
Massively Parallel Analysis of Similarity Matrices on
Heterogeneous Hardware

Tobias Rawald
Humboldt-Universität zu Berlin

and
Helmholtz Centre Potsdam -

GFZ German Research
Centre for Geosciences

trawald@gfz-potsdam.de

Mike Sips
Helmholtz Centre Potsdam -

GFZ German Research
Centre for Geosciences

sips@gfz-potsdam.de

Norbert Marwan
Potsdam Institute for Climate

Impact Research
marwan@pik-
potsdam.de

Ulf Leser
Humboldt-Universität zu Berlin

leser@informatik.hu-
berlin.de

ABSTRACT
We conduct a study that investigates the performance char-
acteristics of a set of parallel implementations of the recur-
rence quantification analysis (RQA) using OpenCL. Being
an important tool in climate impact and medical research,
a central aspect of RQA is the construction of a binary ma-
trix that captures the similarities of multi-dimensional vec-
tors. Based on this matrix, quantitative measures are de-
rived. Starting with a baseline implementation, we diversify
its properties along four dimensions: the representation of
input data, the materialisation of the similarity matrix, the
representation of similarity values and the recycling of inter-
mediate results. We evaluate the performance of five imple-
mentations by varying the input parameter assignments, the
hardware platform employed for execution and the default
OpenCL compiler optimisations status. We come to the
conclusion that the performance of conducting RQA highly
depends on the selected implementation as well as the com-
bination of these variables under investigation. Differences
in runtime of up to one order of magnitude are observed,
emphasising the importance of performance studies as pre-
sented here.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
G.1.0 [Numerical Analysis]: General—Parallel Algorithms

Keywords
Similarity Matrix, Parallel Algorithm, Heterogeneous Hard-
ware, Recurrence Quantification Analysis

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

1. INTRODUCTION
Recurrence quantification analysis (RQA) is a statistical

method to quantify the recurrent behaviour of dynamic sys-
tems, captured in one or more time series [11]. It has proven
its potential in a variety of applications, such as the investi-
gation of the climate system [12] and the early detection of
epileptic states [3].

RQA is based on extracting multi-dimensional vectors from
time series; each vector corresponds to a reconstructed state
of the system at a point in time. To identify recurrences,
these vectors are compared regarding their mutual similar-
ities. The results of the comparisons are stored within a
binary similarity matrix.

Matrix elements referring to pairs of vectors considered
to be similar form vertically and diagonally connected se-
quences. Using frequency distributions of those lines, RQA
derives quantitative measures. They allow to draw conclu-
sions concerning the dynamics of the system under investi-
gation [11].

Focussing on very long time series, in [13] we introduced
coarse-grained parallelisation strategies to the problem of
RQA. We presented an approach that divides the similarity
matrix into multiple sub matrices, computing intermediate
results for each sub matrix. This allows to process several
sub matrices concurrently. Within a final step, the interme-
diate results are recombined into a global RQA result.

Even though our approach is independent of the concrete
implementation, in [13] we compare a non-parallel version
of RQA to a prototype of our approach based on OpenCL,
which performs parts of the computation in a massively par-
allel manner. Exploiting the parallel computing capabilities
of modern GPU processors, we achieved drastic performance
improvements.

However, executing the prototype on different hardware
platforms, we discovered that the relative performance im-
provements vary. Hence, in this publication we conduct a
study that exemplarily examines a selection of factors influ-
encing the overall performance characteristics of RQA.

We provide five implementations, which differ concern-
ing input data representation, similarity matrix materialisa-
tion, similarity value representation and intermediate results
recycling. Given a specific implementation, we investigate



0.0!

Time Series:!

m = 2 (Embedding Dimension)!
t = 2 (Time Delay)!

Extracted Vectors: !

0.7! 1.0! 0.7! 0.0! -0.7! -1.0! -0.7! 0.0! 0.7! 1.0! 0.7! 0.0!

s1!

0.0!
1.0!

s2!

0.7!
0.7!

s3!

1.0!
0.0!

s4!

0.7!
-0.7!

s5!

0.0!
-1.0!

s6!

-0.7!
-0.7!

s7!

-1.0!
0.0!

s8!

-0.7!
0.7!

s9!

0.0!
1.0!

s10!

0.7!
0.7!

s11!

1.0!
0.0!

t1! t2! t3! t4! t5! t6! t7! t8! t9! t10! t11! t12! t13!

