
Evaluating robustness for ‘IPCRESS’: Surrey’s
text alignment for plagiarism detection

Notebook for PAN at CLEF 2014

Lee Gillam, Scott Notley

Department of Computing, University of Surrey, UK

l.gillam@surrey.ac.uk

Abstract. This paper briefly describes the approach taken to the subtask of Text

Alignment in the Plagiarism Detection track at PAN 14. We have now re-

implemented our PAN12 approach in a consistent programmatic manner,

courtesy of secured research funding. PAN 14 offers us the first opportunity to

evaluate the performance/consistency of this re-implementation. We present

results from this re-implementation with respect to various PAN collections,

although it is important to note that our target is to be able to undertake

plagiarism detection in such a way as would be impervious to a range of

attempts to discover the content being matched against – a kind of privacy-

preserving plagiarism detection.

1 Introduction

As reported in our PAN 13 notebook paper, having secured funding from the UK

government-backed Technology Strategy Board for 18 months, the University of

Surrey have been working on the Intellectual Property Protecting Cloud Services in

Supply Chains (IPCRESS) project, a collaboration with Jaguar Land Rover and

GeoLang Ltd. The IPCRESS project is focused on the difficulty of entrusting valuable

Intellectual Property (IP) to third parties, through the Cloud, as is necessary to allow

for the construction of components in the supply chain. The key innovation is the

ability to track high-value IP without having to reveal that IP – so approaches need to

avoid being reversible to text in clear. Such tracking is then suited to the tasks of (i)

preventing IP leakage; (ii) detecting IP leakage or theft; and (iii) identifying retention

beyond allowed review periods. The project builds from the proposed formulation of

such a system in Cooke and Gillam 2011. This can be formulated as a kind of

plagiarism detection, and hence the relevance of/to PAN, with a more challenging

aim: to be able to generate reliable detections without access to the textual content –

and so allowing for matches to be undertaken in public without exposing the content

high-value documents that ought to be locked in secure electronic vaults. As such,

only those with suitable access to the document in the vault should be able to verify

the match.

In this paper, we briefly discuss the simplification of the code-base from our

original submissions to the present and much more self-contained setup, and

951

demonstrate the consistency of results obtained. We also hint at improvements in our

treatment of obfuscation that are likely to become a focal point for future work also.

Section 2 provides a brief summary of results found with re-used software applied

to PAN 2011, PAN 2012 and PAN 2013 datasets. Section 3 carries discussion of the

IPCRESS re-implementation. Section 4 presents results of applying IPCRESS to the

datsets for PAN 2012 and PAN 2013, and preliminary results found using initial

obfuscation handling approaches. Section 5 comments on the PAN 2014 results and

future work.

2 Previous PAN results

We have discussed in previous PAN efforts (e.g. Cooke, 2011) how our intention is

to be able to find matching text without revealing the textual content. In PAN 11, the

approach brought us 4th place, with PlagDet=0.2467329, Recall=0.1500480,

Precision=0.7106536, Granularity=1.0058894. In 2012, we showed good granularity,

with high recall and precision for non-obfuscated text, but not such great recall in the

face of obfuscation (see Table below).

Test Plagdet

Score

Recall Precision Granularity

02_no_obfuscation 0.92530 0.90449 0.94709 1.0

03_artificial_low 0.09837 0.05374 0.93852 1.04688

04_artificial_high 0.01508 0.00867 0.96822 1.20313

06_simulated_paraphrase 0.11229 0.05956 0.97960 1.0

In 2013, precision and granularity figures remained high, though recall had

dropped. For different kinds of obfuscation from 2012, recall remains low – though

perhaps surprisingly is better for random obfuscation than for translation or summary.

Test Plagdet

Score

Recall Precision Granularity

02_no_obfuscation 0.85884 0.83788 0.88088 1.0

03_random_obfuscation 0.04191 0.02142 0.95968 1.0

04_translation_obfuscation 0.01224 0.00616 0.97273 1.0

05_summary_obfuscation 0.00218 0.00109 0.99591 1.0

3 The IPCRESS implementation

For the IPCRESS project, the previous codebase needed to be homogenized and

developed in such a manner as to be scalable to very large datasets. The previous

version/s were memory-based and thus not suitable for use at real scale (hundreds of

gigabytes or more). The IPCRESS code has been fully re-designed as a disk-based

952

approach, as an object oriented implemention in C++. A new stitching algorithm has

also been developed.

