
Simple similarity-based question answering
strategies for biomedical text

David Martinez1, Andrew MacKinlay1, Diego Molla-Aliod2, Lawrence
Cavedon1, and Karin Verspoor1

1 National ICT Australia, Victoria Research Lab, Parkville VIC 3010, Australia
{david.martinez,andrew.mackinlay,lawrence.cavedon,karin.verspoor}@nicta.com.au

2 Macquarie University
North Ryde, NSW Australia

diego.molla-aliod@mq.edu.au

Abstract. We introduce an approach to question answering in the biomed-
ical domain that utilises similarity matching of question/answer pairs in
a document, or a set of background documents, to select the best answer
to a multiple-choice question. We explored a range of possible similar-
ity matching methods, ranging from simple word overlap, to dependency
graph matching, to feature-based vector similarity models that incor-
porate lexical, syntactic and/or semantic features. We found that while
these methods performed reasonably well on a small training set, they
did not generalise well to the final test data.

Keywords: question answering, biomedical natural language processing

1 Introduction

A combined NICTA/Macquarie team participated in the CLEF2012 QA4MRE
pilot task on “Machine Reading of Biomedical Texts about Alzheimer”. This
task addresses the goal of obtaining a detailed understanding of the content of a
text, in this case a text on the topic of Alzheimer’s disease. A system’s ability to
interpret a text is measured practically through the performance of that system
on a series of multiple choice questions about the text. Each question had five
possible answers; the goal of the system was to select the correct answer from
among those five.

We experimented with several simple approaches to this task, each based
on the similarity of a candidate query constructed from the question plus a
candidate answer to the information available in text. The approaches varied
in the details of how similarity was measured, and what text sources were used
to assess the relevance of the candidate answer. We will describe these details,
and provide an assessment of the performance of each system variant, in the
remainder of the paper.



2 Related Work

Question answering is a natural language processing task that has quite a long
history of research. It was revived in the late 1990s with the Question Answering
track of the Text REtrieval Conference (TREC) [23], with other evaluation-
based competitions following suit. Systems typically focus on factoid question-
answering where the answer is a specific fact such as a location, person, etc.
They find the answer by first determining the answer type during a question
classification step, retrieving a set of candidate documents or passages using
standard information retrieval techniques, and then extracting the answer from
those candidates. Answer extraction generally has involved techniques such as
(a combination of) pattern matching [20], similarity matching with the question
using simple word-based features [13] or Bayesian techniques [4], measurement
of answer redundancy e.g. on the Web [2], and even methods based on logic [17].

Research on question answering methods specifically for biomedical text is a
relatively new topic and systems attempt to find answers that are more complex
than simple facts. Thus, MedQA [24] and AskHERMES [3] incorporate summari-
sation and clustering techniques. Other approaches such as Demner-Fushman et
al.’s[6] system and EPoCare [16] use information extraction techniques to iden-
tify specific types of information relevant to biomedical research queries.

Research in multiple-choice question answering is less active though it is
related to the task of answer validation, where question answering systems use
techniques such as answer redundancy with the support of large corpora or the
Web [12], or methods based on logical proving [17] and textual entailment [8].
Answer validation is the central task of the series of Answer Validation Exercises
(AVE) at CLEF [18].

A similar approach to our methods is taken by [7], where three types of
sentence similarity methods are explored: tree-distance, sequence similarity, and
order invariant methods. Their empirical evaluation shows that the method to
choose depends heavily on the testbed.

3 Approach

Each method that we experimented with is based on selecting the most likely
answer from a set of multiple-choice candidate answers to a question, through an
evaluation of the similarity of a candidate answer to the text in a given document
or set of documents. The high-level process for each system variant was:

1. Construct a candidate query based on the combination of a question and a
candidate answer.

2. Search the relevant text for sentences matching each candidate query.
3. Select the candidate query with the best match/most similar sentence in the

text as the correct answer to the question.

The system variants differed on the matching algorithm employed, the match-
ing criteria applied, and the text that was searched.



3.1 Preprocessing

For the primary article as well as the background articles, we worked from the
pre-parsed sentences provided by the task organisers, since these were the clean-
est source of data available, stripping the supplied dependency labels while pre-
serving sentence boundaries and tokenisation. We normalised greek characters
and numbers to address inconsistencies between the source article and the text
in the questions and answers. Greek characters such as α were converted to
the equivalent version spelled out using Latin characters (alpha), while spelled
out numbers such as three were rewritten using digits (3 ). We parsed all text
with ClearParser [5], a dependency-parser which has been demonstrated to have
state-of-the-art performance on biomedical text [22], and which has a pre-trained
biomedical parsing model available for download.

