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1 Introduction

We extend some theoretical results in the frame of concurrency theory, which
were presented in [1]. In particular, we focus on partially ordered sets (posets)
as models of nonsequential processes [2] and we apply the same construction as
in [1] of a lattice of subsets of points of the poset via a closure operator defined
on the basis of the concurrency relation, viewed as lack of causal dependence.

The inspiring idea is related to works by C. A. Petri [6]. Petri proposed a
theory of systems based on abstract models to represent the behaviour and the
properties of concurrent and distributed systems, which takes into account the
principles of the special relativity. A crucial difference between the standard
physical theories and the framework in which Petri develops his own theory
comes from the use of the continuum as the underlying model in physics.

In the combinatorial model proposed by Petri, the usual notion of density of
the continuum model is replaced by two properties strictly related and required
for the posets modelling a discrete space-time: the so-called K-density and a
weaker form called N-density. K-density is based on the idea that any maximal
antichain (or cut) in a poset and any maximal chain (or line) have a non-
empty intersection. A line can be interpreted as a sequential subprocess, while
a cut corresponds to a time instant and K-density requires that, at any time
instant, any sequential subprocess must be in some state or changing its state.
N-density can be viewed as a sort of local density and was introduced by Petri
as an axiom for posets modelling nonsequential processes. Occurrence nets, a
fundamental model of such processes, are indeed N-dense, whereas for example
event structures [5] are in general not N-dense.

In [1] we have considered as model of non sequential processes a class of locally
finite posets and shown that the closed subsets, obtained via a closure opera-
tor defined on the basis of concurrency, correspond in general to subprocesses
which result to be ‘closed’ with respect to the Petri net firing rule. Moreover, we
have shown that if the poset is N-dense, then the lattice of closed subsets is or-
thomodular. Orthomodular lattices are families of partially overlapping Boolean
algebras and have been studied as the algebraic model of quantum logic [7].
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In this paper we generalize our previous results for combinatorial posets and
we show that the N-density of the poset is a sufficient and necessary condition
for the orthomodularity of the lattice of closed subsets.

In an orthomodular lattice, each element is associated to its orthocomplement.
We show that under K-density, given a closed set, any line intersects the closed
set or its orthocomplement. Starting from this result we define the characteristic
map of the family of closed sets that cross the given line and show that this
map is a two-valued state of the lattice of closed sets of the poset. The notion
of two-valued state over orthomodular lattices is used in quantum logic, where
the elements of the lattice are interpreted as propositions of a language, and the
two-valued states on a lattice as consistent assignments of truth values to these
propositions. This suggests to look at the closed sets as propositions in a logic
language, where orthocomplementation corresponds to negation and any line
induces a logical interpretation. Following the same idea, we propose to consider
the dual relation between cuts and Boolean algebras, on the fact that any cut
of a K-dense poset generates a Boolean subalgebra of the lattice.

Finally, we extend to combinatorial posets the relation between the K-density
of a poset and the algebraicity of the lattice of its closed sets, as given in [1].

2 Preliminary Definitions

In this section, we recall basic definitions and notations for partially ordered
sets, lattices and orthomodular lattices, and closure operators.

A partially ordered set (poset for short) is a set P , together with a reflexive,
anti-symmetric, and transitive relation ≤ ⊆ P × P . By < we denote the related
strict partial order.

For x, y ∈ P , we write x l y if x < y and no z ∈ P satisfies x < z < y. Let
•x = { y | y l x }, and x• = { y |x l y }. A poset P = (P,≤) is combinatorial
iff ≤ = (l)∗, where (l)∗ is the transitive and reflexive closure of l. A poset
P = (P,≤) is of finite degree iff ∀x ∈ P : |•x| ∈ N and |x•| ∈ N.

Given a partial order relation ≤ on a set P , we can derive the relations
li = ≤ ∪ ≥, and co = (P × P ) \ li. Intuitively, in our framework x li y means
that x and y are connected by a causal relation, and x co y means that x and y
are causally independent. The relations li and co are symmetric but, in general,
non transitive. Note that li is a reflexive relation, while co is irreflexive.