Figure 1: Vector Extraction. Given a time series
capturing the sine function at multiples of π/4 start-
ing at 0, consisting of thirteen data points. Applying
the parameter values m = 2 and t = 2, eleven vectors
are extracted.

the influence of the RQA input parameter assignments, the
hardware platform used for execution and whether default
OpenCL compiler optimisations are enabled.

The results of our experiments show, that the performance
of each implementation highly depends on the combination
of hardware platform, default OpenCL compiler optimisa-
tions status as well as RQA input parameter assignments.
Providing general guidelines, we support the selection of
an implementation given a specific RQA scenario as well
as computing environment (see Sect. 5.2). Recognising the
fact that the exploration space covered is limited, we see this
study as a first effort to address the performance comparison
of parallel RQA implementations.

We believe that our work, apart from providing highly
interest into the nature of RQA, is also relevant for other
application areas that face similar problems, including near-
est neighbour search.

2. OVERVIEW OF RECURRENCE QUAN-
TIFICATION ANALYSIS

Recurrence quantification analysis is a method in the con-
text of time series analysis [11]. It is based on:

1. extracting multi-dimensional vectors from a set of time
series,

2. creating a similarity matrix by calculating pairwise
vector similarities, and

3. quantifying small-scale structures within the similarity
matrix.

There are several approaches for conducting each of these
steps. For the sake of clarity, in this paper we consider per-
forming RQA with the following properties: We are given a
single time series consisting of floating point numbers; each
value refers to a measurement of an output variable, e.g.,
the air temperature, of a dynamic system, e.g., the Earth’s
climate, at a specific point in time. To extract the multi-
dimensional vectors, the so called time delay method is ap-
plied, building on the two parameters embedding dimension
(m) and time delay (t). Starting at the first element of the
time series, vectors of size m with the temporal offset t are
extracted (see Fig. 1).

d!

v!

s1!

s1!

s11!

s11!

Figure 2: Thresholded Recurrence Plot. Referring
to the example from the previous figure, the eleven
vectors extracted are compared regarding their mu-
tual similarities. Concerning the vector compar-
isons, the Euclidean norm is applied, using a sim-
ilarity threshold of 1.0. The column v contains two
lines; one of length 2 and one of length 3. The diag-
onal d comprises a line of length 4.

To compare those vectors concerning their mutual similar-
ity, a metric such as the Euclidean norm is applied. By in-
troducing a threshold condition regarding the vector similar-
ities, all matrix elements fulfilling the condition are assigned
the value 1 (recurrence point), whereas pairs of non-similar
vectors are assigned the value 0. A visual representation
of this matrix is referred to as thresholded recurrence plot
(see Fig. 2). Recurrence points, encoded using the colour
black, form vertical and diagonal lines, which are captured
in corresponding histograms of line lengths. Based on these
histograms, quantitive measures are calculated, including for
example the average vertical line length.

3. PARALLEL RQA ALGORITHM
To enable a systematic analysis, we divide the problem of

conducting RQA into three operators:

I The creation of the binary similarity matrix.
(create matrix)

II The detection of vertical lines within the similarity ma-
trix. (detect vertical lines)

III The detection of diagonal lines within the similarity ma-
trix. (detect diagonal lines)

We refine these operators into atomic units of computa-
tion:

I The computation of the similarity of a single pair of
multi-dimensional vectors.

II The inspection of a single column of the similarity ma-
trix concerning vertical lines.



III The inspection of a single diagonal of the similarity ma-
trix concerning diagonal lines.

Having extracted N multi-dimensional vectors, the maxi-
mum degree of parallelism varies between N2 (I), N (II) and
2N − 1 (III).

Performing similar operations on different data objects,
each atomic unit is fully independent of any other unit re-
garding the execution of a single operator. However, there
exist interdependencies between atomic units belonging to
different operators: Prior to the detection of lines within a
single column or diagonal, the corresponding vector similar-
ities have to be computed.

The structure presented above allows us to perform RQA
in a parallel manner. Although subdividing the problem
into multiple operators, we mainly focus on the cumulative
performance of all operators, regarding the evaluation.

4. EXPERIMENTAL SETUP

4.1 Implementation Strategies
Building on the OpenCL framework, we consider a com-

puting environment that consists of a host device and a sin-
gle computing device. The code executed on the host device
is written in Python 2.7, utilising the package PyOpenCL.
The atomic units of computation described in Sect. 3 are
mapped to OpenCL kernels, implemented in OpenCL C.