3.2 Construction of candidate queries using question/answer pairs

The starting point for each method is to construct a query based on a combina-
tion of the question and a candidate answer. The aim of this step is to produce
a succinct statement of the information represented by a candidate answer, with
the question providing appropriate context. For instance, a question/answer pair
“Q: Which protein is known to remove Aβ from the brain? A: IDE” would be
merged to form the query “IDE is known to remove Aβ from the brain”. This
process was applied for each candidate answer within the multiple-choice ques-
tion. Thus we constructed 5 queries for each question.

Bag-of-words queries The simplest system we developed utilised simple word
overlap as its matching algorithm. For this system, a correspondingly simple
method was used to construct the query (“bag of words”), since the candidate
sentences do not need to be grammatically sound. Each query was constructed
from all question words excluding the initial question word, plus all of the words
in the candidate answer.

Merging Question and Answer Graphs For some experiments, we used
the outputs of a dependency parser to evaluate the similarity of question and
answer sentences, to provide a semantically-richer method of comparison. This
requires a distinct graph corresponding to each answer which also integrates the
dependencies of the question to compare against the graphs from the evidence
sentences. We achieve this by using a custom algorithm to insert the answer
subgraph into the question graph. This merged graph also formed the starting
point for the vector space model methods described in Section 3.4. The aim of
this step is to produce a merged graph that looks very similar to the graph of
a declarative sentence in which the particular answer to that question is stated.
For example, consider the example question in (1) taken from the sample data
and the corresponding answer in (2). Ideally, from the dependency graph of this
question shown in Figure 1, and that of the answer fragment, we would create a



1 2 3 4 5 6 7 8 9 10 11 12
which enzyme be responsible for the transform’n of testosterone into estrogen ?
WDT NN VBZ JJ IN DT NN IN NN IN NN .

ROOT

NMOD SBJ PRD AMOD NMOD

PMOD

NMOD PMOD

NMOD

PMOD

P

Fig. 1. The dependency graph of (1) produced by ClearParser

similar dependency graph to what would be obtained by parsing (3). We would
like to replace the dependency nodes corresponding to Which and enzyme with
a node for Aromatase derived from the answer subgraph.

(1) Which enzyme is responsible for the transformation of testosterone into estrogen?

(2) Aromatase

(3) Aromatase is responsible for the transformation of testosterone into estrogen.

The procedure for this which we use for most questions is as follows:

1. Find the “question node” – a single node within the question graph which has
as its lemma any item from hand-created list of eight Wh-question lemmas,
such as what, how and where. In Figure 1, this is node 1, for the token which.

2. Find the “root target node” in the question graph. This is the node linked by
a dependency with label ROOT, generally corresponding to the main verb
in a complete sentence. For Figure 1, this is node 3.

3. Find the subgraph corresponding to the path from the root target node
to the question node, noting the label of link on the path closest to the
root target node, which we denote the “question link label”. Then delete
this entire subgraph. This removes the nodes corresponding to the question
phrase; in Figure 1, we would remove nodes 1 and 2 corresponding to the
subject of the question sentence, which enzyme. In addition, if the question
node is how, delete any connected nodes with lemma many (thus treating
how many as a multi-token question word).

4. Find the root target node of the answer graph (which generally corresponds
to the head of a noun phrase). Insert this node, along with all linked nodes
(the complete graph apart from the root node) into the modified question
graph, adding a link from the root target node of the question graph, with
the label set to the question link label from above. The intuition here is that
the answer should occupy the grammatical slot (most often SBJ) which was
formerly filled by the question.

After applying this procedure to the graph in Figure 1 and the answer graph
for the noun phrase aromatase from (2), we obtain the graph shown in Figure 2.



Upon examination of the test set, we found that further optimisation of these
rules was required. In particular, these rules produced suboptimal results for
questions phrased as full or reduced relative clauses such as (4) and (5).

A.1 3 4 5 6 7 8 9 10 11 12
aromatase be responsible for the transformation of testosterone into estrogen ?

NN VBZ JJ IN DT NN IN NN IN NN .