A clique of a binary relation is a set of pairwise related elements; a clique of
co ∪ idP will be called antichain, or co-set, whereas a clique of li will be called
chain or li-set. Maximal cliques of co ∪ idP and li are called, respectively, cuts
and lines: cuts(P) = {c ⊆ P | c is a maximal clique of co ∪ idP }, lines(P) =
{ λ ⊆ P | λ is a maximal clique of li}
Definition 1. P = (P,≤) is K-dense⇔ ∀c ∈ cuts(P),∀λ ∈ lines(P) : c∩λ 6= ∅.
Obviously, in general |c ∩ λ| ≤ 1.

In the following we are interested in a weaker form of density, called N-
density, strictly related to K-density and which can be viewed as a sort of local
density.
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Definition 2. P = (P,≤) is N-dense ⇔ ∀ x, y, v, w ∈ P : (y < v and y < x and
w < v and (y co w co x co v))⇒ ∃z ∈ P : (y < z < v and (w co z co x)).

Definition 3. An orthocomplemented poset P = 〈P,≤, 0, 1, (.)′〉 is a partially
ordered set P = (P,≤), equipped with a minimum and a maximum element,
respectively denoted by 0 and 1, and with a map (.)′ : P → P , such that the
following conditions are satisfied (where ∨ and ∧ denote, respectively, the least
upper bound and the greatest lower bound with respect to ≤, when they exist):
∀x, y ∈ P , (i) (x′)′ = x, (ii) x ≤ y ⇒ y′ ≤ x′, (iii) x ∧ x′ = 0 and x ∨ x′ = 1.

The map (.)′ : P → P is called an orthocomplementation in P. In an orthocom-
plemented poset, ∧ and ∨, when they exist, are not independent: in fact, the
so-called De Morgan laws hold: (x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′. In the
following, we will sometimes use meet and join to denote, respectively, ∧ and ∨.

Two elements x, y ∈ P are orthogonal, denoted x ⊥ y, iff x ≤ y′.
Definition 4. A two-valued state on a poset P is a mapping s : P 7→ {0, 1}
such that (i) s(1) = 1, (ii) if {ai : i ∈ N} is a sequence of mutually orthogonal
elements in P, then s(

∨
i∈N ai) =

∑
i∈N s(ai).

A poset P is called orthocomplete when it is orthocomplemented and every
pairwise orthogonal countable subset of P has a least upper bound.

A lattice L = (L,≤) is a poset in which, for any pair of elements, meet and
join exist. A lattice L is complete when the meet and the join of any subset of
L exist.

Definition 5. An orthomodular poset P = 〈P,≤, 0, 1, (.)′〉 is an orthocomplete
poset which satisfies the condition: x ≤ y ⇒ y = x ∨ (y ∧ x′), which is usually
referred to as the orthomodular law.

Let X be a set, and α ⊆ X × X be a symmetric relation. Given A ⊆ X
we can define an operator (.)⊥ on the powerset of X: A⊥ = {x ∈ X | ∀y ∈
A : (x, y) ∈ α}. By applying twice the operator (.)⊥, we get a new operator
C(.) = (.)⊥⊥ = ((.)⊥)⊥. The map C on the powerset of X is a closure operator
on X; i.e.: for all A,B ⊆ X, (i) A ⊆ C(A); (ii) A ⊆ B ⇒ C(A) ⊆ C(B); (iii)
C(C(A)) = C(A) [4]. A subset A of X is closed if A = A⊥⊥. The family L(X)
of all closed sets of X, ordered by set inclusion, is then a complete lattice [3].

When α is also irreflexive, the operator (.)⊥, applied to elements of L(X),
is an orthocomplementation; the structure L(X) = 〈L(X),⊆, ∅, X, (.)⊥〉 then
forms an orthocomplemented complete lattice [3].

A complete lattice L is algebraic if, for each a ∈ L, a =
∨{k ∈ K(L) : k ≤ a},

where K(L) is the set of compact elements, and k ∈ L is compact if, for every
subset S in L, k ≤ ∨S ⇒ k ≤ ∨T , for some finite subset T of S, (see [4]).

3 A Closure Operator Based on Concurrency

In this section we consider the closed sets induced by the concurrency relation in
partially ordered sets by applying the construction recalled in the previous sec-
tion. We study the resulting properties of closed sets, investigating in particular
the relations with N-density and K-density of the poset.
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Let P = (P,≤) be a poset. We can define an operator on subsets of P ,
which corresponds to an orthocomplementation, since co is irreflexive, and by
this operator we define closed sets.

