
CASIA@V2: A MLN-based Question Answering
System over Linked Data

Shizhu He, Yuanzhe Zhang, Kang Liu, and Jun Zhao

National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences.
Zhongguancun East Road 95#, Beijing, 100084, China.

{shizhu.he,yzzhang,kliu,jzhao}@nlpr.ia.ac.cn

Abstract. We present a question answering system (CASIA@V2) over Linked
Data (DBpedia), which translates natural language questions into structured queries
automatically. Existing systems usually adopt a pipeline framework, which con-
tains four major steps: 1) Decomposing the question and detecting candidate
phrases; 2) mapping the detected phrases into semantic items of Linked Data;
3) grouping the mapped semantic items into semantic triples; and 4) generat-
ing the rightful SPARQL query. We present a jointly learning framework using
Markov Logic Network(MLN) for phrase detection, phrases mapping to seman-
tic items and semantic items grouping. We formulate the knowledge for resolving
the ambiguities in three steps of QALD as first-order logic clauses in a MLN. We
evaluate our approach on QALD-4 test dataset and achieve an F-measure score of
0.36, an average precision of 0.32 and an average recall of 0.40 over 50 questions.

Keywords: Question Answering, Linked Data, Markov Logic Network

1 Introduction

With the rapid development of the Web of Data, there are many RDF datasets pub-
lished as Linked Data [1], such as DBpedia [2], Freebase [3] and YAGO [4]. The grow-
ing Linked Data contain a wealth of knowledge including entities, classes and proper-
ties. Moreover, these linked data usually have complex structures and are highly het-
erogeneous. However, there are the gaps between the users and the Linked Data. On the
one hand, the users, even expert programmers, need a lot of practices to handle stan-
dard structured query languages like SPARQL. On the other hand, due to the diversity

In: Cappellato, L., Ferro, N., Halvey, M., and Kraaij, W., editors (2014). CLEF 2014 Labs and
Workshops, Notebook Papers. CEUR Workshop Proceedings (CEUR-WS.org), ISSN 1613-
0073, http://ceur-ws.org/ Vol-1180/.
Thanks to Prof. Hang Li, Dr. Yibo Zhang and Dr. Jie Zhang at Huawei Noah’S Ark Lab and the
anonymous reviewers for their insightful advices and and suggestions. This work was spon-
sored by the National Natural Science Foundation of China (No. 61272332 and No. 61202329)
and CCF-Tencent Open Research Fund. This work was supported in part by Noah’s Ark Lab
of Huawei Tech. Ltm.

1249

and high heterogeneity of the Linked Data, it is difficult for humans to select relevant
resources and discover useful information. Thus, developing user-friendly interface for
accessing those linked data become increasing important.

Question answering over Linked Data [5] is aimed at eliminating those gaps, which
attempts to allow the users to access those structured data with natural language. For
example, with respect to the question: “Which software has been developed by orga-
nizations founded in California, USA?”, the aim is to automatically convert this ut-
terance into a SPARQL query which contains the following subject-property-object
(SPO) triple format: 〈?url rdf:type dbo:Software, ?url dbo:developer ?x1, ?x1 rdf:type
dbo:Company, ?x1 dbo:foundationPlace dbr:California〉1.

Lopez et al. [6] have given a comprehensive survey in this research area. The authors
develop PowerAqua system [7] to answer questions on large, heterogeneous datasets.
For questions containing quantifiers, comparatives or superlatives, Unger et al. [8] trans-
late natural language(NL) questions to formal language(FL) structured query using sev-
eral SPARQL templates and a set of heuristic rules mapping phrase to semantic items.
And DEANNA [9] jointly disambiguates the following tasks based on integer linear pro-
gramming: segmenting question, mapping phrases to semantic items and constructing
SPARQL triple patterns.

