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ABSTRACT
In this paper, we present a study to counter privacy vio-
lation due to unsafe data correlation. We propose a safe
correlation requirement to keep correlated values bounded
by l-diversity and evaluate the trade-off to be made for the
sake of a strong privacy guarantee. Finally, we present a
correlation sanitization algorithm that enforces our safety
constraint and demonstrates its efficiency.

1. INTRODUCTION
Preserving privacy in outsourced databases has received

considerable attention in the last decade. Several privacy
constraints [23, 22, 16, 11] have been defined on datasets to
prevent disclosure of sensitive information related to indi-
viduals. These constraints are based on generalizations that
transform quasi-identifiers values into a general form and
create quasi-identifier groups to eliminate possible linking
attacks. A second approach is table decomposition: Quasi-
identifiers and sensitive values are placed in separate tables,
and tuples are divided into groups that are linked in a way
that provides sufficient uncertainty in the join criteria to
meet privacy constraints. This approach has been alter-
nately termed anatomy [29], fragmentation [4] and slicing
[14]; we will use the term anatomy to refer to this class
of approaches, as it does not have other meanings in the
database community.

Anatomy has the advantage that exact data values are
maintained, allowing data and actions on individual data
values to be outsourced. Only the link between identifying
and sensitive values is generalized. We envision this work
being used in the context of [20], where the actual links
(and in our case, some data values) are encrypted to ensure
the server cannot violate privacy, while still enabling some
server-side use of the data.

As an example, Figure 1a shows prescription history, where
the attribute DrugName is sensitive. Figure 1b represents
an anatomized version of Table Prescription with attributes
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separated into PrescriptionQIT and PrescriptionSNT . The
anonymized table satisfies the 2-diversity privacy constraint[16];
given the 2-diverse table, an adversary can at best link a pa-
tient to a drug with a probability equal to 1/2.

Despite anatomy’s efficiency in preserving privacy and
data fidelity, it and other generalization based techniques
defects when some types of correlation exist in the data.

The most obvious problem is when values in identifiers (or
quasi-identifiers) are directly correlated with sensitive val-
ues as discussed in [27] and [8]. Based on knowledge of such
correlation (possibly learned from the data), an adversary
may increase the probability that a given individual is linked
to a given sensitive value with probability greater than the
1/l enforced by the anatomization groups. The inter quasi-
identifying group correlation between United States and Retinoic
Acid given in Figure 1 shows that with respect to knowledge
mined from the anonymized data, an adversary is able to as-
sert knowledge regarding the global distribution of countries
and drugs. Such global distribution increases the probability
of linking individuals to sensitive values on the basis of their
countries. The authors of [27, 8] demonstrated how correla-
tion can be used to violate privacy constraints. They argued
that the (sometimes implicit) assumptions of an i.i.d. model
and random worlds model, when tuple independence does
not hold in the actual data, allows adversaries to learn and
use cases where these assumptions do not hold to violate pri-
vacy. In this paper, we shed more light on the threat of data
correlation that could be found after a näıve anonymization
of a table, and give methods to control that risk. While we
use the anatomy model [29] in our examples, this work also
applies to other bucketization techniques such as fragmen-
tation [4] and slicing [14].

1.1 Contributions
We present a study to counter privacy violations and at

the same time preserve data utility. Our contributions can
be summarized as follows:

• We propose a safe correlation requirement to reduce
the threat of exposed correlations between quasi-identifier
and sensitive attributes. We show that under this re-
quirement, correlations can be bounded by a trade-off
between utility and privacy.

• We provide a sanitization algorithm to ensure safety
from correlations by solving a linear programming prob-
lem in a post-anonymization process.