We provide five RQA implementations, which differ along
the following dimensions:

• Input Data Representation,

• Similarity Matrix Materialisation,

• Similarity Value Representation, and

• Intermediate Results Recycling.

In the following, we introduce each dimension and moti-
vate the corresponding values. Regarding the evaluation, we
include only a subset of possible value combinations. Nev-
ertheless, we ensure that each value is featured within at
least one implementation. Tab. 1 gives an overview of the
individual properties of each implementation considered (see
Impl. A–E).

Input Data Representation
Conducting RQA, multi-dimensional vectors are extracted
from a time series. Regarding their representation within
the memory of the computing device, the set of vectors may
either be stored row-wise or column-wise. Choosing a Row-
Store layout, all components of a single vector are stored
consecutively. This requires to reorganise the data given by
the input time series.

However, having to perform read-only operations on the
vector data, a Column-Store layout [16] may be advanta-
geous. Applying this approach, all values belonging to the
same vector component are stored contiguously. Since seg-
ments of the input time series represent those columns, it
can be transferred to the memory of the computing device
without having to perform reorganisations.

0!

Number of Vectors: 100!
Size of Similarity Matrix: 100 x 100!

1! 2! 99! 0! 1! 99!Column ID:!

32-bit Integer Value!

…! …! …!

0! 1! 31!…!Row ID:! 32! 33! 63!…!

2!

Figure 3: Bitwise Similarity Value Representation.
The 32 bits of an integer value refer to a single col-
umn. Integer values stored contiguously refer to dif-
ferent columns. Each bit within an integer value
refers to a different row of the similarity matrix.

Similarity Matrix Materialisation
The vectors extracted from the time series are compared re-
garding to their mutual similarities. The resulting binary
similarity values are used as input for the detection of verti-
cal and diagonal lines. The corresponding similarity matrix
may be stored within the memory of the computing device
(Yes). This requires that the size of this memory is suffi-
ciently large enough.

Avoiding this restriction, the similarity values may be
computed on-the-fly by transferring the computations to the
operators for detecting vertical and diagonal lines (No). Pre-
vious work has shown that the computation of the pairwise
similarities requires extensive computing [4]. We are inter-
ested, if there are conditions where computing similarity val-
ues outperforms writing them to and reading them from the
memory.

Similarity Value Representation
Since device memory is a limited resource, the similarity
matrix shall be represented in the most efficient manner.
Using the bit-compression approach [14], a single bit is used
to encode the binary result of a similarity comparison (Bit).
A schematic illustration of the underlying memory layout is
depicted in Fig. 3.

Considering the detection of lines, this approach allows to
process up to 32 similarity values of a single column without
having to read additional data from the memory. In addi-
tion, it ensures that similarity values belonging to different
columns are read using a single read instruction.

Nevertheless, this compression approach may introduce a
computing overhead, having negative effects on the over-
all performance. Hence, we compare it to representing a
similarity value using the smallest data object addressable
(Byte).

Intermediate Results Recycling
To avoid matrix materialisation, similarity values may be
computed on-the-fly during the line detection process, as ex-
plained earlier. Assuming that the execution model adheres
to operator-at-a-time, similarity values computed within one
line detection operator may be reused later on. Applying
this concept of recycling [7], performance improvements may
be exposed.

Omitting the create matrix operator, we integrate the ma-
terialisation of the similarity values in detect vertical lines
and reuse the results during the detection of diagonal lines



Table 1: Implementation Comparison.
Dimension Value Impl. A Impl. B Impl. C Impl. D Impl. E

Input Data Representation
Row-Store X

Column-Store X X X X

Similarity Matrix Materisalisation
Yes X X X X
No X

Similarity Value Representation
Byte X X X
Bit X

Intermediate Results Recycling
Yes X
No X X X X

(Yes). Here, the challenge is that the maximum degree of
parallelism for detecting vertical lines is significantly smaller
than creating the similarity matrix individually (No). Thus,
our goal is to reveal whether there are conditions under
which the positive impact of eliminating one operator is large
enough to overcome this limitation.

4.2 Hardware Platforms
We evaluate each implementation using three computing

devices. Each device is part of a system that runs on a 64-
bit version of openSUSE. This includes an Intel Core i7-3820
CPU running at up to 3.8 GHz, which is supplied with 16
GB of random access memory.