ROOT

SBJ PRD AMOD NMOD

PMOD

NMOD PMOD

NMOD

PMOD

P

Fig. 2. The dependency graph from Figure 1 with the graph of the candidate answer
aromatase inserted according to the method described, corresponding roughly with the
parse we would obtain from (3).

(4) What is the major protease produced by microglia responsible for degrading A?

(5) What are the sst receptors that are expressed on rat astrocytes?

To handle these cases, we introduced a new set of rules to replace step 4 above,
which we do not explain in detail here, but which attempt to directly attach the
candidate answer graph to the main verb in the body of the relative clause or
the omitted copular verb in the case of a restrictive relative such as (4). For
the above examples, we would be attempting to produce combined dependency
graphs which could be obtained by parsing sentences such as (6) and (7).

(6) IDE is produced by microglia responsible for degrading A

(7) Microglia are expressed on rat astrocytes

3.3 Word Overlap

The simplest algorithm that we experimented with considered the lexical over-
lap between the query “bag of words” described above, and the sentences in the
reference corpus. We measured the number of overlapping words (where a word
is defined as a single token), and assigned the candidate answer with highest
word overlap with some sentence in the reference as the system’s response. As
reference corpus we experimented with different variants (reference document,
background collection, and in-house background collection) as explained in Sec-
tion 3.6. In case of ties, during the development we returned all tied answers,
and assigned partial credit in the evaluation. This system had poor performance
on the training data; we chose not to submit runs with this system for the test.



3.4 Vector Space Model (VSM)

For this method, we measured the similarity of each query sentence to each
sentence in the reference text, using cosine similarity of feature vectors repre-
senting the sentences, consisting of lexical, syntactic, and semantic information.
This method, known as the vector space model (VSM) has been widely used
in Information Retrieval to compare documents and queries [9]. We utilised the
merged question/answer queries from Section 3.2 as the starting point. The
query-reference sentence pair that has the highest similarity score is selected as
the answer. In this case ties are rare, and we choose the answer randomly when
that happens. Again, our experiments relied on different background collections,
described in Section 3.6.

We made use of the following feature types:

– Lexical (LEX): We lemmatised the text using the Genia tagger [21] in order
to use lemmas as well as word-forms in the feature vectors. We also tested
the effects of removing function words over the development data. Our final
version of this feature type used lemmas, function word removal, and special
features for NUMBER and DATE classes.

– Syntactic (SYN): We extracted all possible triples from the dependency
parser output (cf. Section 3.5), and each of these relationships was used
as a feature of the vector (e.g. “introduce-OBJ-morphometry”).

– Semantic (SEM): We used MetaMap [1] to obtain phrases and concepts that
occur in the UMLS metathesaurus [10]. The mapped concepts can be marked
as negative by the built-in Negex tool, and in these cases we added a “NEG ”
prefix to the feature. Each concept is also associated to one of the 73 Seman-
tic Types that form the high level ontology of UMLS (e.g. “Enzyme”). We
extracted three types of features from the MetaMap output: Concept iden-
tifiers (CUI), Semantic Types (ST), and hypernyms of the original concepts
(HYP). We tested different combinations of these features.

In order to build the feature vectors, we tested using both raw frequencies,
and tf-idf scores. We also incorporated a thresholded pre-filter to compare back-
ground sentences to answer candidate strings only, in order to remove sentences
that have large overlap with the query but little with the possible answers. Fi-
nally, we explored combining the outputs of different VSM configurations, by
choosing the candidate with the highest cosine similarity value from any of a set
of underlying systems.

3.5 Graph Overlap

For the dependency-graph approach, we built on prior work from the AnswerFinder
QA system [14]. The idea behind this was to create a rough dependency-based
analog of the word-overlap method described above. For the dependency match-
ing, we first apply the graph-merging algorithm described in Section 3.2. We
then compare the merged question-answer graph for a candidate answer with
the dependency graph for every supporting sentence. The intuition was that, for



the correct answer, there should be some corresponding declarative sentence in
the text denoting the answer, and the graph of this should show a high degree
of overlap with the merged question-answer graph. The supporting graph with
the highest similarity score is likely to have the most similar declarative content
to the candidate question-answer graph, providing evidence that the potential
answer may be correct. We repeat this process for each candidate answer, and
the answer with most closely matching (highest-scoring) supporting sentence is
marked as correct.

