits gene c,
and gene c inhibits gene a. This negative regulation is realised by the repressors,
protein a, protein b and protein c, generated by the genes gene a, gene b and
gene c, respectively.

The 1-bounded places as determined by P-invariant analysis and the related
transitions as determined by T-invariant analysis are kept discrete. The un-
bounded places and related transitions are approximated by continuous places
and transitions, respectively. That is, places gene i and blocked i, and transitions
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Fig. 2. The GHPN model of the repressilator, where the continuous places (transitions)
are represented by shaded line circles (squares), which is taken from [31].

Table 1. Rate functions for the GHPN repressilator model. MA(c) denotes the mass
action function, where c is a kinetic parameter. See last column for the explicit rate
functions for gene a.

transition class kinetic parameter c rate function pattern example: gene a

generate 0.1 MA(0.1) 0.1 ∗ gene a

block 1.0 MA(1.0) 1.0 ∗ gene a ∗ protein c

unblock 0.0001 MA(0.0001) 0.0001 ∗ blocked a

degrade 0.001 MA(0.001) 0.001 ∗ protein a

block i and unblock i are treated as discrete, where i=a,b,c, and all other nodes
as continuous. To distinguish between discrete and continuous nodes, we choose
different graphical representations, see Figure 2. The rate functions of the GHPN
model are given in Table 1.

For example, if we assign the rates in Table 1 to the hybrid model and
consider them as stochastic or deterministic rates, depending on the transition
type, hybrid simulation yields plots as illustrated in Figure 3.

Figure 4 gives an GHPN C for the repressilator model in Figure 2. A colour
set GeneSet is defined with three colours, a, b and c, to distinguish the three
genes. Each place gets assigned this colour set GeneSet. A multiset expression,
1‘all()=1‘a++1‘b++1‘c, is assigned to the place protein. In Figure 4, we define a
variable x of GeneSet, which is used in arc expressions. The predecessor operator
“-” in the arc expression −x returns the predecessor of x in an ordered finite
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Fig. 3. Plot of one hybrid simulation run for the repressilator. For rate functions, see
Table 1. This plot suggests that GHPN are able to capture the oscillation. Repeated
runs look differently; thus stochasticity is captured as well.
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Fig. 4. A colored Petri net model for the repressilator. The declarations: colorset
GeneSet = enum with a,b,c, and variable x: GeneSet. With this colour set, this model
corresponds exactly to the Petri nets in Figure 2

colour set. For example, if x = b, then −x returns a. If x is the first colour, then
it returns the last colour. For example, if x = a, then −x returns c.

The coloured Petri net model in Figure 4 when unfolded yields the same
uncoloured Petri net model in Figure 2. That is, the GHPN C model reduces
the size of the original stochastic Petri net model to one third, which is a big
advantage of coloured Petri nets.

7 Conclusions and Future Work

In this paper we have introduced a new class of coloured Petri nets called Coloured
Generalised Hybrid Petri Nets (GHPN C). GHPN C are particularly tailored to
systems biologists’ needs to model and analyse multiscales models. Moreover,
GHPN C provide the interplay between stochastic and continuous regimes on the
coloured level which eventually provide a tool to control both the accuracy and
the speed of running simulation.
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In [21] we have proved that marking-dependent arc weights are necessary to
model certain biological systems. However, this feature is still not implemented
in Snoopy for GHPN C. Thus we plan to add it in order to widen the types of
models that can be constructed via GHPN C .

Furthermore, the current simulation of GHPN C is carried out by firstly unfold
the coloured model into an uncoloured one, then it is simulated on that level.
Although the unfolding process is fully automated, it may take a considerable
amount of time, particularly for bigger models. Thus if an error is observed at
the (beginning) of the simulation due to modelling mistakes, the entire unfolding
process will completely be repeated. Therefore, simulating GHPN C directly on
the coloured level [9] will increase the productivity and eventually save a lot of
time.

Finally, the presented case study in this paper aims to demonstrate how
GHPN C works. More sophisticated biological models can be constructed in the
future using GHPN C . For example, we are working on using GHPN C to model
diffusion-reaction systems described by partial differential equations, where we
first discretise the space into a set of grid cells, and then we obtain a GHPN C
model by representing each grid cell as a colour [28].
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