This paper proposes a novel algorithm based on a learning framework, Markov
Logic Network (MLN) [10], to learn a joint model for constructing structured queries
from natural language utterances. MLN is a statistical relational learning framework
that combines first-order logic and Markov networks. The appealing property of MLN
is that it is readily interpretable by humans and is natural to perform joint learning under
the Markov logic framework. We formulate the knowledge for resolving the ambigu-
ities in three steps of QALD (phrase detection, phrase-to-semantic-item mapping and
semantic items grouping) as first-order logic clauses in a MLN. In the framework of
MLN, all clauses will make interacted effects which combines resolving all problems
into a unified process. In this way, the result in each step can be globally optimized.
Moreover, different from previous methods, we adopt a learning strategy to automat-
ically learn the patterns for semantic items grouping. We also formulate the learned
patterns as first-order clauses in MLN. The model will learn the weights of each clause
to determine the most effective patterns for semantic triples construction. In this way,
our approach can cover more semantic expressions and answer more questions than
previous method based on manually designed patterns.

We evaluate our approach on QALD-4 test dataset and achieve an F-measure score
of 0.36, an average precision of 0.32 and an average recall of 0.40 over 50 questions.

2 System Description

The current version of our QA system is not designed to answer the questions which
contain numbers, date comparisons and aggregation operations such as group by or
order by. We also do not consider the questions which contain filter condition. Figure

1 prefixes in semantic items indicate the source of its vocabularies, dbr indi-
cate entity and dbo indicate class and property defined in the DBpedia ontology
(http://wiki.dbpedia.org/Ontology39).

1250

Fig. 1. The architecture of CASIA@V2

1 shows the architecture of our system to translate a question into a formal SPARQL
query.

At first, sequence of tokens(phrase) are detected that probably indicate semantic
items, such as software, developed by and California. This step detects full potentially
phrases, and leaves the decision for phrases selecting in later steps.

Next, the phrases are mapping to semantic items. Phrases can denote entities, classes
and properties. For example, the phrase software can denote class dbo:Software and
property dbo:developer, and the phrase developed by can denote entity
dbr:videogamedeveloper, class dbo:BritishRoyalty and property dbo:developer. This step
purely constructs a candidate space for every possible mapping, and leaves the decision
for select which semantic items in the next step.

Then, we should make the decisions for choosing phrases, mapping the chosen
phrases to suitable semantic items and determine the relations of selected semantic
item. We formulate the joint decisions as an generalized inference task. We employ rich
features and constraints (including hard and soft constraints) to infer the joint decisions
using a MLN.

Finally, with the inference results, the last step constructs a semantic item query
graph, and generates an executable SPARQL query with the question type.

We will give a detailed description of each component and give a step by step ex-
planation with the following example, Figure 2 shows the intermediate results of every
steps:

Which software has been developed by organizations founded in California, USA?.

1251

Which software has been developed by

organizations founded in California, USA? software, developed, developed by, organizations,

founded, founded in, California, USA

software

developed by

...

...

...

California
phraseIndex

phrasePosTag

resourceType

priorMatchScore

hasMeanWord

phraseDepTag

hasRelatedness

...

isTypeCompatible

hasPhrase hasResource

hasRelation

Fig. 2. Framework of our system.

2.1 System Pipleline

1) Phrase detection. Sequences of tokens (phrases) that probably indicate semantic
items are detected. To this end, we do not use named entity recognizer (NER) because of
its low coverage. 2 To avoid missing useful phrases, we retain all n-grams as candidate
phrases, and then use some rules to filter them. The rules include: the length of tokens
span must be less than 4 (excepting all contiguous tokens are capitalizations); the POS
tag of the start token must be jj, nn, rb and vb; all contiguous capitalization tokens must
not be split, and so on. For instance, software, developed by, organizations, founded in
and California are detected in the example.

2) Mapping phrase to semantic item. After phrases are detected, each phrase may
be mapped to the semantic items in KB (entities, classes and properties). For exam-
ple, software is mapped to dbo:Software, dbo:developer, etc.; California is mapped to

2 We perform testing in two commonly used question corpus (QALD-3 Training data
and free917) using Stanford CRF-based NER tool(http://nlp.stanford.edu/software/CRF-
NER.shtml). The results demonstrate that merely 51.5% and 23.8% right NEs can be rec-
ognized, respectively.

