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Abstract. This paper describes the participation of the SNUMedinfo team at the 

BioASQ Task 2a and Task 2b of CLEF 2014 Question Answering track. Task 2a 

was about biomedical semantic indexing. We trained SVM classifiers to auto-

matically assign relevant MeSH descriptors to the MEDLINE article. Regarding 

Task 2b biomedical question answering, we participated at the document retrieval 

subtask in Phase A and the ideal answer generation subtask in Phase B. In the 

document retrieval task, we mostly experimented with semantic concept-en-

riched dependence model and sequential dependence model. Semantic concept-

enriched dependence model showed significant improvement over baseline. In 

the ideal answer generation task, we reformulated task as, given relevant lists of 

passages, selecting the best ones to build the answer. We applied three heuristic 

methods. 

Keywords: SVM, Text categorization, Information retrieval, Semantic concept-

enriched dependence model, Sequential dependence model 

1 Introduction 

In this paper, we describe the participation of the SNUMedinfo team at the BioASQ 

Task 2a and Task 2b of CLEF 2014 [1]. Task 2a was about large-scale online biomed-

ical semantic indexing; automatically annotating MEDLINE® document with the Med-

ical Subject Headings (MeSH®) descriptor. Task 2b was about biomedical semantic 

question answering task, ranging from document retrieval subtask to the ideal answer 

generation subtask. For a detailed task introduction, please see the overview paper of 

CLEF Question Answering track BioASQ 2014’. 

2 Methods 

2.1 Task 2a  

In the task 2a, we used Support Vector Machine (SVM) [2] with linear kernel type as a 

document classifier. We hypothesized computing resource-limited situation. If we in-

crease the number of training documents, classification performance will be naturally 
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improved, but it will require more computing resources. In this study, we fixed the 

number of training documents to 50,000. We tried to draw better performance out of 

limited training document size. 

We tried different training document selection strategies to select most useful 50,000 

documents out of candidate 11 million MEDLINE documents to build the effective 

classifier per each MeSH descriptor. 

The main directions of our experimentation can be summarized as the following two 

stages; Training and Classification.  

Stage 1. Training SVM classifier  

Stage 1 can be divided into the following 9 steps (step 0 to 8), as depicted in the Figure 

1. We trained SVM classifiers per each MeSH descriptor individually. 

 

Fig. 1. General scheme about training SVM classifier 

Step 0: Preparing potential training set 11 million MEDLINE document.  

We leased 2014 MEDLINE/PubMed® Journal Citations [3] from the U.S. National 

Library of Medicine, composed of roughly 22 million MEDLINE citations. These files 

are compressed into 746 zip files (Numbered from 1 to 746). We used only 346 files 

(Numbered from 401 to 746), which contains roughly 11 million articles published 

within last 20 years1. 

Step 1: Randomly select 50,000 documents as a 1st training set . 

                                                           
1  We didn’t use training datasets distributed from the BioASQ homepage, because we were 

planning to use only very small (50,000) samples of documents as a training set. 
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Among 11 million MEDLINE documents, 50,000 documents are randomly selected.  

Half of them (25,000) were filled with target-positive document (which means that tar-

get MeSH descriptor is tagged in), and the other half were filled with target-negative 

document (which means that target MeSH descriptor is not tagged in). When total num-

ber of target-positive document is less than 25,000, number of target-negative docu-

ment is increased to make total number of training set document 50,000 constant. 

Per each document in training set, title and abstract text field were extracted, punc-

tuation removed, case-folded, tokenized and stemmed using Porter stemmer. Per each 

unique stem, document stem frequency is used as feature value. 

Step 2: Train SVM classifier  

SVM classifier is trained on 50,000 documents selected from step 1. 

Step 3 and 4: Applying trained svm classifier to the 11 million documents 

SVM classifier trained in step 2 is applied on the 11 million documents. Per each 

document, document id (PMID) and classification score is stored.  

Step 5: Selecting new training set  

New training set document is selected from 11 million MEDLINE documents, based 

on classification scores calculated in step 4. We tried two different methods. 