Dependency Parsing The pre-processing described in Section 3.1 was ap-
plied to all background text, as well as questions and answers. For the refer-
ence corpora, the POS-tags from preprocessed files supplied by the organis-
ers was preserved; for questions and answers, no preprocessed version was pro-
vided, so we POS-tagged the questions using the biomedical POS-tagging model
of ClearParser. A qualitative analysis showed that this performed poorly over
questions due to differences in the tagging model, so we added a subsequent
post-correction phase. If any token among the first three corresponded to a wh-
question word such as which, what or how, the tag was explicitly set to be the
correct tag for the token to operate as a question word, ensuring, for example,
that which and what are tagged correctly (according to [19]) as WDT,3 rather
than IN, the tag they were (surprisingly) assigned more frequently.

For parsing, we used the biomedical model over the sample data, where we
found it gave acceptable accuracy after the POS-tags were corrected. However,
over the questions in the test data, a manual inspection of the parser outputs
revealed a large number of parsing errors probably due, as in POS-tagging, to the
parsing model having very few question instances in its training data from which
to learn parsing features. We switched instead to the pre-trained ‘Medical’ model
which includes clinical questions in its training data, and observed a qualitative
improvement in parsing accuracy.

Scoring Graphs for Similarity After merging candidate answers with ques-
tion subgraphs, we have a set of distinct dependency graphs which can be com-
pared against the graphs obtained by parsing the reference corpus as described
above. The comparison method we used was based on the graph comparison
techniques from AnswerFinder [15, 14]. Specifically, we converted the ClearParser
outputs to the Logical Graphs of [15], requiring some minor extensions to the An-
swerFinder codebase, and then compared the logical graphs from the question-
answer parses to those of the reference sentences using the implementation of
the MCS algorithm for graph comparison included with AnswerFinder. Unlike
[14], this work here did not have a stage of learning QA-rules from training data,
due to a lack of readily available in-domain data.

3 In some cases, what as a question word should be tagged as WP, when it acts as the
the head of the noun phrase [19], but we did not allow for this possibility here.



Each candidate merged query graph was compared against every reference
sentence. The raw overlap score for a given pair is the size of the largest over-
lapping subgraph. This score was either kept as a raw count or normalised by
the lengths of the respective sentences, to avoid a bias towards longer sentences.
The score for a given answer was set to the maximum similarity found from any
pairing involving the answer graph. The question/answer graph with the highest
value for this maximum similarity was assumed to be most likely to contain the
correct answer, and the corresponding answer would then be marked as correct.

We varied the reference corpus in our experiments. In some cases, we limited
the comparison to the canonical main article supplied with the question data,
while in others we used text from the supplied background document collections.
Due to the computationally intensive nature of the graph comparison process, as
well as the limited time available for experimentation over the test set, exhaustive
comparison of each candidate answer sentence with all background sentences
would have been infeasible. In cases where we used the background collection,
this was filtered by thresholding against the word-vector similarity score for the
sentence-pair from Section 3.4. This reduction in collection size would be unlikely
to erroneously omit documents, since documents with a low word overlap are
unlikely to have a high degree of graph overlap.

3.6 Resources

The only external knowledge resource that we used was the Unified Medical
Language System (UMLS) [10]. We applied the MetaMap system [1] to recog-
nise UMLS concepts in the texts. In several of the runs we submitted, we took
advantage of the hierarchical structure of the UMLS in order to generalise ob-
served concepts to their hypernyms. These hypernyms were used as features in
some vector space model runs.

Runs varied in terms of which texts were used as the reference corpus for the
query similarity matching. In some runs, only the source document associated
with the questions was utilised. Other runs considered the full background set
of documents that we were provided at the outset of the experiment by the
organisers. Finally, we also constructed an extra background collection of 63,000
abstracts built by querying PUBMED with the terms “Alzheimer’s disease”. We
experimented with various combinations of these collections.

4 Results

We submitted 10 runs for the test set in the evaluation. The results we obtained
for each system variant on both the training set and the evaluation test set
are shown in Table 1. ‘VS’ refers to the vector space model, ‘WO’ indicates
word overlap, and ‘GM’ refers to the graph-matching approach. The ‘Wtd Acc’
columns refer to the ‘weighted accuracy’, where if multiple values tie for the
highest rank, the system receives only partial credit — the reciprocal of the



number of tied answers, instead of one. For runs using ‘GM’, ties were broken
by arbitrarily choosing the numerically-lower answer.