The key idea is that we do not completely hide correlations



Country Manufacturer Drug Name
United States Envie De Neuf Mild Exfoliation
Columbia Gep-Tek Azelaic acid
United States Raphe Healthcare Retinoic Acid
United States Envie De Neuf Mild Exfoliation
France Raphe Healthcare Azelaic acid
United States Raphe Healthcare Retinoic Acid
Columbia Jai Radhe Cytarabine
United States Raphe Healthcare Azelaic acid
Columbia Raphe Healthcare Retinoic Acid
France Jai Radhe Cytarabine
United States Raphe Healthcare Azelaic acid
United States Raphe Healthcare Retinoic Acid
Columbia PQ Corp. Epsom. Magnesium
United States Envie De Neuf Mild Exfoliation
United States Jai Radhe Adapalene

(a) Original Prescription table

Country Manufacturer GID GID Drug Name
United States Envie De Neuf 1 1 Mild Exfoliation
Columbia Gep-Tek 1 1 Azelaic acid
United States Raphe Healthcare 1 1 Retinoic Acid
United States Envie De Neuf 2 2 Mild Exfoliation
France Raphe Healthcare 2 2 Azelaic acid
United States Raphe Healthcare 2 2 Retinoic Acid
Columbia Jai Radhe 3 3 Cytarabine
United States Raphe Healthcare 3 3 Azelaic acid
Columbia Raphe Healthcare 3 3 Retinoic Acid
France Jai Radhe 4 4 Cytarabine
United States Raphe Healthcare 4 4 Azelaic acid
United States Raphe Healthcare 4 4 Retinoic Acid
Columbia PQ Corp. 5 5 Epsom. Magnesium
United States Envie De Neuf 5 5 Mild Exfoliation
United States Jai Radhe 5 5 Adapalene

(b) Anonymized Prescription table PrescriptionQIT and
PrescriptionSNT

Figure 1: Example scenario

(we want to support learning from the data), this follows
the spirit of t-closeness [11], but building on anatomy allows
us greater grouping flexibility without the utility loss from
over-generalizing data values.

2. ADVERSARY MODEL
We assume that both the adversary and defender have

knowledge of correlations in the data; in the case of the ad-
versary, his/her knowledge is mainly based on what can be
learned from the anonymized data. As for the defender, it
can include any correlations that can be learned from the
original data. We also assume that an adversary has out-
side information enabling it to link (quasi)-identifying in-
formation with individuals. Thus all quasi-identifiers and
identifiers are considered individually identifiable.

We assume that the adversary does not have prior knowl-
edge of sensitive values for specific individuals. For example,
if an adversary knew the prescriptions being taken by all of
the individuals in Figure 1b except for a specific individual,
then it is clearly possible for the adversary to determine
his/her prescriptions. While there are methods to deal with
data analysis under such a scenario up to a point (e.g., [5]),
they violate our goal of storing and disclosing actual data
values. Full protection against other kind of background
knowledge is impossible while still maintaining data utility
[5].

3. RELATED WORK
The anatomy [29], fragmentation [4] and slicing [14] mod-

els have been proposed to provide a technique that ensures
privacy and preserves data granularity lost using general-
ization - based approaches such as k-anonymity [22, 23],
l-diversity [16], (α, k)-anonymity [28], and t-closeness [11].

Unfortunately, these models fail to provide the promised
privacy because of the dependencies that might exit in the
data. In [14] the authors provide a technique that combines
both generalization and bucketization to protect datasets
against membership disclosure. Despite its originality, this
approach remains vulnerable to negative correlations even
while grouping attributes that are highly correlated. In [25]
[15], disassociation is applied in a way to preserve both, the
original terms to leverage utility and the km-anonymity pri-

vacy constraint. A privacy breach can still occur due to the
lack of diversity. Particularly, when ensuring km-anonymity
without using generalization which makes the technique vul-
nerable to homogeneity attacks.

An adversary discovering correlations in the data can use
these correlations to discover information about individuals
[27] [8]. In [27], the authors consider correlations as fore-
ground knowledge that can be mined from anonymized data.
They use the possible worlds model to compute the probabil-
ity of associating an individual with a sensitive value based
on a global distribution. In [8], a Näıve Bayesian model
is used to compute association probability. They use ex-
changeability [2] and DeFinetti’s theorem [21] to model and
compute patterns from the anonymized data.

