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Abstract. This paper briefly describes the approach taken to the subtask of Text 

Alignment in the Plagiarism Detection track at PAN 14. We have now re-

implemented our PAN12 approach in a consistent programmatic manner, 

courtesy of secured research funding. PAN 14 offers us the first opportunity to 

evaluate the performance/consistency of this re-implementation. We present 

results from this re-implementation with respect to various PAN collections, 

although it is important to note that our target is to be able to undertake 

plagiarism detection in such a way as would be impervious to a range of 

attempts to discover the content being matched against – a kind of privacy-

preserving plagiarism detection.  

1   Introduction 

As reported in our PAN 13 notebook paper, having secured funding from the UK 

government-backed Technology Strategy Board for 18 months, the University of 

Surrey have been working on the Intellectual Property Protecting Cloud Services in 

Supply Chains (IPCRESS) project, a collaboration with Jaguar Land Rover and 

GeoLang Ltd. The IPCRESS project is focused on the difficulty of entrusting valuable 

Intellectual Property (IP) to third parties, through the Cloud, as is necessary to allow 

for the construction of components in the supply chain. The key innovation is the 

ability to track high-value IP without having to reveal that IP – so approaches need to 

avoid being reversible to text in clear. Such tracking is then suited to the tasks of (i) 

preventing IP leakage; (ii) detecting IP leakage or theft; and (iii) identifying retention 

beyond allowed review periods. The project builds from the proposed formulation of 

such a system in Cooke and Gillam 2011. This can be formulated as a kind of 

plagiarism detection, and hence the relevance of/to PAN, with a more challenging 

aim: to be able to generate reliable detections without access to the textual content – 

and so allowing for matches to be undertaken in public without exposing the content 

high-value documents that ought to be locked in secure electronic vaults. As such, 

only those with suitable access to the document in the vault should be able to verify 

the match.  

In this paper, we briefly discuss the simplification of the code-base from our 

original submissions to the present and much more self-contained setup, and 
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demonstrate the consistency of results obtained. We also hint at improvements in our 

treatment of obfuscation that are likely to become a focal point for future work also. 

Section 2 provides a brief summary of results found with re-used software applied 

to PAN 2011, PAN 2012 and PAN 2013 datasets. Section 3 carries discussion of the 

IPCRESS re-implementation. Section 4 presents results of applying IPCRESS to the 

datsets for PAN 2012 and PAN 2013, and preliminary results found using initial 

obfuscation handling approaches. Section 5 comments on the PAN 2014 results and 

future work.  

2   Previous PAN results 

We have discussed in previous PAN efforts (e.g. Cooke, 2011) how our intention is 

to be able to find matching text without revealing the textual content. In PAN 11, the 

approach brought us 4th place, with PlagDet=0.2467329, Recall=0.1500480, 

Precision=0.7106536, Granularity=1.0058894. In 2012, we showed good granularity, 

with high recall and precision for non-obfuscated text, but not such great recall in the 

face of obfuscation (see Table below).  

 

Test Plagdet 

Score 

Recall Precision Granularity 

02_no_obfuscation 0.92530 0.90449 0.94709 1.0 

03_artificial_low 0.09837 0.05374 0.93852 1.04688 

04_artificial_high 0.01508 0.00867 0.96822 1.20313 

06_simulated_paraphrase 0.11229 0.05956 0.97960 1.0 

 

In 2013, precision and granularity figures remained high, though recall had 

dropped. For different kinds of obfuscation from 2012, recall remains low – though 

perhaps surprisingly is better for random obfuscation than for translation or summary.  

 

Test Plagdet 

Score 

Recall Precision Granularity 

02_no_obfuscation 0.85884 0.83788 0.88088 1.0 

03_random_obfuscation 0.04191 0.02142 0.95968 1.0 

04_translation_obfuscation 0.01224 0.00616 0.97273 1.0 

05_summary_obfuscation 0.00218 0.00109 0.99591 1.0 

3   The IPCRESS implementation 

For the IPCRESS project, the previous codebase needed to be homogenized and 

developed in such a manner as to be scalable to very large datasets. The previous 

version/s were memory-based and thus not suitable for use at real scale (hundreds of 

gigabytes or more). The IPCRESS code has been fully re-designed as a disk-based 
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approach, as an object oriented implemention in C++. A new stitching algorithm has 

also been developed. 