1252

dbr:California, dbr:California (wine), etc. We use different techniques and resources
to map phrases to different types of semantic items. For mapping phrases to entities,
considering the entities in DBpeida are curated from Wikipeida, we employ anchors,
redirections and disambiguations information from Wikipedia. For mapping phrases
to classes, considering that classes have lexical variation, especially synonyms, e.g.,
dbo:Film could be mapped from film, movie and show, we use word2vec tool3 to convert
every word (phrase) into a vector and compute the similarity between the phrase and
the class in KB. The similarity scoring methods are introduced in Section 3.2. Then,
the top-N most similar classes for each phrase are returned. For mapping phrases to
properties, we employ the resources from PATTY [11] and ReVerb [12]. Specifically,
we first compute the associations between the semantic properties in DBpedia and rela-
tion patterns in PATTY and ReVerb through instance alignments as same as [13]. Next,
if a detected phrase is matched to some relation pattern, the corresponding properties
in DBpedia will be returned as the candidates. This step purely constructs a candidate
space for every possible mapping, and the decision of selecting the best fitting semantic
item is made in the next step.

3) Feature extraction and joint inference. There are ambiguities in phrase detec-
tion and mapping-phrase-to-semantic-item. This step consists in the resolution of these
ambiguities and determine the relations among the mapped semantic items. It is the
core contribution of this paper, which performs disambiguation in a unified manner.
First, feature extraction is performed to prepare rich features from the question and the
knowledge base. Next, the disambiguation is performed in a joint fashion with a Markov
Logic Network (MLN). The detailed information will be presented in the next Section.

4) SPARQL generation. Based on the inference results, we construct a query
graph. The vertex contains the following information: the phrase, token span indexs
of the phrase, the mapped semantic item and its type. The edge indicates the relation
between two semantic items. For example, we use 1 2 to indicate that the first argu-
ment of an item matches the second argument of another item4. The right bottom in
Figure 2 shows an example of it. The relation in the query graph is paired data merely,
but the SPARQL queries need the grouped triples of semantic items. Thus, we con-
vert a query graph into multiple joined semantic triples. Three interconnected semantic
items, which must ensure the middle item is a property, are converted into a seman-
tic triple. For example, the query graph Vdbo:Book[Class] 1 2←→ dbo:author[Property] 1 1←→
dbr:Danielle Steel[Entity]W is converted into 〈?x rdf:type dbo:Book, dbr:Danielle dbo:author
?x〉, and Vdbo:populationTotal[Property] 1 2←→ dbo:capital[Property] 1 1←→ dbr:Australia[Entity]W5

is converted into 〈?x1 dbo:populationTotal ?answer, ?x1 dbo:capital dbr:Australia〉. If the
query graph only contains one vertex which indicates a class ClassURI, we generate 〈
?x rdf:type ClassURI〉. If the query graph contains two connected vertexes, we append
a variable to bind the missing match argument of the semantic item.

The final SPARQL query is constructed by joining the semantic item triples and
combining them with the corresponding SPARQL template. We divide the questions
into three types: Yes/No, Number and Normal. Yes/No questions use the ASK WHERE

3 https://code.google.com/p/word2vec/
4 The other marks will be introduced in Section 3.1.
5 corresponding the question “How many people live in the capital of Australia?”

1253

template. With respect to number questions, we use SELECT COUNT(?url) WHERE
template, if it cannot obtain a fitting SPARQL query(the query result are not a number),
we then use normal question template to generate a query again. Normal questions
use the SELECT ?url WHERE template. For instance, we construct the SPARQL query
SELECT(?url) WHERE{ ?url rdf:type dbo:Software. ?url dbo:developer ?x1. ?x1 rdf:type
dbo:Company. ?x1 dbo:foundationPlace dbr:California.} toward the example.