There are two components to each of these papers. The
first is a relatively simple idea - that we can use correla-
tions to link identifying information to sensitive values. A
much deeper aspect is that they show how an adversary can
find such correlations in the anonymized data. Our work
addresses the first component directly: We ensure that even
given knowledge of the true correlations present in the data,
the probability that a particular sensitive value can be linked
to a particular individual is below a threshold (e.g., 1/l for
l-diversity, or α for (α, k)-anonymity.) This ensures that
our method prevents not only the attacks in [27, 8], but any
other correlation-based attacks that may be developed. Fur-
thermore, we try to preserve and expose correlations where
possible, increasing utility of the data. In [13], the authors
deal with background knowledge that can be mined from the
data. In their paper, they focus mainly on what is known as
negative correlations limiting by that the ability to handle
positive and exposed correlations.

[5] defines the notion of differential privacy to handle pri-
vate data publishing efficiently. The technique gained much
popularity among computer scientists providing strong as-
sumptions on the way that data should be released. In
essence, differential privacy guarantees privacy without mak-
ing any assumption on the adversary’s background knowl-
edge. More accurately, it shows robustness when a certain
number of tuples in the dataset are known by the adversary.
Despite its originality, differential privacy tends to be less
efficient when correlation among the tuples is high [9]. In
addition, the appropriate value of ε to achieve the needed



real-world privacy is unclear [10].
While there are approaches that bridge differential privacy

and generalization for data release [17, 12], they are not ap-
plicable in our environment. For example, [17] releases noisy
group sizes; if applied in our model, the server would likely
be able to use query history to distinguish true vs. fake tu-
ples and thus reduce this noise, violating ε-differential pri-
vacy. Alternatively, [12] uses sampling to show that at some
point k-anonymization techniques can achieve a relaxation of
ε-differential privacy with a small error probability δ. This,
however, significantly decreases the utility of the data which
already suffers from constraints imposed by generalization.

4. FORMALIZATION
We first define basic concepts and notations used in the

paper (see also Table 1).
Given a table T with a set of attributes {A1, ..., Ab}, t[Ai]

refers to the value of attribute Ai for the tuple t. Attributes
of a table are divided as follows:

• Quasi-identifiers Aqi represent attributes that can be
used (possibly with external information available to
the adversary) to identify the individual associated
with a tuple in a table. Name, Gender, Age and Zip-
code are examples of quasi-identifiers.

• Sensitive attributes As contain sensitive information
that must not be linkable to an individual. In our
example (Table 1), DrugName is considered sensitive
and should not be linked to an individual.

Definition 1 (Equivalence class / QI-group). [22] A quasi-
identifier group ( QI-group) is defined as a subset of tuples
of T =

⋃m
j=1QIj such that, for any 1 ≤ j1 6= j2 ≤ m,

QIj1 ∩QIj2 = φ.

Table Prescription shown in Figure 1a is composed of 6
different quasi-identifier groups identified by their GID at-
tribute’s values.

Definition 2 (l-diversity). [16] a table T is said to be l-
diverse if each of the QI-groups QIj(1 ≤ j ≤ m) is l-diverse;
i.e., QIj satisfies the condition cj(vs)/|QIj | ≤ 1/l where

• m is the total number of QI-groups in T

• vs is the most frequent value of As in QIj

• cj(vs) is the number of tuples of vs in QIj

• |QIj | is the size (number of tuples) of QIj

For instance, quasi-identifier group QI1 in Figure 1a is
3-diverse containing 3 distinct sensitive values.

Definition 3 (Anatomy). Given a table T , we say that T
is anatomized if it is separated into a quasi-identifier table
(TQIT ) and a sensitive table (TSNT ) as follows:

• TQIT has a schema (A1, ..., Ad, GID) where Ai (1 ≤
i ≤ d) is either a nonsensitive or quasi-identifier at-
tribute and GID is the group id of the QI-group.

• TSNT has a schema (GID,Asd+1) where Asd+1 is the
sensitive attribute in T .

Table 1: Notations

T a table containing individuals related tuples

ti a tuple of T

u an individual described in T

A an attribute of T

Aqi a quasi-identifier attribute of T

As a sensitive attribute of T

QIj a quasi-identifier group

T∗ Anonymized version of table T

CD a set of correlation dependencies

cd : Aqi 99K As a correlation dependency between attribute Aqi

and the sensitive attribute As

Figure 1b is an anatomized version of Table Prescription
in Figure 1a in which only the links between individuals and
their sensitive values are generalized.