The IPCRESS approach generates what we refer to as secure stamps from whole 

documents. From each stamp, we derive a set of shorter individual hash-like codes , 

I , from sets of words. These codes are considered irreversible. Individual codes are 

generated by using a sliding window of length, Wlen , across the document stamp to 

extract that portion of the stamp in a manner similar to creating shingles. From this set 

of hash-like codes an index is populated with information related to the current 

window position within the document stamp and a document ID. This process is 

illustrated in figure 1. 

 
Figure 1. The indexing process using IPCRESS codes 

 

A query for a suspicious document is similarly generated using the sliding window 

of length, Wlen, over the stamp of the suspicious document to generate a set of 

IPCRESS code queries, Q . 

Document ID and code position pairs, Iii  , are retrieved from the index, I , for 

each IPCRESS code, Qqi  , and sorted by document ID to give a set of results D. 

Each element, DdsrcID , relates to a source document and is itself a set of results,  

srcIDd
T ; where, srcID, is a source document ID. Each set, srcIDd

T , is composed of 

information related to text segments, srcIDd

j Tt  , each of length Wlen; each element, tj, 

is a pair composed of {suspicious position, source position}. This relationship is 

illustrated in figure 2. 

Each set, srcIDd
T , is then reduced via a first stage stitching algorithm to produce a 

set of runs, srcIDd
R . Each run, srcIDd

k Rr  , is 4-tuple, consisting of {suspicious start 

position, suspicious length, source start position, and source length}. This first stage 

stitching generates each run by finding consecutive elements of srcIDd
T that are 

overlapping or consecutive in source position. Any runs, rk, that are less than a 

defined minimum run length (MRL) are discarded. 
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Figure 2. Ordering of results from document query process 

 

A second stage stitching algorithm then produces a set of text segments, srcIDd
S ,  from 

the set of runs srcIDd
R . The algorithm finds subsets, srcIDd

RR , such that each 

element of R are all within a defined stitch distance (SD) of at least one other element 

of R in terms of both suspicious and source position. The size of each subset is 

maximized so that srcIDd
S  is of minimal length. From each subset, R, a new 4-tuple is 

formed, srcIDd

m Ss  , that gives {suspicious start position, suspicious length, source 

start position source length}; the start positions are given by the first element of R and 

the lengths are determined from the last element of R. Any segments found that are 

shorter than a defined minimum segment length (MSL) are discarded. 

 

3.1 Obfuscation Handling 
 

We consider two initial obfuscation handling approaches based on transformations 

of a single query into closely related queries. The hash-like codes mentioned above 

are formulated such that code similarity can be indicative of data similarity, and as 

such the ‘closeness’ of any two queries can be based on binary distance approaches 

such as Hamming and Levenshtein. 

The first approach, based on Hamming distances, generates transformed queries 

with a given maximum Hamming distance with relation to the original enquiry. For 

an original query Qqi  , of length Wlen, this approach will generate an extra Wlen 

transformations. For a Hamming distance of 1, say, this method involves an extra Wlen 

look-ups for each initial query. 

The second approach, based on the Levenschtein distance, similarly generates 

transformed queries from each original query,  qi.  For a query length of Wlen, this 

approach generates 2 sets of transformations Ti
0 and Ti

1 where i refers to a word 

position within query, qi, and lies in the range
lenWi 0 . This approach requires 

0d
T  

1d
T  

nd
T  

Set: D 
{Susp. Pos.: 0, Src. Pos.: 0} 

{Susp. Pos.: 1, Src. Pos.: 1} 

{Susp. Pos.: m-1, Src. Pos.: m-1} 

{Susp. Pos.: m, Src. Pos.: m} 

Set: 1d
T (srcID: 1) 
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2*Wlen extra look-ups for each query. For each insertion the transformed query, Ti
n, is 

masked to length Wlen  for index compatibility. 