1. Selecting most difficult ones 

Documents having most undesirable classification score is chosen. For target-positive 

document, documents having lowest classification score (so it could be wrongly clas-

sified as target-negative document) are selected. For target-negative document, docu-

ments having highest classification score (so it could be wrongly classified as target-

positive document) are selected 

2. Random selection among the most difficult ones 

25,000 training documents are randomly selected from top 10% most undesirable doc-

uments of target-positive document. 25,000 training documents are randomly selected 

from top 10% most undesirable documents of target-negative document (If there are 10 

million target-negative documents, top 1 million documents having highest classifica-

tion score is selected first. Then, among this 1 million documents, 25,000 documents 

are randomly chosen). 

Step 6: Train SVM classifier 

SVM classifier is trained on 50,000 documents selected from step 5. 

Step 7: Choose best classifier  

After finishing step 6, we have three trained SVM classifiers (One SVM classifier 

from step 2, two SVM classifier from step 5). Now we choose single best classifier 
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based on Precision at k metric (k : number of target-positive documents among 11 mil-

lion MEDLINE documents). 

Step 8: Build the mapping table for translating SVM classification score into the ex-

pected precision, expected recall and expected F1 measure 

After stage 7, SVM classifier is prepared per each MeSH descriptor. We calculated 

expected precision value as depicted in Figure 2. 11 million MEDLINE documents are 

sorted in descending order by the SVM classification score. Expected precision is cal-

culated on each target-positive document. 

 

Fig. 2. Expected precision curve example: x-axis represents SVM classification score. y-axis 

represents expected precision value. 

Now we can translate SVM classification score to the probability of target-positive. For 

example, with regard to the Figure 2, if we apply SVM classifier on the unseen 

MEDLINE document, and SVM classification score is calculated as 2.5, then the prob-

ability of this MEDLINE document being target-positive is estimated as 75%. If clas-

sification score is 1.0, then the probability of this MEDLINE document is target-posi-

tive is estimated as 50%. 

In the same way, we can estimate expected recall and expected F1 measure too. 

Stage 2. Classification  

After stage 1, now we have trained SVM classifier, and corresponding mapping table 

for translating classification score to the expected precision, expected recall and ex-

pected F1 measure. When new test set document is given, per each MeSH descriptor, 

we apply SVM classifier to get the classification score, expected precision, expected 

recall and expected F1 measure. 

When we decide output MeSH descriptor on the test set document, we tried follow-

ing two different methods. 
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Method 1: Choose output MeSH descriptor by expected precision threshold 

Two parameters are used; p for the precision threshold; m for the maximum number 

of MeSH descriptor that each document can have.  

Per each test document given, among all candidate MeSH descriptors satisfying ex-

pected precision threshold p, top m MeSH descriptors are chosen. 

Method 2: Choose output MeSH descriptor by F1-measure optimized threshold2 

 Individual F1 measure optimized: Classification score threshold is decided based on 

maximum F1 measure point per each MeSH descriptor individually. 

 Micro-F1 measure optimized: Per each MeSH descriptors, classification score 

threshold is initialized as the above mentioned Individual F1 measure optimized 

method. Then, all MeSH descriptors are sorted by the number of target-positive doc-

ument in descending order. From MeSH descriptor having largest document fre-

quency, we start finding micro-F1 measure optimal classification score threshold by 

changing classification score threshold on this specific MeSH descriptor while all 

other MeSH descriptor’s score thresholds fixed. Per each cycle, we repeat this pro-

cess for every MeSH descriptor. We repeat this cycle until there are no more overall 

Micro-F1 measure performance gain is observed. 

2.2 Task 2b Phase A – Document retrieval 

In Task 2b Phase A, we participated at the document retrieval subtask only. We used 

Indri search engine [4]. 

Indexing 

We leased 2014 MEDLINE/PubMed Journal Citations [3] from the U.S. National 

Library of Medicine, composed of roughly 22 million MEDLINE citations. According 

to the task guideline, we filtered out articles published after March 14, 2013. Per each 

MEDLINE citation, article title, abstract, MeSH descriptor and publication type fields 

are extracted and indexed with Indri without stopword removal.3 

Retrieval 

The queries are stopped at the query time using the standard 418 INQUERY stop-

word list, case-folded, and stemmed using Porter stemmer. We used unigram language 

model with Dirichlet prior smoothing [5] as our baseline retrieval method (referred as 

QL: query likelihood model). 