The IPCRESS approach generates what we refer to as secure stamps from whole

documents. From each stamp, we derive a set of shorter individual hash-like codes ,

I , from sets of words. These codes are considered irreversible. Individual codes are

generated by using a sliding window of length, Wlen , across the document stamp to

extract that portion of the stamp in a manner similar to creating shingles. From this set

of hash-like codes an index is populated with information related to the current

window position within the document stamp and a document ID. This process is

illustrated in figure 1.

Figure 1. The indexing process using IPCRESS codes

A query for a suspicious document is similarly generated using the sliding window

of length, Wlen, over the stamp of the suspicious document to generate a set of

IPCRESS code queries, Q .

Document ID and code position pairs, Iii , are retrieved from the index, I , for

each IPCRESS code, Qqi , and sorted by document ID to give a set of results D.

Each element, DdsrcID , relates to a source document and is itself a set of results,

srcIDd
T ; where, srcID, is a source document ID. Each set, srcIDd

T , is composed of

information related to text segments, srcIDd

j Tt , each of length Wlen; each element, tj,

is a pair composed of {suspicious position, source position}. This relationship is

illustrated in figure 2.

Each set, srcIDd
T , is then reduced via a first stage stitching algorithm to produce a

set of runs, srcIDd
R . Each run, srcIDd

k Rr , is 4-tuple, consisting of {suspicious start

position, suspicious length, source start position, and source length}. This first stage

stitching generates each run by finding consecutive elements of srcIDd
T that are

overlapping or consecutive in source position. Any runs, rk, that are less than a

defined minimum run length (MRL) are discarded.

Source

Document

ID:5

Stamp

IPCRESS Code:4

Position:0

IPCRESS Code:1

Position:1

IPCRESS Code:x

Position:n

 x-1

0

1

2

4

 x

 x+1

Position: 1, ID:5

Position: 0, ID:5

Position: n, ID:5

Index

953

Figure 2. Ordering of results from document query process

A second stage stitching algorithm then produces a set of text segments, srcIDd
S , from

the set of runs srcIDd
R . The algorithm finds subsets, srcIDd

RR , such that each

element of R are all within a defined stitch distance (SD) of at least one other element

of R in terms of both suspicious and source position. The size of each subset is

maximized so that srcIDd
S is of minimal length. From each subset, R, a new 4-tuple is

formed, srcIDd

m Ss , that gives {suspicious start position, suspicious length, source

start position source length}; the start positions are given by the first element of R and

the lengths are determined from the last element of R. Any segments found that are

shorter than a defined minimum segment length (MSL) are discarded.

3.1 Obfuscation Handling

We consider two initial obfuscation handling approaches based on transformations

of a single query into closely related queries. The hash-like codes mentioned above

are formulated such that code similarity can be indicative of data similarity, and as

such the ‘closeness’ of any two queries can be based on binary distance approaches

such as Hamming and Levenshtein.

The first approach, based on Hamming distances, generates transformed queries

with a given maximum Hamming distance with relation to the original enquiry. For

an original query Qqi , of length Wlen, this approach will generate an extra Wlen

transformations. For a Hamming distance of 1, say, this method involves an extra Wlen

look-ups for each initial query.

The second approach, based on the Levenschtein distance, similarly generates

transformed queries from each original query, qi. For a query length of Wlen, this

approach generates 2 sets of transformations Ti
0 and Ti

1 where i refers to a word

position within query, qi, and lies in the range
lenWi 0 . This approach requires

0d
T

1d
T

nd
T

Set: D
{Susp. Pos.: 0, Src. Pos.: 0}

{Susp. Pos.: 1, Src. Pos.: 1}

{Susp. Pos.: m-1, Src. Pos.: m-1}

{Susp. Pos.: m, Src. Pos.: m}

Set: 1d
T (srcID: 1)

954

2*Wlen extra look-ups for each query. For each insertion the transformed query, Ti
n, is

masked to length Wlen for index compatibility.