In addition, we employ an NVIDIA GeForce GTX 690
graphics card, equipped with two GPU processors running
at up to 1.019 GHz; each processor is supplied with 2 GB
of memory. In the context of our evaluation, only one of
those processors is used. The underlying system has version
331.49 of the NVIDIA graphics driver installed.

Adding diversity regarding the GPU architectures, we em-
ploy an AMD Radeon HD 7470 GPU, equipped with a single
processor running at up to 0.775 GHz. It is supplied with
0.5 GB of memory. The underlying system has version 14.9
of the AMD Catalyst driver installed.

4.3 Parameter Space
Given the three hardware platforms, we identified the fol-

lowing factors additionally influencing the performance char-
acteristics:

• the parameters steering the properties of the similarity
matrix, including:

– the time series,

– the embedding dimension,

– the time delay,

– the similarity measure, and

– the similarity threshold, as well as

• the default OpenCL compiler optimisations.

To restrict the exploration space, we reduce the number of
degrees of freedom addressed within the evaluation to two.
This includes varying the embedding dimension between 1
and 32. Moreover, we observe the impact of disabling the de-
fault OpenCL compiler optimisations using the compiler flag
-cl-opt-disable. We consider evaluating the impact of those

optimisations as highly relevant, since they are vendor spe-
cific and may affect the computing results, e.g., the default
activation of relaxed math operations on the NVIDIA GPU.

We employ a time series capturing the sine function, simi-
lar to Fig. 1, consisting of 10,000 data points. We choose this
rather short length since we have to ensure that the result-
ing similarity matrix fits into the memory of all computing
devices applied.

Regarding the similarity comparisons, we select the Eu-
clidean norm in combination with a threshold of 1.0. Initial
experiments have shown that the time delay parameter does
not have considerable influence on the performance. Hence,
we set this parameter to 2.

5. EVALUATION

5.1 Procedure
Concerning the evaluation, we consider an experiment to

be a combination of:

• hardware platform,

• implementation,

• embedding dimension, and

• default OpenCL compiler optimisations status.

To reduce the impact of outliers, we conduct each exper-
iment five times. For the purpose of measuring the runtime
behaviour of the implementations, we rely on profiling events
as part of the OpenCL API, collecting information about the
average runtime of the three operators. Furthermore, we use
the sprofile [1] command line tool to retrieve extended per-
formance information provided by the AMD GPU.

5.2 General Guidelines
The cumulative runtime results are depicted in Fig. 4,

having the default OpenCL compiler optimisations disabled,
and Fig. 5, having them enabled.

As expected, increasing the dimensionality of the vectors,
the runtime increases as well. Enabling the default com-
piler optimisations has a positive impact on the cumulative
runtime, independent of the implementation as well as the
hardware platform employed. Considering the GPU devices,
implementation A, using a row-wise layout for storing the
multi-dimensional vectors, benefits the least. Whereas the
relative difference in runtime between A and the other imple-
mentations is narrow considering the CPU, it widens more



drastically regarding the GPU devices. Hence, considering
GPU devices, a row-wise layout should be avoided.

Compared to the other implementations, B shows well-
balanced performance characteristics, relying on the column-
wise memory layout. Applying an embedding dimension of
32, it is among the two fastest implementations independent
of the hardware platform applied. Eliminating the similarity
matrix materialisation, implementation C delivers perfor-
mance improvements considering small embedding dimen-
sions, as expected.

The usage of the bit-representation in implementation D
proves to be reasonable for larger embedding dimensions.
The corresponding runtime curves start at a higher plateau,
but have the smallest slope, independent of hardware plat-
form and default compiler optimisations status. Diminishing
the compression overhead with increasing dimensionality,
the curves of D converge towards the corresponding curves
of B.

Recycling intermediate results, as employed in implemen-
tation E, does not present runtime benefits across all hard-
ware platforms. Considering the CPU, it is the fastest imple-
mentation, for nearly all embedding dimension values. Re-
garding the GPU devices, E delivers runtime improvements
for vectors having small dimensionality, but is eventually
outperformed by implementation B and D.

Considering a given hardware platform, time series as well
as RQA input parameter assignments, we propose employing
an implementation that comprises the following features:

• column-wise input data representation,

• materialisation of the similarity matrix,

• byte representation of the similarity values, and

• usage of a separate create matrix operator.

Although this combination does not deliver the best per-
formance under all circumstances, it appears to be a reason-
able choice based on the evaluation results.