Definition 6. Let S ⊆ P , then

(i) S⊥ = {x ∈ P | ∀y ∈ S : x co y} is the orthocomplement of S;

(ii) if S = (S⊥)⊥, then S is a closed set of P = (P,≤).

The set S⊥ contains the elements of P which are not in causal relation with
any element of S. Obviously, S ∩ S⊥ = ∅ for any S ⊆ P , however in general
S ∪ S⊥ 6= P . In the following, we sometimes denote (S⊥)⊥ by S⊥⊥. Note that:
∀c ∈ cuts(P), c⊥ = ∅ and c⊥⊥ = P .

We call L(P ) the collection of closed sets of P = (P,≤). By the results on
closure operators recalled in the previous section and since the relation co is
irreflexive, we know that L(P ) = 〈L(P ),⊆, ∅, P, (.)⊥〉 is an orthocomplemented
complete lattice, in which the meet is just set intersection, while the join of a
family of elements is given by set union followed by closure.

Now we present our principal result for combinatorial posets: N-density is
necessary and sufficient for the orthomodularity of L(P ).

Theorem 1. If P = (P,≤) is combinatorial, then L(P ) is orthomodular if and
only if P = (P,≤) is N-dense.

Note that the orthomodular law requires that, if an element is strictly bigger than
another one, then the meet between the first element and the orthocomplement
of the second one should be different from the minimum element. Hence, if A ⊂ B
then B contains at least an element x concurrent with A.

The orthomodular law is weaker than the distributive law. Orthocomple-
mented distributive lattices are called Boolean algebras. Orthomodular lattices
can therefore be considered as a generalization of Boolean algebras.

Now we characterize the K-density of a poset P = (P,≤) by a property of
the closed sets. In particular, we show that the combinatorial N-dense posets are
K-dense if and only if, given a closed set, any line intersects either the closed set
or its orthocomplement.

Theorem 2. If P = (P,≤) is combinatorial and N-dense, then

P = (P,≤) is K-dense⇔ ∀S ∈ L(P ),∀λ ∈ lines(P), λ ∩ (S ∪ S⊥) 6= ∅

From Theorem 2 it follows a crucial relation between lines and closed sets;
namely, given a closed set S, a line λ crosses either S or S⊥ (λ ∩ S 6= ∅ ⇐⇒
λ ∩ S⊥ = ∅).

We now define a map associated to a line of P = (P,≤): the characteristic
map of the family of closed sets that cross the given line.

Definition 7. Let λ ∈ lines(P). Define ∆(λ) = {S ∈ L(P ) | S ∩ λ 6= ∅}, and
δλ : L(P ) → {0, 1} such that: for each S ∈ L(P ), δλ(S) = 1 if S ∈ ∆(λ),
δλ(S) = 0 otherwise.
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Theorem 3. Let P = (P,≤) be a K-dense poset. The map δλ is a two-valued
state of the lattice L(P ).

This result allows to state that any line in a combinatorial and K-dense poset
P = (P,≤) identifies a two-valued state in the lattice of closed sets L(P ).

There is a dual relation between the cuts of P = (P,≤) and the Boolean
subalgebras in the lattice of closed sets L(P ): any cut τ ∈ cuts(P) generates a
Boolean subalgebra of L(P ) [7].

The next theorem states that, for combinatorial posets, K-density and degree
finiteness are sufficient for the algebraicity of the lattice of closed sets.

Theorem 4. The family L(P ) of the closed sets of a combinatorial, K-dense
and degree finite poset forms an algebraic lattice.

In conclusion, we have proved that for combinatorial posets, N-density implies
the orthomodularity of the lattice of closed sets defined on the basis of concur-
rency. An orthomodular lattice is always regular ([7]) and hence can be seen as
a family of partially overlapping Boolean algebras.

Moreover, we have shown that for combinatorial posets the K-density de-
termines a crucial relation between lines and closed sets: given a closed set a
line crosses either the closed set or its orthocomplement. This suggests to look
at the family of closed sets as the set of propositions in a logic language and
at the lines as two-valued states and hence as interpretations (models) of the
propositions. In general, the lattice of closed sets is not a Boolean algebra, so
that the resulting logic is non-classical; we point to the cuts of the combinatorial
poset as the Boolean substructures of the overall lattice.

Finally, we proved that K-density, together with degree finiteness, is a suffi-
cient condition for the algebraicity of the lattice.
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