The ‘Backgrd’ column refers to supporting documents added from the back-
ground material which were used as evidence. This could be no documents, the
complete collection, or a filtered subset thresholded on the basis of vector-space
bag-of-words similarity (‘BW’), in which case the threshold is shown.

Run Meth Backgrd Features Sample Test Result
Wtd Wtd Correct c@1
Acc Acc (of 40)

nicta12012 VS all LEX (filter 0.1) 0.38 0.16 6 0.15
nicta12074 VS all LEX+CUI+ST+HYP(tf-idf) 0.70 0.16 6 0.15
nicta12091 GM – raw counts 0.51 0.22 8 0.20
nicta12024 VS all Comb: nicta12012, nicta12063 0.70 0.24 9 0.23
nicta12031 VS – LEX+SYN (filter 0.2) 0.55 0.25 9 0.23
nicta12041 VS – LEX (filter 0.2) 0.90 0.23 9 0.23
nicta12053 VS – LEX+CUI+ST+HYP 1.00 0.22 9 0.23
nicta12063 VS – LEX+CUI+ST 0.90 0.25 9 0.23
nicta12082 VS – LEX (tf-idf) 0.70 0.24 9 0.23
– WO – word overlap 0.55 0.25 9 0.23
– GM – normalised 0.41 0.21 10 0.25
nicta12102 GM BW(0.45) raw counts 0.32 0.23 11 0.28
– GM BW(0.45) normalised 0.29 0.27 12 0.30

Table 1. Results of the NICTA/Macquarie team runs on the 2012 QA4MRE Alzheimer
task. Italicised results (with no run ID) were not submitted as official runs to the task.

5 Discussion

The performance of our methods on the test set was significantly worse than
the performance of the small sample data set we had been provided with. While
several methods showed high accuracy over the sample data, the results over the
test set were in general not significantly better than random, if at all.

5.1 Word overlap and VSM

The results of both the word overlap system and VSM were well above the ran-
dom baseline over the development data. Moreover, with rich semantic features,
such as hypernyms, the VSM model reached 100% accuracy (without parameter
tuning). These results suggested that VSM could perform well in the challenge,
however the results over the test set were at the level of the random baseline.

An analysis of the outputs of the VSM on the test data showed that there
was large variability on the answers given by the different configurations, despite
the similar low performance. However, even if we had an oracle system over the



outputs of these 8 systems, it would only achieve 62.5% accuracy. The systems
performed particularly badly over the first document (22506010), with an oracle
accuracy of only 30%. We manually analysed those errors. We found that one of
the main sources of error seemed to be the selection of distractors, which were
often terms with high frequency in the reference document; this misled our naive
classifiers, which have minimal awareness of structure, and led them to retrieve
large numbers of sentences with high similarity scores.

Manual analysis also showed that relevant sentences would usually appear
towards the top of the ranking, but below other candidates with higher weight.
This did not happen over development data, where one of the candidate sentences
usually stood out. This suggests that this approach may be useful where the
questions are more straightforward, like the ones given in the development set,
or even as a initial filter in a harder challenge such as represented by the test
data; but it is not effective as a complete solution. These results are consistent
with [7], where VSM is the best performing system for one of the two target
tasks (TREC 11 QAD, built semi-automatically), but failed to perform well for
the other (GNU Library Manual, built manually).

Examining the different variants of VSM, adding the background collection
clearly increased the confusion; the best results were obtained using the reference
document only. Comparing the performance of different feature sets, it is difficult
to make strong conclusions. Syntactic and semantic features seem to be generally
useful, though inclusion of hypernyms reduced performance on the test data. As
mentioned before, ties are rare, and choosing not to answer in these cases has
minimal effect on the final scores.

5.2 Graph Matching

Over the sample data, the graph-matching approach performed appreciably bet-
ter than random in at least some configurations, although the figures were much
less promising than the VSM methods. As with the word-based methods, the
accuracy dropped noticeably over the larger test set, although the magnitude of
this drop was smaller, largely because the performance over the sample set was
not as high to begin with. While the best accuracy was obtained over a graph
matching run, much of this may be attributable to chance. An error analysis
examining the eight questions which were answered correctly in the ‘nicta12102’
run but not in the VSM ‘nicta12053’ run showed that only two had genuinely
selected a sentence which provided good evidence for a single postulated answer,
while the remainder had the question correct by chance, either because a spuri-
ous sentence match lead to the correct answer anyway, or because there was a
tie between two or more sentences and the best answer was arbitrarily selected.