To express correlations between attributes of an anonymized
table T ∗, we use the term correlation dependencies CD for-
mally defined as follows:

Definition 4 (Correlation Dependency). Let Aqi be an at-
tribute of T ∗, and As be the sensitive attribute of T ∗. A
correlation dependency (cdqi ∈ CD) of the form of cdqi :
Aqi 99K As ∈ CD exists over T ∗ if ∃vs ∈ As and vqi ∈ Aqi
s.t. P (vs|vqi) >> P (vs).

We assume that dealing with correlation dependencies is
not a straightforward process in which we can assume that
every correlation is unsafe. Such assumption contradicts the
basic utility of data outsourcing and causes dramatic dam-
age to the utility of aggregate analysis. It is important to
specify to what extent correlation is unsafe and define its le-
gitimate boundaries during the anonymization process. For
completeness, we define the significance of a sensitive value
vs w.r.t. a quasi-identifier value vqi based on a confidence
and support measures to be discussed below.

Definition 5 (Significant Sensitive Value). Given a corre-
lation dependency of the form cdqi : Aqi 99K As over a table
T , we say that a sensitive value vs is significantly related to
vqi iff

• conf(vqi, vs) = Pr(As = vs, A
qi = vqi)/Pr(A

qi = vqi)
is less than or equal to minConf threshold (conf(vqi, vs)
≤ minConf) or greater than or equal to a maxConf
threshold (conf(vqi, vs) ≥ maxConf) and,

• sup(vqi, vs) ≥ minSup where minSup is defined to cap-
ture sensitive values that are frequently correlated with
the quasi-identifier values.

We use confidence (conf ), easily mined from the data dur-
ing anonymization, to determine the strength of a correla-
tion dependency and limit the number of significantly re-
lated sensitive values. Specifically, a sensitive value related
to a quasi-identifier value by a correlation dependency is
significant if its confidence is at least equal to a maximum
confidence (maxConf ) threshold or at the most equal to a
minimum confidence (minConf ) threshold, and it has a sup-
port greater than a minimum support (minSup) threshold.
minConf, maxConf and minSup are set to satisfy safety re-
quirements as shown in the next section.



5. CORRELATION-BASED PRIVACY VIO-
LATION

High correlation would allow us to use the values of one at-
tribute to predict the values of other attributes. While this
is valuable knowledge, it can also violate the privacy con-
straints. The problems detailed in [27, 8] lie with the ability
of an adversary to extract patterns (correlations) from an
anonymized table that can be used to violate privacy. Sum-
marizing, we define here the privacy problem as follows:

Definition 6 (Privacy Problem). A privacy violation occurs
if for a given individual u, Pr(us = vs|T ∗) > 1/l, where vs
is a sensitive value of As, and T ∗ is an l-diverse anonymized
version of T .

Definition 6 provides a general perspective of the privacy
breach but yet we cannot assume that every correlation is
unsafe. As mentioned earlier, such an assumption contra-
dicts the basic utility of data outsourcing. For this reason,
we consider that for a given an anonymized table T ∗, if an
adversary is able to associate a significant sensitive value
vs to an individual u with a probability greater than 1/l
based on the assumed adversary knowledge, we say that the
privacy principle has been violated.

It is essential to enforce proper safety requirements dur-
ing the anonymization process to keep significant correla-
tions bounded and eliminate by that any possible breach of
privacy.

We present in the following our safe correlation safety
constraint to bound correlation dependencies of the form
cdqi : Aqi 99K As.

Safety Constraint (Safe Correlation). Given a correlation
dependency of the form (cdqi : Aqi 99K As) over T . Let vqi
be a value of quasi-identifier attribute Aqi and vs ∈ As be
a sensitive value significantly related to vqi. We say a safe
correlation constraint is satisfied for T ∗ iff

1. significant sensitive values are uniformly distributed
such that Pr(As = vsi , A

qi = vqi|T ∗) = 1/λvqi for
(1 ≤ i ≤ |S(vqi)|) and,

2. there are at least l distinct significant sensitive values
for vqi, |S(vqi)| ≥ l

where

• S(vqi) is the set of sensitive values significantly re-
lated to vqi and,

• λvqi ≥ l is the correlation constant.