4   IPCRESS vs previous PAN collections 

Prior results offer up a standard to be achieved in re-implementation. The new 

codebase has been tested against data from PAN12 and PAN13, with modifications to 

the algorithm largely demonstrating slightly improved performance, as shown in the 

tables below: 

 

IPCRESS raw – PAN12 data 

Test Plagdet Score Recall Precision Granularity 

02_no_obfuscation 0.9437 0.9045 0.9877 1.0008 

03_artificial_low 0.0956 0.0525 0.9942 1.0608 

04_artificial_high 0.0200 0.0118 0.9852 1.2459 

06_simulated_paraphrase 0.0992 0.0522 0.9922 1.0000 

Obfuscation handler #1 (Hamming) 

02_no_obfuscation 0.9358 0.9048 0.9703 1.0008 

03_artificial_low 0.1970 0.1110 0.9853 1.0178 

04_artificial_high 0.0373 0.0201 0.9577 1.0759 

06_simulated_paraphrase 0.1512 0.0825 0.9038 1.0000 

Obfuscation handler #2 (Levenshtein) 
02_no_obfuscation 0.9236 0.9057 0.9423 1.0000 

03_artificial_low 0.1888 0.1066 0.9820 1.0266 

04_artificial_high 0.0682 0.0368 0.9489 1.0535 

06_simulated_paraphrase 0.1345 0.0723 0.9572 1.0000 

 

IPCRESS raw – PAN13 data 

Test Plagdet Score Recall Precision Granularity 

02_no_obfuscation 0.9253 0.9273 0.9233 1.0000 

03_random_obfuscation 0.1356 0.0729 0.9675 1.0000 

04_translation_obfuscation 0.0243 0.0123 0.9865 1.0000 

05_summary_obfuscation 0.0022 0.0011 0.9959 1.0000 

Obfuscation handler #1 (Hamming) 

02_no_obfuscation 0.9029 0.9289 0.8783 1.0000 

03_random_obfuscation 0.1297 0.1297 0.9120 1.0000 

04_translation_obfuscation 0.0244 0.0244 0.8953 1.0000 

05_summary_obfuscation 0.0035 0.0017 0.9807 1.0000 

Obfuscation handler #2 (Levenshtein) 

02_no_obfuscation 0.9058 0.9274 0.8853 1.0000 

03_random_obfuscation 0.2151 0.1224 0.8936 1.0000 

04_translation_obfuscation 0.0743 0.0386 0.9533 1.0000 

05_summary_obfuscation 0.0035 0.0017 0.9920 1.0000 
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5   IPCRESS vs PAN 2014 collections and Future Work 

PAN 2014 test results showed expected granularity and precision, but a surprising 

difference between values for recall. Investigations led to the discovery of a bug in 

detecting UTF-8 codes; when applied to PAN 2012 and 2013 collections, a similar 

lowering of values was also observed. Further, our initial attempts at handling 

obfuscation show some promise, but much more rigorous evaluation will be required 

to determine the fullest extent of impact achievable by these approaches on the hash-

like codes. 

 

Test data Plagdet  Precision  Recall  Granularity  Runtime 

Corpus 2 0.28302  0.88630  0.16840  1.00000  00:00:55 

Corpus 3 0.44076 0.85744 0.29661 1.00000 00:00:56 
 

Through PAN 2014, we have demonstrated that the IPCRESS code produces 

results comparable to, and even slightly better than, the previous implementation, and 

effort has been put into ensuring the implementation is suited to scaling to very large 

datasets. These results are certainly not going to be anywhere near the best that is 

possible when evaluating similarity between texts where the content is fully exposed. 

However, that is not our challenge. and it is important to note again that our specific 

challenge is to be able to undertake plagiarism detection in such a way as would be 

impervious to a range of attempts to discover the content being matched against – a 

kind of privacy-preserving plagiarism detection that can be used against documents 

whose content should be kept from plain sight. 
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