At this task, we tried to test various retrieval techniques and parameter settings. But 

most of our submitted runs use dependence models (SDM and SCDM). Our experi-

mental methods can be summarized as the following three category.  

                                                           
2  We didn’t try optimizing hierarchical measure rather than this flat one (F1 measure), because 

we didn’t have much time for preparation. 
3  We didn’t use the web services provided by the competition, because we need to use Indri 

search engine to implement our retrieval methods. 
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Sequential dependence model (SDM).  

In [6], Metzler and Croft proposed sequential dependence model which incorporates 

sequential query term dependence into the retrieval model. SDM assumes dependency 

between adjacent query terms. SDM showed better experimental performance on vari-

ous TREC test collections [6-8] compared to the baseline query likelihood model (QL), 

or a full dependence model (FDM) which assumes that all query terms are dependent 

on each other. 

SDM Indri query example for the original query ‘What is the inheritance pattern of 

Emery-Dreifuss muscular dystrophy?’ can be described as follows. 

#weight ( 

λT    #combine( inheritance pattern emery dreifuss muscular dystrophy ) 

        λ O #combine( #od1(inheritance pattern) #od1(pattern emery) #od1(emery 

dreifuss) #od1(dreifuss muscular) #od1(muscular dystrophy)  ) 

        λ U #combine( #uw8(inheritance pattern) #uw8(pattern emery) #uw8(emery 

dreifuss) #uw8(dreifuss muscular) #uw8(muscular dystrophy)  )  ) 

λT, λO, λU are weight parameters for single terms, ordered phrases and unordered 

phrases, respectively. 

Semantic concept-enriched dependence model (SCDM).  

In [9], Choi et al. proposed incorporating semantic concept-based term dependence fea-

ture into a retrieval model. Standardized medical concept terms are assumed to have 

implicit term dependency within the same concept. Using MetaMap, all of the existing 

UMLS concepts in the original query text are identified.  

We experimented with two different variants of SCDM. For detailed explanation about 

SCDM, please see [9]. SCDM Indri query example can be described as follows. 

 SCDM type C (single + multi-term, all-in-one) 

#weight( 

        λT   #combine( inheritance pattern emery dreifuss muscular dystrophy ) 

  λ O #combine( #od1(inheritance pattern) #od1(pattern emery) #od1(emery 

dreifuss) #od1(dreifuss muscular) #od1(muscular dystrophy)  ) 

        λ U  #combine( #uw8(inheritance pattern) #uw8(pattern emery) #uw8(emery 

dreifuss) #uw8(dreifuss muscular) #uw8(muscular dystrophy)  ) 

       λO_SC #combine( #od1(inheritance pattern) #od1(emery dreifuss muscular dystro-

phy)  ) 

       λU_SC #combine(#uw8(inheritance pattern) #uw16(emery dreifuss muscular dystro-

phy)  )  ) 
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λT, λO, λU, λO_SC, λU_SC are weight parameters for single terms, ordered phrases and 

unordered phrases of sequential query term pairs, ordered phrases and unordered 

phrases of semantic concepts, respectively. 

 SCDM type D (single+multi-term, pairwise) 

#weight( 

        λT   #combine( inheritance pattern emery dreifuss muscular dystrophy ) 

  λ O #combine( #od1(inheritance pattern) #od1(pattern emery) #od1(emery 

dreifuss) #od1(dreifuss muscular) #od1(muscular dystrophy)  ) 

       λ U  #combine( #uw8(inheritance pattern) #uw8(pattern emery) #uw8(emery 

dreifuss) #uw8(dreifuss muscular) #uw8(muscular dystrophy)  ) 

λ O_SC #combine(#od1(inheritance pattern) #od1(emery dreifuss) #od1(dreifuss 

muscular) #od1(muscular dystrophy)  ) 

λU_SC #combine(#uw8(inheritance pattern) #uw8(emery dreifuss) #uw8(dreifuss 

muscular) #uw8(muscular dystrophy)  )  ) 

Query expansion using top-k MEDLINE document’s title field (TitleQE). 