3 Feature extraction & joint inference

In this section, we will first briefly describe Markov Logic Networks. Then, we
present the predicates(features) and the first-order logic formulas for joint inference.

3.1 Markov Logic Networks

Markov logic networks combine Markov networks with first-order logic in proba-
bilistic framework[10,14]. A Markov logic network consists of a set of first-order for-
mulas. Each formula consists of a set of first-order predicates, logical connectors and
variables. However, differently to first-order logic where a formula represents a hard
constraints, these logic formulas are softened and can be violated with some penalty
(the weight of formula) in MLN.

An MLN M is consists of several weighted formulas {(φi, wi)}i, where φi is a first
order formula and wi is the penalty(the formula’s weight). These weighted formulas
define a probability distribution over sets of possible worlds. Let y denote a possible
world, then p(y) is defined as follows:

p(y) =
1

Z
exp

 ∑
(φi,wi)∈M

wi
∑

c∈Cnφi

fφic (y)

 , (1)

where each c is a binding of free variables in φi to constants; fφic is a binary feature
function that returns 1 if the ground formula we get through replacing the free variables
in φi with the constants in c under the given possible world y is true, and 0 otherwise;
Cnφi is the set of all possible bindings for the free variables in φi. Z is a normalization
constant. The Markov Network corresponds to this distribution, where nodes represent
ground atoms and factors represent ground formulas.

Let us illustrate how MLN determine the relation of semantic items mapped by
phrases. The following formulas indicates that if two semantic items have some depen-
dency path tags6, then they have some type of relations with some weights.

(φ1, w1) : depPathTag(a, b, “pobj”) ∧ (a 6= b)

⇒ relation(a, b, “2 1”).
(2)

(φ2, w2) : depPathTag(a, b, “pobj”) ∧ (a 6= b)

⇒ relation(a, b, “1 1”).
(3)

6 Actually, the dependency path tags are extracted from the phrases which mapped to semantic
items. Here is simplified to illustrate how MLN works.

1254

Here, a and b are variables which represent any semantic item, depPathTag and relation
are an observed predicate and a hidden predicate, respectively. The values of observed
predicates are known from feature extraction, and the values of hidden predicates are
infered. The values of two weights w1 and w2 affect the decision of choosing relation
types between two semantic items.

There are a lot of methods to inference and learn the weights for MLN[14,10].
Several packages for MLN learning available online for free, such as Alchemy7, Tuffy8,
thebeast9.

3.2 Predicates

In MLN, we design several predicates to resolve the ambiguities in phrase detec-
tion, mapping phrases to semantic items and semantic items grouping. Specifically, we
design a hidden predicate hasPhrase(i) to indicate that the ith candidate phrase has been
chosen, predicate hasResouce(i,j) to indicate that the ith phrase is mapped to the jth se-
mantic item, and predicate hasRelation(j,k,rr) to indicate that the jth semantic item and
the kth semantic item can be grouped together with the relation type rr. Note that we
define four relation types between two semantic items: 1 1, 1 2, 2 1 and 2 2. Here, the
relation type t s means the tth argument of the first semantic item corresponds to the sth
argument of the second semantic item. The detailed illustration is shown in Table 1.

Table 1. Examples of the relation types.

Type Example Question
1 1 dbo:height 1 1 dbr:Michael Jordan How tall is Michael Jordan?
1 2 dbo:River 1 2 dbo:crosses Which river does the Brook-

lyn Bridge cross?
2 1 dbo:creator 2 1 dbr:Walt Disney Which spaceflights were

launched from Baikonur?
2 2 dbo:birthPlace 2 2 dbo:capital Which actors were born in

the capital of American?

Moreover, we define a set of observed predicates to describe the properties of phrases,
semantic items, relations between phrases and relations between semantic items. The
observed predicates and descriptions are shown in Table 2.