Using this safe correlation requirement we provide bound-
aries to correlation while making sure that the most frequent
correlated value does not appear too frequently, and that the
low correlation values do not appear too rarely in T ∗. We
note that the correlation constant λvqi depends on the ac-
tual correlation between a quasi-identifying value vqi and
the significant sensitive values. λvqi is determined in a post-
anonymization process explained in the next section.

Theorem. An adversary cannot use his/her previous knowl-
edge of some of the significant correlations to link individuals
to sensitive values in the anonymized dataset.

Proof. Given that Pr(As = vs, u|T ∗) can be written as
Pr(As = vs, tvqi |T ∗) where tvqi is individual u’s tuple and

t[Aqi] = vqi. Assuming that vs is significantly related to
vqi meaning that vs ∈ S(vqi) and thus Pr(As = vs, A

qi =
vqi|T ∗) is equal to 1/λqi. If a privacy violation occurs as such
Pr(As = vs, tvqi |T ∗) > 1/l, the correlation itself must vio-
late our assumptions. According to the safe correlation con-
straint, significant correlations between sensitive and quasi-
identifying values are bounded by l-diversity. In other terms,
there are l − 1 other sensitive values such that Pr(As =
vsi , A

qi = vqi|T ∗) = 1/λvqi for (1 ≤ i ≤ l − 1).

Figure 2 shows how we can achieve this safety constraint
using the correlation sanitization algorithm defined in Sec-
tion 6. As we can see, several values have been suppressed
to make sure that both probabilities remain equal after the
anonymization process.

Country Manufacturer GID GID Drug Name
United States Envie De Neuf 1 1 Mild Exfoliation
Columbia Gep-Tek 1 1 Azelaic acid
United States Raphe Healthcare 1 1 Retinoic Acid
United States Envie De Neuf 2 2 Mild Exfoliation
France Raphe Healthcare 2 2 Azelaic acid
United States Raphe Healthcare 2 2 Retinoic Acid
Columbia Jai Radhe 3 3 Cytarabine
* Raphe Healthcare 3 3 Azelaic acid
Columbia Raphe Healthcare 3 3 Retinoic Acid
France Jai Radhe 4 4 Cytarabine
* Raphe Healthcare 4 4 Azelaic acid
* Raphe Healthcare 4 4 Retinoic Acid
Columbia PQ Corp. 5 5 Epsom. Magnesium
United States Envie De Neuf 5 5 Mild Exfoliation
United States Jai Radhe 5 5 Adapalene

Figure 2: Safe correlation: a post-anonymization safety con-
straint.

One subtle remaining issue is multi-dimensional correla-
tions, where several combined attribute values can corre-
late with a sensitive attribute. Formally, we define a p-
dimensional correlation dependency as follows:

Definition 7 (p-Dimensional Correlation Dependency). Let
Aqi be quasi-identifying attribute of table T , we say a corre-
lation dependency of the form cdp : (Aqi1 , ..., A

qi
p ) 99K As is

p-dimensional where As is a sensitive attribute of T iff ∃ p
values v1 ∈ Aqi1 , ..., vp ∈ Aqip such that for a given vs ∈ As,
vs is significantly related to (vqi1 , ..., vqip).

Typically, dealing with p-dimensional correlation depen-
dencies cannot be done while assuming a straightforward
extension of the safety constraint. It is essential to consider
parameters related to data utility with respect to safety.
While this is left for a future work, we assume that safety
is guaranteed if and only if any subset of possible attribute
combinations of the p-dimensional correlation dependency
antecedent is ’safe’.

6. PRIVACY ENFORCEMENT
We now provide the correlation sanitization algorithm, a

mechanism to enforce the safe correlation requirement.