There were other interesting differences between the sample data and the
test set. In post-submission experiments, we found that the normalisation for
sentence length had a positive effect over the test data, even though it was
detrimental over the small set of sample data. Similarly adding in the filtered
background collection caused changes in different directions over the test and
development sets.



There were some easily repairable deficiencies in the graph-matching ap-
proach which were made obvious during more detailed analysis. The handling
of numbers in our system was suboptimal, which is particularly a problem when
the answers to a question are mostly numeric. The logical graphs which we check
for overlaps use the lemma as the node identifier, which is a sensible approach for
most words. However, the lemmas produced by ClearParser convert all numbers
and contiguous sequences of digits to a single digit ‘0’. So ‘10’ and ‘283.0’ would
both be mapped to ‘0’, and the string ‘P436Q’ would be converted to ‘p0q’, in all
cases losing potentially valuable information from a QA perspective. In future
work, we will experiment with a different tool, e.g. the BioLemmatizer [11].

Another deficiency of the graph-matching approach was that there was often
insufficient distinction between the different answers, if it happened that the
answers were not part of a matching subgraph for any of the evidence sentences.
In these cases, a fallback strategy (such as using a VSM approach) could have
helped somewhat. Another option would have been to not postulate analyses for
cases where there were multi-way ties. In post-hoc analysis, we investigated what
the outcome would have been if we had refused to pick an answer when there
were three or more answers tied for the highest score. For the graph matching
variant with the background collection, this would have meant only answering
17 questions, but the c@1 score would have decreased from 0.30 to 0.23 (with a
similar drop over the sample data), indicating that we are probably benefiting
from chance co-occurrences in the displayed test score.

While the graph matching algorithm itself was fairly well-developed, the over-
all pipeline was fairly simplistic. It is possible that it would have been beneficial
to to use a more sophisticated approach such as the rule-learning approach of
[14], but this was difficult due to a lack of in-domain training data.

6 Conclusion

In this paper, we explored the application of similarity-based methods to a
multiple-choice question answering task in the biomedical domain. The some-
what unusual multiple-choice nature of this question answering task meant that
we were able to attempt interesting transformations of questions by inserting
answer graphs into the question graphs, and compare those merged graphs to
sentences in a reference document or collection. Our initial experiments on the
development data showed promise particularly for the similarity measurements
utilising the vector space model with a combination of lexical and semantic fea-
tures; however these results did not generalise to the test data, where we saw
consistently lower performance and no evidence that one feature type or similar-
ity matching strategy is consistently better than another. The inclusion of the
background document collection did not in general seem to help, except possibly
when filtered to identify the most likely relevant subset of that background. To-
gether, our results suggest that the test set of questions and answers required a
more sophisticated solution for answer selection than we developed on the basis
of the sample data.



References

1. Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus:
the MetaMap program. In: AMIA Annual Symposium Proceedings. pp. 17–21.
Washington DC (2001)

2. Brill, E., Lin, J.J., Banko, M., Dumais, S., Ng, A.: Data-intensive question answer-
ing. In: Voorhees, E.M., Harman, D.K. (eds.) Proceedings TREC 2001 (2002)

3. Cao, Y.g., Liu, F., Simpson, P., Antieau, L., Bennett, A., Cimino, J.J., Ely,
J.W., Yu, H.: AskHERMES: An online question answering system for complex
clinical questions. Journal of biomedical informatics 44(2), 277–88 (Apr 2011),
http://www.ncbi.nlm.nih.gov/pubmed/21256977

4. Celikyilmaz, A., Hakkani-Tur, D., Tur, G.: LDA based similarity modeling for
question answering. In: Proceedings of the NAACL HLT 2010 Workshop on
Semantic Search. pp. 1–9. Association for Computational Linguistics (2010),
http://dl.acm.org/citation.cfm?id=1867768

5. Choi, J.D., Palmer, M.: Getting the most out of transition-based dependency pars-
ing. In: Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies. pp. 687–692. Association for
Computational Linguistics, Portland, Oregon, USA (June 2011)

6. Demner-Fushman, D., Lin, J.J.: Answering clinical questions with knowledge-based
and statistical techniques. Computational Linguistics 33, 63–103 (2007)