Previous methods usually designed some heuristic patterns to group semantic items,
which employ the human-designed syntactic path between two phrases to determine the
relations between any two phrases. In contrast, we collect all the tokens in the depen-
dency path between two phrases as possible patterns. The predicate phraseDepTag and
hasMeanWord are designed to indicate the possible patterns. Note that if these tokens
only contain POS tags dt|in|wdt|to|cc|ex|pos|wp or stop words, the predicate hasMean-
Word is false, otherwise is true. In this way, our system is expected to cover more lan-
guage expressions and answer more questions. Moreover, the SPARQL endpoint is used

7 http://alchemy.cs.washington.edu
8 http://hazy.cs.wisc.edu/hazy/tuffy/
9 http://code.google.com/p/thebeast

1255

Table 2. Descriptions of observed predicates.

Describing the attributes of phrases and relation between two phrases
phraseIndex(p, i, j) The start and end position of phrase p in question.
phrasePosTag(p, pt) The POS tag of head word in phrase p.
phraseDepTag(p, q, dt) The dependency path tags between phrase p and q.
phraseDepOne (p, q) If there is only one tag in the dependency path, the predicate is true.
hasMeanWord (p, q) If there is any one meaning word in the dependency path of two phrases, the predicate is

true.

Describing the attributes of semantic item and the mapping between phrase and semantic item
resourceType(r, rt) The type of semantic item r. Types of semantic items include Entity, Class and Property
priorMatchScore(p, r, s) The prior score of phrase p mapping to semantic item r.

Describing the attributes of relation between two semantic items in knowledge base
hasRelatedness(p, q, s) The semantic coherence of semantic items.
isTypeCompatible(p, q, rr) If semantic items p is type-compatible with semantic items q, the predicate is true.
hasQueryResult(s, p, o, rr1, rr2) If the triple pattern consisting of semantic items s, p, o and relation types rr1, rr2

have query results, the predicate is true.

to verify the type compatibility of two semantic items and whether or not one triple pat-
tern can obtain query results.

The predicate hasRelatedness needs to computes the coherence score between two
semantic items. Following Yahya et al. [9], we use the Jaccard coefficient based on the
inlinks between two semantic items.

The predicate priorMatchScore assigns a score prior to mapping a phrase to a se-
mantic item. We use different ways to compute this scores for different semantic item
types. For entities, we use a normalized score based on the frequencies of a phrase refer-
ring to a entity. For classes and properties, we use different methods. At first, we define
three similarity score metrics as follows: a) s1: Levenshtein distance score between the
labels of semantic item and phrase; b) s2: word embedding score, which is the simi-
larity between two phrases, is the maximum value of the cosine of words between two
phrases; c) s3: instance overlap score, which is computed using the Jaccard coefficient
of instance overlap as a similarity score. The prior scores for mapping phrases to classes
and properties are αs1 + (1− α)s2 and αs1 + βs2 + (1− α− β)s3, respectively. The
parameters are set with empirical values10.

3.3 Formulas

We use two kinds of formulas for jointly decisions: Boolean and Weighted formulas.
Boolean formulas are hard constraints which must be satisfied with the entire ground
atoms in final inference results. Weighted formulas are soft constraints which could be
violated with some penalties.
1) Boolean Formulas (Hard Constraints) Table 3 lists the boolean formulas used in
this work. The “ ” notation indicates an arbitrary constant. The “||” notation expresses
the number of true grounded atoms in the formula. These formulas express the follow-
ing constraints:
hf1: if a phrase is chosen, then it must have a mapped semantic item;
hf2: if a semantic item is chosen, then its mapped phrase must be chosen;

10 Set α to 0.6 for class, set α and β to 0.3 and 0.3 for property, respectively.

1256

Table 3. Descriptions of boolean formulas.