6.1 Correlation Sanitization: a Linear Program-
ming Problem

Given an anonymized table T ∗, the correlation between
a significant sensitive value vs and a quasi-identifying value
vqi can be referred to as Pr(As = vs, A

qi = vqi|T ∗) and



determined as follows:

Pr(As = vs, A
qi = vqi|T ∗) =∑

QIj∈QI(vqi) cj(vqi)× Pr(A
s = vs, ti|QIj)∑

QIj∈QI(vqi) cj(vqi)
(1)

To achieve the safe correlation constraint, we solve the linear
programming (LP) problem subject to maximizing the sum
of count of QI-values in each QI-group in T ∗ such that, ∀vs ∈
S(vqi),

∑m
j=1 pj,kxi,j = 1

λvqi
× c(vqi), where

• xi,j is a variable that represents the count of vqi in
QI-group QIj denoted by cj(vqii),

• pj,k represents the probability of associating a tuple ti
with the sensitive value vsk in QI-group QIj denoted
by Pr(As = vsk , ti|QIj), and

• c(vqii) is the total number of tuples with vqii in T ∗.

The problem can be viewed as an anonymization problem
in which we determine the number of QI-values that should
be suppressed in each QI-group in order to guarantee an
appropriate correlation constant (1/λvqi). To summarize,
the linear programming problem can be expressed as follows:

max
∑
i,j xi,j

s.t. 0 ≤
∑
j pj,kxi,j − xi ≤ ε, if vsk ∈ S(vqii)

0 ≤
∑
j pj,kxi,j ≤ c(vqii : vsk ), if vsk /∈ S(vqii)

0 ≤ xi,j ≤ cj(vqii)
0 ≤ xi ≤ c(vqii)× 1

l
.

where,

• xi is a variable that expresses the correlation constant
te be determined during the anonymization process.
We note that xi is equal to 1

λvqii

× c(vqii) such that

xi ≤ 1
l
× c(vqii). Figure 3 shows the set of constraints

of the LP problem including variables xi.

• ε is a user defined error bound.

• c(vqii : vsk ) is the actual correlation of vqii and vsk
determined from the anonymized table T ∗

The constraints coefficients matrix is computed based on
the set of constraints expressed in Figure 3.
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Figure 3: Constraints for LP problem formed based on T ∗

Algorithm 1 Correlation Sanitization

Require: a table T , a correlation dependency (cdqi : Aqi 99K
As), a minimum and maximum confidence thresholds
(minConf , maxConf), a minimum support threshold
minSup, l the privacy constant and ε the error bound

Ensure: safe correlation for T ∗

/**Pre-anonymization: determine significant sensitive values
*/

1: for each distinct vqi in Aqi do
2: S(vqi)={vs | vs is a sensitive value significantly related to

vqi w.r.t minConf , maxConf and minSup}
3: if |S(vqi)| < l then
4: for each vs in S(vqi) do

5: Suppress (c(vqi, vs)) tuples with t[Aqi] = vqi and
t[As] = vs in T

6: end for
7: end if
8: end for
9: T ∗ = Anonymize(T, l)

/**Post-anonymization: formalizing an LP problem */ /**
1 - Determine structural variables X for objective function
z =

∑
i,j xi,j from T ∗ */

10: cl = 0;
11: for each distinct vqii in Aqi do
12: for each QI in T ∗ do
13: X[cl]← xi,j
14: Set 0 ≤ xi,j ≤ cj(vqii )
15: cl = cl + 1;
16: end for
17: end for
18: for each distinct vqii in Aqi do
19: if S(vqi) is not empty then
20: X[cl]← xi
21: Set 0 ≤ xi ≤ 1

l
× c(vqii )

22: cl = cl + 1;
23: end if
24: end for

/** 2- Determine constraints coefficients matrix from T ∗ */
25: cI = 0, r = 0, C[][] = 0;
26: for each distinct vqii in Aqi do
27: cI = i ∗m;
28: for each distinct vsk in As do
29: cl = cI;
30: for each QIj in T ∗ do
31: C[r][cl] = pj,k;
32: cl = cl + 1;
33: end for
34: if vsk ∈ S(vqii ) then
35: cl = getColFor(vqii );
36: C[r][cl] = −1;
37: B[r] = ε;
38: else
39: B[r] = getCorrelation(vqii , vsk );
40: end if
41: r = r + 1;
42: end for
43: end for
44: Solve LP problem {max. z|CX ≤ B}

/**Anonymize QI-Values*/
45: for each QIj in T ∗ do
46: Suppress cj(vqii )− xi,j values of vqii in QI
47: end for

Now that we have shown how we can guarantee the safe
correlation safety constraint, we present our correlation san-
itizer algorithm that ensures that the most frequent corre-
lated values do not appear too frequently, and that the less
frequent correlated values do not appear too rarely in T ∗.
The algorithm takes a table T , a quasi-identifier correla-
tion dependency cdqi, minimum and maximum confidence
thresholds (minConf , maxConf), the minimum support



threshold minSup and the error bound ε. It ensures the
safe correlation requirement for T .