From the top k pseudo-relevant documents retrieved from 22 million documents, article 

title field is extracted and then added to the original query. Using large 22 million doc-

uments as reference [10], we expect top k documents are highly relevant to the original 

query, and their title field contains relevant terms to the original query. TitleQE Indri 

query example can be described as follows. 

#weight ( 

     (1-w) #combine( inheritance pattern emery dreifuss muscular dystrophy ) 

        w   #combine( cardiomyopathy atrioventricular block emery dreifuss muscular 

dystrophy case report emery dreifuss muscular dystrophy case report laminopathy saga 

) ) 

w is a weight parameter for the expansion query part. Original query part is weighted 

by 1-w. 

2.3 Task 2b Phase B – Ideal answer generation 

In Task 2b Phase B, we participated only at the ideal answer generation subtask. We 

reformulated this task as, among relevant lists of passages given4, selecting appropriate 

ones. We tried following three heuristic methods to select m passages and combine 

them to form the ideal answer. 

Selecting shortest passages (Selecting shortest passages) 

                                                           
4  We used gold relevant text snippets provided by the BioASQ. 
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In this method, we hypothesized that number of tokens in each passage represents 

the conciseness of content. If a passage has less tokens, it is assumed a good candidate 

for the ideal answer. We rank relevant passages by number of tokens in ascending order, 

and select top m passages as the ideal answer. 

Identifying keyword terms and rank passages based on the number of unique key-

words it contain (Selecting key passages) 

In this method, parameter minDF represents minimum proportion of passages that 

keyword term should occur.  

Firstly we tried to identify keyword terms. If there are 20 relevant passages given, 

and minDF is set to 0.5, then any terms occurring ≥ 10 passages are considered as 

keywords. 

With identified keywords list, we rank passages based on the number of unique key-

words each passage contains. Top m passages are selected as the ideal answer. 

Selecting passages different from the previously chosen passage (Selecting com-

plementary passages) 

In this method, parameter minUnseen represents minimum proportion of new tokens 

that does not exist in the previously selected passages. 

This methods builds upon the Selecting key passages method described above. 

Firstly, we rank passages in the way same as Selecting key passages. We select top-

ranked passage. Then, regarding the second-ranked passage, we check proportion of 

tokens in the second passage that does not occur in the previously selected passages, 

and if it is ≥ minUnseen threshold, second-ranked passage is selected. If proportions of 

newly found tokens are below minUnseen threshold, that passage is abandoned, and we 

check next rank passage. This process is repeated until m passage is selected. 

In this method, our intention was enhancing comprehensiveness of answer text by 

increasing the diversity of tokens. 

3 Results & Discussion 

At the moment of writing this paper, the evaluation result is not complete. So we ana-

lyzed results based on this tentative non-final version evaluations. 

3.1 Task 2a 

At this task, we participated from batch 2 week 2 to batch 3 week 5. When we start 

participating this task, our preparation was not complete. So we incrementally applied 

our methods described in section 2.1. We can separate our runs into three distinct peri-

ods. 

 First period (batch 2 week 2 ~ batch 2 week 5):  Training(Prepared up to Stage 1 

step 4), Classification (Method 1) 

 Second period (batch 3 week 1): Training (Complete), Classification (Method 1) 
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 Third period(batch 3 week 2 ~ batch 3 week 5): Training (Complete), Classification 

(Method 2) 

For our first period, only one SVM classifier is trained from randomly selected 50k 

documents (Because, preparation for the Stage 1 step 5 was incomplete). For our second 

and third period, best SVM classifier is chosen from three distinct SVM classifier 

trained using different training document selection methodologies respectively. 

For our first and second period, arbitrary expected precision threshold (Method 1) is 

used for the classification. For our third period, classification threshold is optimized on 

the expected micro F1 measure (Method 2), which is target evaluation metric for this 

task. 

Roughly, in our first period, micro F1 measures are estimated as 0.45~0.47. But in 

our second period, it is improved to 0.49. In our third period, again it is improved to 

0.48~0.52.  