hf1 hasPhrase(p)⇒ hasResource(p,)

hf2 hasResource(p,)⇒ hasPhrase(p)

hf3 |hasResource(p,)| ≤ 1

hf4 !hasPhrase(p)⇒!hasResource(p, r)

hf5 hasResource(, r)⇒ hasRelation(r, ,) ∨ hasRelation(, r,)

hf6 |hasRelation(r1, r2,)| ≤ 1

hf7 hasRelation(r1, r2,)⇒ hasResource(, r1) ∧ hasResource(, r2)
hf8 phraseIndex(p1, s1, e1) ∧ phraseIndex(p2, s2, e2) ∧ overlap(s1, e1, s2, e2) ∧

hasPhrase(p1)⇒!hasPhrase(p2)

hf9 resourceType(r, “Entity”)⇒!hasRelation(r, , “2 1”) ∧ !hasRelation(r, , “2 2”)

hf10 resourceType(r, “Entity”)⇒!hasRelation(, r, “2 1”) ∧ !hasRelation(r, , “2 2”)

hf11 resourceType(r, “Class”)⇒!hasRelation(r, , “2 1”) ∧ !hasRelation(r, , “2 2”)

hf12 resourceType(r, “Class”)⇒!hasRelation(, r, “2 1”) ∧ !hasRelation(r, , “2 2”)

hf13 !isTypeCompatible(r1, r2, rr)⇒!hasRelation(r1, r2, rr)

Table 4. Descriptions of weighted formulas.

sf1 priorMatchScore(p, r, s)⇒ hasPhrase(p)

sf2 priorMatchScore(p, r, s)⇒ hasResource(p)

sf3 phrasePosTag(p, pt+) ∧ resourceType(r, rt+)⇒ hasResource(p, r)

sf4 phraseDepTag(p1, p2, dp+) ∧ hasResource(p1, r1) ∧ hasResource(p2, r2) ⇒
hasRelation(r1, r2, rr+)

sf5 phraseDepTag(p1, p2, dp+) ∧ hasResource(p1, r1) ∧
hasResource(p2, r2) ∧ !hasMeanWord(p1, p2)⇒ hasRelation(r1, r2, rr+)

sf6 phraseDepTag(p1, p2, dp+) ∧ hasResource(p1, r1) ∧ hasResource(p2, r2) ∧
phraseDepOne(p1, p2)⇒ hasRelation(r1, r2, rr+)

sf7 hasRelatedness(r1, r2, s) ∧ hasResource(, r1) ∧ hasResource(, r2) ⇒
hasRelation(r1, r2,)

sf8 hasQueryResult(r1, r2, r3, rr1, rr2) ⇒ hasRelation(r1, r2, rr1) ∧
hasRelation(r2, r3, rr2)

hf3: a phrase can map to one semantic item at most;
hf4: if the phrase is not chosen, then its mapping semantic item should not be chosen;
hf5: if a semantic item is chosen, then it should have one relation with other semantic
items at least;
hf6: two semantic items have one relation at most;
hf7: if a relation for two semantic items is chosen, then they must be chosen;
hf8: each two chosen phrases must not overlap;
hf9, hf10, hf11, hf11: the semantic item with type Entity and Class should not have
second argument matching with others;
hf12: The chosen relation for two sematic items must be type-compatible.
2) Weighted Formulas (Soft Constraints) Table 4 lists the weighted formulas used
in this work. The “+” notation in the formulas indicates that each constant of the logic
variable should be weighted separately. Those formulas express the following proper-
ties in joint decisions:
sf1, sf2: The larger the score of phrase mapping to semantic item, the more likely the
corresponding phrase and semantic item should been chosen;
sf3: there are some associations between POS tags of phase and types of mapped se-
mantic item;
sf4, sf5, sf6: there are some associations between the dependency tags in the depen-

1257

dency pattern path of two phases and the types of relation of two mapped semantic
items;
sh7: the larger the relatedness of two semantic items, the more likely they have a rela-
tion;
sf8: if the triple pattern has query results, those semantic items should have correspond-
ing relations.

4 Results and discussion

Stanford dependency parser [15] is used for extracting features from dependency
parse trees. We use the toolkit thebeast11 to learn the weights for the formulas and per-
form MAP inference. The inference algorithm uses a cutting plane approach. And for
parameter learning, we set all initial weights to zeros and use online learning algorithm
with MIRA update rules to update the weights of formulas. The numbers of iterations
for training and testing are set to 10 and 200 epochs, respectively.