The algorithm is composed of two main tasks, pre- anonymiza-
tion and post-anonymization. In pre-anonymization, from
Step 1 to 8, the algorithm retrieves the set of significant
sensitive values S(vqi) for each distinct value vqi in the quasi-
identifier attribute Aqi, based on minConf , maxConf and
minSup. Hence, a privacy breach could occur at this level
when an adversary is able to determine possible associations
with sensitive values based on the size of S(vqi). That is why
the algorithm from Step 3 to 7 suppresses the tuples related
to vqi and vs if |S(vqi)| is less than l.

In post-anonymization, we ensure that the probability of
associating vqi with any of its significantly related sensitive
values vs ∈ S(vqi) is equal to 1/λvqi which is achieved by
solving the linear programming problem discussed in the
previous section. It first retrieves the structural variables
from T ∗ (Step 10 to 24). Each variable xi,j representing
the count of vqii in QIj is bounded by cj(vqii), variable
xi expressing 1

λvqii

× c(vqi) is determined based on the LP

solution. Note that xi is bounded by 1
l
× c(vqi).

In the second block of post-anonymization from Step 25 to
43, the algorithm determines the constraints coefficients ma-
trix. In Step 31, we store pj,k corresponding to Pr(ti, A

s =
vsk |QIj) and associated with variable xi,j of column cl in
the constraint coefficient matrix C. In order to guarantee
safe correlation, the algorithm verifies if vsk ∈ S(vqii) where
Pr(As = vsk , A

qi = vqii |T ∗) should be equal to 1/λvqi . In
this case, the algorithm stores a −1 coefficient for variable
xi ≤ a corresponding to vqii for column cl in C and the
error bound ε in B. On the other hand, if vsk /∈ S(vqii),
the auxiliary variable in this case is bounded by the actual
correlation of vsk and vqii as shown in Step 39.

The LP problem is solved in Step 44 such that for each
QI-group QIj , a number of cj(vqii)−xi,j is suppressed from
Step 45 to 47.

Framing this as an optimization problem raises concerns
of a minimality attack [26]. The safety constraint addresses
this: Because of the requirement that all exposed values have
equal number, the optimal suppression will always remove
the more numerous values. A minimality attack will thus as-
sume that the suppressed values are only the more common
values. This would be the (presumably known) correlations;
the probability of any given value being suppressed is based
on its probability given correlations. In other words, the
optimality of the suppression tells us that what we can es-
timate from the data is exactly what we would expect from
just knowing the correlation.

There is still an issue of minimality attacks on the underly-
ing anonymization method. This can be addressed through
using a non-deterministic approach in Step 9. This protects
against minimality attacks, as described in [3].

Let |Aqi|, |As| be the number of distinct quasi-identifying
and sensitive values in attributes Aqi and As respectively,
the time complexity of the sanitization algorithm can be
estimated by O(m · |Aqi| · |As|) where m is the number of
QI-groups in T ∗.

In addition, based on the linear programming problem
defined in 6.1, we can say that the sanitization algorithm
scales. In fact, ∀i, j, if xi,j and xi are equal to zero, we can
easily verify that all constraints are satisfied.

7. EXPERIMENTAL EVALUATION
We now present a set of experiments to evaluate the effi-

cacy of our approach. We implemented the correlation san-
itization code in Java based on the Anonymization Toolbox
[7], running on an Intel XEON 2.4GHz PC with 2GB RAM.

7.1 Evaluation Dataset
In keeping with much work on anonymization, we use

the Adult Dataset from UCI Machine Learning Repository
[6]. We treat Occupation as a sensitive attribute; other at-
tributes are presumed to be (quasi- or actual-) identifiers.