7. Emms, M.: Variants of tree similarity in a question answering task. In: Pro-
ceedings of the Workshop on Linguistic Distances. pp. 100–108. LD ’06,
Association for Computational Linguistics, Stroudsburg, PA, USA (2006),
http://dl.acm.org/citation.cfm?id=1641976.1641989

8. Ferrández, O., Muñoz, R., Palomar, M.: TE4AV: Textual entailment for answer
validation. In: Proceedings NLP-KE. pp. 1–8 (2008)

9. Gerard Salton, A.W., Yang, C.S.: A vector space model for automatic indexing.
In: Communications of the ACM, 18. pp. 613–620 (1975)

10. Lindberg, D., Humphreys, B., Mccray, A.: The unified medical language sys-
tem. Methods Inf Med 32(4), 281–291 (1993), retreived file d2007.bin from
http://www.nlm.nih.gov/cgi/request.meshdata on June 20, 2007.

11. Liu, H., Christiansen, T., Baumgartner, W.A., Verspoor, K.: BioLemmatizer: a
lemmatization tool for morphological processing of biomedical text. Journal of
Biomedical Semantics 3, 3 (2012)

12. Magnini, B., Negri, M., Prevete, R., Tanev, H.: Is it the right answer? exploiting
web redundancy for answer validation. In: Proceedings ACL. pp. 425–432 (2002)

13. Moldovan, D.I., Harabagiu, S.M., sca, M.P., Mihalcea, R., Goodrum, R., Girju, R.,
Rus, V.: Lasso: A tool for surfing the answer net. In: Voorhees, E., Harman, D.K.
(eds.) Proceedings TREC 8 (2000)

14. Mollá, D.: Learning of graph-based question answering rules. In: Proceedings of
HLT/NAACL 2006 Workshop on Graph Algorithms for Natural Language Pro-
cessing. pp. 37–44. (2006)

15. Mollá, D., van Zaanen, M.: Learning of graph rules for question answering. In:
Proceedings of the 2005 Australasian Language Technology Workshop (2005)

16. Niu, Y., Hirst, G., McArthur, G., Rodriguez-Gianolli, P.: Answering clinical ques-
tions with role identification. In: Proc. ACL, Workshop on Natural Language Pro-
cessing in Biomedicine (2003), http://citeseer.ist.psu.edu/581532.html

17. Paşca, M.A., Harabagiu, S.M.: High performance question answer-
ing. In: Proc. SIGIR’01. ACM, New Orleans, Luisiana, USA (2001),
http://citeseer.ist.psu.edu/pasca01high.html



18. Peñas, A., Rodrigo, A.: Testing the reasoning for question answering val-
idation (draft). Journal of Logic and Computation 18(3), 459474 (2006),
http://logcom.oxfordjournals.org/content/18/3/459.short

19. Santorini, B.: Part-of-speech tagging guidelines for the penn treebank project (3rd
revision). Tech. Rep. 570, University of Pennsylvania (1990)

20. Soubbotin, M.M.: Patterns of potential answer expression as clues to the right
answers. In: Voorhees, E.M., Harman, D.K. (eds.) Proceedings TREC 2001. NIST
(2002)

21. Tsuruoka, Y., Tateishi, Y., Kim, J.D., Ohta, T., McNaught, J., Ananiadou, S.,
Tsujii, J.: Developing a robust part-of-speech tagger for biomedical text. In: Ad-
vances in Informatics - 10th Panhellenic Conference on Informatics. pp. 382–392.
Volas, Greece (2005)

22. Verspoor, K., Cohen, K.B., Lanfranchi, A., Warner, C., Johnson, H.L., Roeder, C.,
Choi, J.D., Funk, C., Malenkiy, Y., Eckert, M., Xue, N., Jr., W.A.B., Bada, M.,
Palmer, M., , Hunter, L.E.: A corpus of full-text journal articles is a robust evalu-
ation tool for revealing differences in performance of biomedical natural language
processing tools (in press). BMC Bioinformatics (2012)

23. Voorhees, E.M.: The TREC question answering track. Natural Language Engineer-
ing 7, 361–378 (2001)

24. Yu, H., Cao, Y.g.: Automatically extracting information needs from
ad hoc clinical questions. In: AMIA Annual Symposium Proceedings.
vol. 2008, p. 96. American Medical Informatics Association (2008),
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655957/