4 IPCRESS vs previous PAN collections

Prior results offer up a standard to be achieved in re-implementation. The new

codebase has been tested against data from PAN12 and PAN13, with modifications to

the algorithm largely demonstrating slightly improved performance, as shown in the

tables below:

IPCRESS raw – PAN12 data

Test Plagdet Score Recall Precision Granularity

02_no_obfuscation 0.9437 0.9045 0.9877 1.0008

03_artificial_low 0.0956 0.0525 0.9942 1.0608

04_artificial_high 0.0200 0.0118 0.9852 1.2459

06_simulated_paraphrase 0.0992 0.0522 0.9922 1.0000

Obfuscation handler #1 (Hamming)

02_no_obfuscation 0.9358 0.9048 0.9703 1.0008

03_artificial_low 0.1970 0.1110 0.9853 1.0178

04_artificial_high 0.0373 0.0201 0.9577 1.0759

06_simulated_paraphrase 0.1512 0.0825 0.9038 1.0000

Obfuscation handler #2 (Levenshtein)
02_no_obfuscation 0.9236 0.9057 0.9423 1.0000

03_artificial_low 0.1888 0.1066 0.9820 1.0266

04_artificial_high 0.0682 0.0368 0.9489 1.0535

06_simulated_paraphrase 0.1345 0.0723 0.9572 1.0000

IPCRESS raw – PAN13 data

Test Plagdet Score Recall Precision Granularity

02_no_obfuscation 0.9253 0.9273 0.9233 1.0000

03_random_obfuscation 0.1356 0.0729 0.9675 1.0000

04_translation_obfuscation 0.0243 0.0123 0.9865 1.0000

05_summary_obfuscation 0.0022 0.0011 0.9959 1.0000

Obfuscation handler #1 (Hamming)

02_no_obfuscation 0.9029 0.9289 0.8783 1.0000

03_random_obfuscation 0.1297 0.1297 0.9120 1.0000

04_translation_obfuscation 0.0244 0.0244 0.8953 1.0000

05_summary_obfuscation 0.0035 0.0017 0.9807 1.0000

Obfuscation handler #2 (Levenshtein)

02_no_obfuscation 0.9058 0.9274 0.8853 1.0000

03_random_obfuscation 0.2151 0.1224 0.8936 1.0000

04_translation_obfuscation 0.0743 0.0386 0.9533 1.0000

05_summary_obfuscation 0.0035 0.0017 0.9920 1.0000

955

5 IPCRESS vs PAN 2014 collections and Future Work

PAN 2014 test results showed expected granularity and precision, but a surprising

difference between values for recall. Investigations led to the discovery of a bug in

detecting UTF-8 codes; when applied to PAN 2012 and 2013 collections, a similar

lowering of values was also observed. Further, our initial attempts at handling

obfuscation show some promise, but much more rigorous evaluation will be required

to determine the fullest extent of impact achievable by these approaches on the hash-

like codes.

Test data Plagdet Precision Recall Granularity Runtime

Corpus 2 0.28302 0.88630 0.16840 1.00000 00:00:55

Corpus 3 0.44076 0.85744 0.29661 1.00000 00:00:56

Through PAN 2014, we have demonstrated that the IPCRESS code produces

results comparable to, and even slightly better than, the previous implementation, and

effort has been put into ensuring the implementation is suited to scaling to very large

datasets. These results are certainly not going to be anywhere near the best that is

possible when evaluating similarity between texts where the content is fully exposed.

However, that is not our challenge. and it is important to note again that our specific

challenge is to be able to undertake plagiarism detection in such a way as would be

impervious to a range of attempts to discover the content being matched against – a

kind of privacy-preserving plagiarism detection that can be used against documents

whose content should be kept from plain sight.

Acknowledgements

The authors gratefully recognize prior contributions of Neil Newbold, Neil Cooke,

Peter Wrobel and Henry Cooke to the formulation of the codebase used for prior

versions of this task, and by Cooke and Wrobel to the patents generated from these

efforts. This work has been supported in part by the EPSRC and JISC (EP/I034408/1)

and more substantially since PAN13 by the UK’s Technology Strategy Board (TSB,

169201). The authors are also grateful for the efforts of the PAN organizers in system

provision and managing the submissions.

References

1. Cooke, N. and Gillam, L.: Clowns, Crowds and Clouds: A Cross-Enterprise

Approach to Detecting Information Leakage without Leaking Information. In:

Mahmood, Z., Hill, R. (eds.) Cloud Computing for Enterprise Architectures,

pp. 301-322. Springer, London (2011).

956

2. Cooke, N., Gillam, L., Wrobel, P., Cooke, H,, Al-Obaidli, F.: A high

performance plagiarism detection system. In Proceedings CLEF 2011, Labs

and Workshop, Notebook Papers, 3rd PAN workshop (2011).

957