Our system could learn the effectiveness patterns. We show the weights of the
learned patterns corresponding with formula sf3 in MLN, as shown in Table 5. From the
table, we can see that nn is mapped to Entity more likely than Class and Property, and
vb is most likely mapped to Property. It proves that our model can learn the effective
and reasonable patterns for QALD.

Table 5. Sample weights of formulas, corresponding with formula sf3.

POS tag of Phrase type of mapped Item Weight
nn Entity 2.11
nn Class 0.243
nn Property 0.335
vb Property 0.517
wp Class 0.143
wr Class 0.025

Table 1 gives the evaluation results with average precision, average recall and F-
measure. It shows the number of question our system can answer, the number of right
and partially right answers among them.

Table 6. Evaluate results on QALD-4 test dataset.

Total Processed Right Partially Recall Precision F-measure
Xser 50 40 34 6 0.71 0.72 0.72

gAnswer 50 25 16 4 0.37 0.37 0.37
CASIA 50 26 15 4 0.40 0.32 0.36
Intui3 50 33 10 4 0.25 0.23 0.24
ISOFT 50 50 10 3 0.26 0.21 0.23
RO FII 50 50 6 0 0.12 0.12 0.12

11 http://code.google.com/p/thebeast

1258

Among the factors that affect performance most are: 1) training set consisting of
110 questions is limited, we found some weights of grounded formula are zero; 2) the
parameters are used for computing prior score mapping phrase to semantic item are
difficult to tune, because we use different method to entities, classes and properties; 3)
lack of global constraints, such as, it is hard to count the number of unmapped tokens
in question.

5 Conclusion

In this paper, we present a question answering system over Linked Data which trans-
lates the natural language questions into the standard RDF data queries (SPARQL). We
present a jointly learning framework for phrase detection, phrases mapping to semantic
items and semantic items grouping. The novelty of our method lies in that we make
joint inference and pattern learning for all subtasks in QALD by using first-order logic.
Our benchmark results demonstrate the effectiveness of the proposed method.

References
1. C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so far,” International journal

on semantic web and information systems, vol. 5, no. 3, pp. 1–22, 2009.
2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A nucleus

for a web of open data,” in The semantic web. Springer, 2007, pp. 722–735.
3. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively

created graph database for structuring human knowledge,” in SIGMOD, 2008.
4. F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,” in

WWW, 2007.
5. S. Walter, C. Unger, P. Cimiano, and D. Bär, “Evaluation of a layered approach to question

answering over linked data,” in The Semantic Web–ISWC 2012. Springer, 2012, pp. 362–
374.

6. V. Lopez, V. Uren, M. Sabou, and E. Motta, “Is question answering fit for the semantic web?:
a survey,” Semantic Web, vol. 2, no. 2, pp. 125–155, 2011.

7. V. Lopez, E. Motta, and V. Uren, “Poweraqua: Fishing the semantic web,” in The Semantic
Web: research and applications. Springer, 2006, pp. 393–410.

8. C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and P. Cimiano,
“Template-based question answering over rdf data,” in WWW, 2012.

9. M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and G. Weikum, “Natural
language questions for the web of data,” in EMNLP, 2012.

10. M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62, no.
1-2, pp. 107–136, 2006.

11. N. Nakashole, G. Weikum, and F. Suchanek, “Patty: a taxonomy of relational patterns with
semantic types,” in EMNLP, 2012.

12. A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open information extrac-
tion,” in EMNLP, 2011.

13. J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on freebase from question-
answer pairs,” in EMNLP, 2013.

14. S. Riedel, “Improving the accuracy and efficiency of map inference for markov logic.” UAI,
2008.

15. M.-C. De Marneffe, B. MacCartney, C. D. Manning et al., “Generating typed dependency
parses from phrase structure parses,” in LREC, 2006.

1259