We have two lessons learned from this task.  

1. We limited number of training documents to 50k. We used only simple SVM clas-

sifier without applying feature selection methods or using more sophisticated ma-

chine learning algorithms. But our methods showed certain level of performance, 

although it is clearly lower than the top performance team’s (Top performing team’s 

micro F1 measure was roughly 0.60). 

2. As the competition goes on, performance of our methods gets improved increasingly. 

The performance of our second period was better than the first period, and the per-

formance of our third period was better than the second period.  

3.2 Task 2b Phase A – Document retrieval 

There were five distinct batches in this task. The primary evaluation metric was gmap 

(geometric mean average precision) over top 100 documents. We tried to find best re-

trieval method and parameter setting. Our submitted runs used following parameter 

settings. 

Batch1.  

SNUMedinfo1: QL (mu=750) 

SNUMedinfo2: TitleQE (mu=750, k=5, w=0.1) 

SNUMedinfo3: TitleQE (mu=750, k=5, w=0.2) 

SNUMedinfo4: TitleQE (mu=750, k=5, w=0.3) 

SNUMedinfo5: QL (mu=750) 

Batch2.  

SNUMedinfo1: SCDM Type C (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo2: SCDM Type C (mu=500, λT=0.70, λO=0.00, λU=0.00, λO_SC=0.20, λU_SC=0.10) 

SNUMedinfo3: SCDM Type C (mu=750, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo4: SCDM Type C (mu=750, λT=0.70, λO=0.00, λU=0.00, λO_SC=0.20, λU_SC=0.10) 
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SNUMedinfo5: SCDM Type C (mu=1000, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

Batch3.  

SNUMedinfo1: SCDM Type C (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo2: SCDM Type C (mu=500, λT=0.70, λO=0.00, λU=0.00, λO_SC=0.20, λU_SC=0.10) 

SNUMedinfo3: SCDM Type C (mu=750, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo4: SCDM Type C (mu=750, λT=0.70, λO=0.00, λU=0.00, λO_SC=0.20, λU_SC=0.10) 

SNUMedinfo5: SCDM Type D (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

Batch4.  

SNUMedinfo1: SCDM Type C (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo2: SCDM Type D (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo3: SCDM Type C (mu=500, λT=0.70, λO=0.10, λU=0.05, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo4: SCDM Type D (mu=500, λT=0.70, λO=0.10, λU=0.05, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo5: SDM (mu=500, λT=0.85, λO=0.10, λU=0.05) 

Batch5.  

SNUMedinfo1: SCDM Type C (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo2: SCDM Type C (mu=500, λT=0.70, λO=0.00, λU=0.00, λO_SC=0.20, λU_SC=0.10) 

SNUMedinfo3: SCDM Type D (mu=500, λT=0.85, λO=0.00, λU=0.00, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo4: SCDM Type C (mu=500, λT=0.70, λO=0.10, λU=0.05, λO_SC=0.10, λU_SC=0.05) 

SNUMedinfo5: SDM (mu=500, λT=0.85, λO=0.10, λU=0.05) 

In Batch 1, mostly we applied TitleQE method. Evaluation result for batch 1 is de-

scribed in the following Table 1. We also report evaluation results from the training set, 

which has 307 queries5. We performed two-tailed paired t-test over the map (**: p-

value < 0.01, *: p-value < 0.05). 

Table 1. Batch 1 evaluation results 

 Training set 

map     (%)6   significance 

gmap 

Batch1 

map     (%)   significance 

gmap 

QL (mu=750) 0.2256    

0.0571 

0.2612 

0.0519 

TitleQE (mu=750, k=5, w=0.1) 0.2308   (+2.3%) ** 

0.0578 

0.2587 (-1.0%) 

0.0501 

                                                           
5  We used training set provided by the BioASQ challenge. Originally, there are 310 queries in 

the training set. We removed queries having duplicate query id. 
6  Relative change compared to the baseline (QL) map performance 
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TitleQE (mu=750, k=5, w=0.2) 0.2312   (+2.5%) 

0.0565 

0.2493 (-4.6%) 

0.0468 

TitleQE (mu=750, k=5, w=0.3) 0.2303   (+2.1%) 

0.0532 

0.2410 (-7.7%) 

0.0449 

QL (mu=1,000) 0.2225    

0.0542 

0.2547  

0.0460 

 

In Batch 1, TitleQE method failed to show significant performance improvement over 

QL. For Batch 2~5, we submitted runs using SDM and SCDM. Evaluation results are 

summarized in Table 2. Best performance result per each batch is highlighted in bold 

face. 