5.3 Detailed Performance Analysis
We present selected details on the impact of using differ-

ent implementation strategies. The runtime results as well
as the performance counter values listed below refer to an
embedding dimension of 32.

Input Data Representation
Comparing the hardware platforms applied, the row-store
layout for representing the vectors has the least worst im-
pact considering the CPU. Having the default compiler opti-
misations disabled, the create matrix operator of implemen-
tation A (0.79s) is as nearly as fast as the same operator of B
(0.75s). Enabling the optimisations, creating the matrix in
A (0.44s) consumes twice as much runtime as in B (0.22s).

Additionally, the impact of changing the access pattern to
the device memory is illustrated by the cache hit rate pro-
duced on the AMD GPU. Disabling the compiler optimisa-
tions, the create matrix operator of A has a rate of 23.39%,
whereas executing the same operator of B results in a rate
of 91.36%.

Similarity Matrix Materialisation
Not materialising the similarity matrix presents advantages
concerning the cumulative runtime using small embedding

dimensions. Regarding the NVIDIA GPU, the break-even
point of implementation B and C is a dimensionality of 3.

Experiencing a drastic increase in fetch operations, the
ratio between the amount of arithmetical logical unit (ALU)
instructions performed by the AMD GPU in comparison to
the number of fetch unit instructions decreases; from 17.97
(B) to 2.25 (C ) regarding the detection of vertical lines,
having the default optimisations enabled.

Similarity Value Representation
Encoding similarity values using a single bit leads to an in-
crease in ALU instructions for all three operators, reflecting
the corresponding computing overhead. However, the cus-
tom layout presented in Sect. 4 improves the memory access.
Considering the AMD GPU, this results in an increased
cache hit rate for detecting diagonal lines; from 3.26% (B)
to 21.52% (D), having the default compiler optimisations
enabled.

Intermediate Results Recycling
Focussing on the execution on the CPU, the reuse of sim-
ilarity values in E is advantageous compared to any other
implementation. Enabling the default OpenCL compiler op-
timisations, implementation E (0.31s) outperforms its direct
successor B (0.37s), regarding the cumulative runtime.

6. RELATED WORK
A number of RQA implementations are available, posing

restrictions concerning the size of the similarity matrices
that can be processed [10, 17]. The Commandline Recur-
rence Plots (CRP) software allows to analyse time series of
arbitrary size [9]. However, it relies on computing the RQA
measures using a single CPU thread. For an overview of free
RQA software, we refer to [2].

In [15] prior efforts to bring RQA to the GPU are de-
scribed, comprising several limitations that hamper the anal-
ysis of long time series. This includes being restricted to
similarity matrices that fit into the memory of the GPU de-
vice. Relying on the concepts of Divide & Recombine [6],
our approach presented in [13] allows to process similarity
matrices of arbitrary size. We demonstrated the capabilities
of our approach for a specific RQA scenario from climate
impact research. Examining a time series consisting of over
one million data points, we were able to reduce the runtime
from over six hours, using the CRP software, to almost five
minutes, using an OpenCL implementation of our approach
running on two GPUs.

Considerable efforts have been made to accelerate database
operations. Exploiting the computing capabilities of general-
purpose graphics cards, in [5] several parallel implementa-
tions for database operations, such as semi-linear query, are
presented. The conclusion is that depending on the oper-
ation investigated, GPUs enable drastic performance im-
provements.

A prominent database operation similar to RQA is the
k-nearest neighbour search (kNN). Within both techniques,
comparing a set of objects regarding their mutual similarities
is a key aspect. Adapting kNN processing to many-core sys-
tems, a large amount of similarity comparisons is performed
concurrently. Experimental results illustrate that executing
a parallelised version of the algorithm on the GPU is two
orders of magnitudes faster than performing the search on
the CPU [4].



(a) Intel Core i7-3820

(b) NVIDIA GeForce GTX 690

(c) AMD Radeon HD 7470

Figure 4: Disabling Default OpenCL Compiler
Optimisations. Cumulative runtime of executing
the operators create matrix, detect vertical lines and
detect diagonal lines.

(a) Intel Core i7-3820

(b) NVIDIA GeForce GTX 690

(c) AMD Radeon HD 7470

Figure 5: Enabling Default OpenCL Compiler
Optimisations. Cumulative runtime of executing
the operators create matrix, detect vertical lines and
detect diagonal lines.