Table 2. Evaluation results for the QL, SDM and SCDM methods 

 Train-

ing set 

Batch1 Batch2 Batch3 Batch4 Batch5 

QL 

(mu=500) 

0.2289 

 

0.0546 

0.2614 

 

0.0581 

0.2806 

 

0.0977 

0.2931 

 

0.0424 

0.2551 

 

0.0320 

0.2555 

 

0.0350 

SDM  

(mu=500, 

λT=0.85, 

λO=0.10, 

λU=0.05) 

0.2417 

(+5.6%) 

* 

 

0.0557 

0.2735 

(+4.6%) 

 

 

0.0619 

0.2867 

(+2.2%) 

 

 

0.1039 

0.3059 

(+4.4%) 

 

 

0.0503 

0.2692 

(+5.5%) 

 

 

0.0404 

0.2689 

(+5.2%) 

 

 

0.0427 

SCDM type C 

(mu=500, 

λT=0.85, 

λO=0.00, 

λU=0.00, 

λO_SC=0.10, 

λU_SC=0.05) 

0.2392 

(+4.5%) 

** 

 

0.0618 

0.2808 

(+7.4%) 

** 

 

0.0670 

0.2922 

(+4.1%) 

 

 

0.1042 

0.3074 

(+4.9%) 

* 

 

0.0452 

0.2748 

(+7.7%) 

** 

 

0.0390 

0.2665 

(+4.3%) 

 

 

0.0372 

SCDM type C 

(mu=500, 

λT=0.70, 

λO=0.00, 

λU=0.00, 

λO_SC=0.20, 

λU_SC=0.10) 

0.2412 

(+5.4%) 

** 

 

0.0608 

0.2870 

(+9.8%) 

* 

 

0.0672 

0.2903 

(+3.5%) 

 

 

0.1038 

0.3152 

(+7.5%) 

* 

 

0.0453 

0.2847 

(+11.6%) 

** 

 

0.0417 

0.2634 

(+3.1%) 

 

 

0.0364 

SCDM type C 

(mu=500, 

λT=0.70, 

λO=0.10, 

λU=0.05, 

λO_SC=0.10, 

λU_SC=0.05) 

0.2423 

(+5.9%) 

** 

 

0.0625 

0.2875 

(+10.0%) 

* 

 

0.0661 

0.2869 

(+2.2%) 

 

 

0.1072 

0.3151 

(+7.5%) 

* 

 

0.0514 

0.2799 

(+9.7%) 

* 

 

0.0404 

0.2686 

(+5.1%) 

 

 

0.0343 
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Generally, SDM and SCDM showed better performance compared to the QL. SCDM 

showed significant improvement over QL in most of the batches. 

3.3 Task 2b Phase B – Ideal answer generation 

Evaluation results are not available at the time of wring. Please check the overview 

paper or homepage of BioASQ for the later release of evaluation result. 

4 Conclusion 

In  BioASQ 2014, we experimented with various classification and retrieval methods 

on the MEDLINE document. In Task 2a, we experimented with baseline SVM classi-

fier with linear kernel type. We tried various training set document selection method-

ologies and target evaluation measure optimized threshold adjusting methods. In Task 

2b Phase A document retrieval subtask, mainly we experimented with sequential de-

pendence model and semantic concept-enriched dependence model. Semantic concept-

enriched dependence model showed significant improvement over baseline. In Task 2b 

Phase B ideal answer generation subtask, we reformulated task as selecting appropriate 

passages among relevant list of passages. We tried three heuristic methods. 

Evaluation results for our submitted runs were encouraging. We’ll explore more ef-

fective methods in our future study. 
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