Previous work focussed on employing a set of optimisa-
tions to gain runtime improvements on a specific device.
To the best of our knowledge, we provide the first struc-
tured approach to analyse the performance characteristics
of parallel RQA implementations. In this regard, we benefit
from using the OpenCL framework for heterogeneous com-
puting [8], which allows us to execute identical code on a
variety of hardware platforms.

7. CONCLUSION
We present a structured approach to evaluate the per-

formance of five parallel implementations analysing binary
similarity matrices in the context of RQA. Assessing the
performance of each implementation, we vary their charac-
teristics along four dimensions, including the representation
of input data, the materialisation of the similarity matrix,
the representation of the similarity values as well as the re-
cycling of intermediate results.

Building on the OpenCL framework, we investigate the
influence of the hardware platform used for execution, in-
put parameter assignments and default OpenCL compiler
optimisations enabled on the performance. We examine the
runtime behaviour as well as additional indicators, e.g., the
cache hit rate. We come to the conclusion, that an imple-
mentation using column-wise input data representation in
combination with similarity matrix materialisation provides
reasonable performance, regarding a given RQA scenario.
Subsuming, we see our study as a first effort towards a com-
prehensive analysis of parallel RQA implementations.

8. ACKNOWLEDGEMENTS
This work is supported by grants from the Deutsche

Forschungsgemeinschaft, Graduiertenkolleg METRIK
(GRK 1324).

9. REFERENCES
[1] Advanced Micro Devices, Inc. APP Profiler Settings.

http://developer.amd.com/tools-and-sdks/

archive/amd-app-profiler/user-guide/

app-profiler-settings/, 2014.

[2] J. Belaire-franch and D. Contreras. Recurrence plots
in nonlinear time series analysis: Free software.
Journal of Statistical Software, 2002.

[3] K. C. Chua, V. Chandran, U. R. Acharya, and C. M.
Lim. Computer-based analysis of cardiac state using
entropies, recurrence plots and Poincare geometry.
Journal of Medical Engineering & Technology,
32(4):263–272, 2008.

[4] V. Garcia, E. Debreuve, and M. Barlaud. Fast k
nearest neighbor search using GPU. In 2008 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pages 1–6, 2008.

[5] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast Computation of Database
Operations Using Graphics Processors. In Proceedings
of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’04, pages
215–226, New York, NY, USA, 2004. ACM.

[6] S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi,
and W. S. Cleveland. Large complex data: divide and
recombine (D&R) with RHIPE. Stat, 1(1):53–67, 2012.

[7] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A.
Gonçalves. An Architecture for Recycling
Intermediates in a Column-store. In Proceedings of the
2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 309–320,
New York, NY, USA, 2009. ACM.

[8] Khronos Group. OpenCL 1.1 Specification.
http://www.khronos.org/registry/cl/specs/

opencl-1.1.pdf, Sept. 2010.

[9] N. Marwan. Commandline Recurrence Plots, Version
1.13z.
http://tocsy.pik-potsdam.de/commandline-rp.php,
2006.

[10] N. Marwan. CRP Toolbox, Version 5.17.
http://tocsy.pik-potsdam.de/CRPtoolbox, 2013.
platform independent (for Matlab).

[11] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths.
Recurrence Plots for the Analysis of Complex
Systems. Physics Reports, 438(5–6):237–329, 2007.

[12] D. I. Ponyavin and N. V. Zolotova. Cross Recurrence
Plots Analysis of the North-South Sunspot Activities.
volume 2004, pages 141–142, 2005.

[13] T. Rawald, M. Sips, N. Marwan, and D. Dransch. Fast
Computation of Recurrences in Long Time Series. In
Translational Recurrences. From Mathematical Theory
to Real-World Applications, volume 103 of Springer
Proceedings in Mathematics & Statistics, pages 17–29.
Springer International Publishing, 2014.

[14] M. A. Roth and S. J. Van Horn. Database
Compression. SIGMOD Rec., 22(3):31–39, Sept. 1993.

[15] T. Rybak. Using GPU to Improve Performance of
Calculating Recurrence Plot. http://www.wi.pb.edu.
pl/pliki/nauka/zeszyty/z6/Rybak-full.pdf, 2010.

[16] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: A Column-oriented DBMS. In
Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 553–564.
VLDB Endowment, 2005.

[17] C. L. Webber Jr. RQA Software, Version 14.1.
http://homepages.luc.edu/~cwebber, 2013. only for
DOS.