We used cdqi : Education 99K Occupation as a correlation
dependency for the adult dataset containing 32561 tuples.
We note that using such correlation dependency, an adver-
sary is able to identify the occupation of an individual in the
dataset according to education.1

In the next section, we present and discuss results ob-
tained from running our algorithm.

7.2 Evaluation Results
We conducted a set of measurements to evaluate the effi-

ciency of our correlation sanitization algorithm. These mea-
surements can be summarized as follows:

• Evaluating the correlation threat after anonymization,

• Determining anonymization cost represented by the
loss metric to capture the fraction of tuples that must
be (partially or totally) generalized, suppressed, or en-
crypted in order to satisfy the safety constraints, and

• Comparing anonymization cost in two different datasets
w.r.t several minimum and maximum confidence val-
ues (minConf and maxConf),

7.2.1 Correlation Evaluation
We evaluate here the remaining correlation in the dataset

after a näıve anonymization using the correlation sanitiza-
tion algorithm. In fact, we compare the outcome of anonymiza-
tion techniques, more precisely anatomy and correlation san-
itization, using a java-based implementation of Wong’s ap-
proach [27]. We use in this test l = 3, 4 and 5 for several
significant sensitive values as shown in Figure 4.

We note that in order to calculate Pr(As = vs, ti|QIj)
defined in the correlation sanitization algorithm, we used the
possible world model with actual correlations as shown in the
example of Section 5 for the following significant sensitive
values; Handlers cleaner, Craft repair, Exec managerial and
Adm clerical.

As expected, the correlation sanitization algorithm bounds
the correlations with confidence greater than 0.9 and lower
than 0.1 while others eventually remain representing the y-
axis in the Figures 4b, 4c and 4d expressing residual non-
violating correlations related to non-significant sensitive val-
ues that could not be exposed.

7.2.2 Anonymization Cost Evaluation
We evaluate our proposed correlation sanitization algo-

rithm to determine the number of tuples and values that
are suppressed to achieve the safety constraint. We use the
following loss metric to quantify such loss of data fidelity.

1We invite the reader to check out [27] for more details
on how to compute the global distribution and the privacy
breach value for each attribute value.



Definition 8 (Loss Metric (LM)). Let g(T ∗, v) be a func-
tion that returns the number of tuples where the value v is
suppressed in the anonymization T ∗ of T . The loss metric
(LM) for table T ∗ and value v is

LM(T, v) =
g(T ∗, v)

|T | (2)

Figure 2 shows an anonymized version of table prescrip-
tion where the grouping is safe. The loss metric for this
anonymization has a loss metric equal to
LM(Prescription, UnitedStates) = 1/3.
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Figure 4: Correlation Sanitization for l = 3, 4 and 5

We applied the algorithm on table T to ensure safe corre-
lation for values for cdqi : Education 99K Occupation with
minConf , maxConf and minSup equal to 0.1, 0.9 and 0.2.

Results in Figure 5 show explicitly the trade-off between

privacy and utility such that for the sensitive value Craft
repair and l = 5, LM reaches 56%. At some point, we

can see that the result can be dwarfed by the loss of util-
ity. We have not identified any inherent reason why this
must hold. Further research into more effective anonymiza-
tion algorithms may produce techniques that meet privacy
requirements while increasing the ability to learn from the
data.

7.2.3 Cost Evaluation in Different Datasets
We also compared the anonymization costs computed when

applying the correlation sanitization algorithm to the Adult
dataset and the Bank Marketing Dataset used in [19]. In the
latter, we treat Balance as a sensitive attribute while the
remaining attributes are presumed to be (quasi- or actual-
) identifiers. For computational reasons, we generalize the
values of attribute Balance to 21 intervals to reduce the total
number of distinct sensitive values. The results are shown in
Figure 6 for l = 2, 3 and 4 with 5 different values for minConf
and maxConf respectively represented in the X-axis.

Not surprisingly, the results are similar for both datasets
showing that the cost increases when anonymizing the cor-
relations. This is only to confirm as in [12] that there is a
trade-off to be made at the stake of utility in order to meet
strong privacy requirements. While this could be limiting
to generalization techniques, it remains debatable in our ap-
proach where exact data values are maintained2.
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Figure 5: Evaluating loss for Correlation Sanitization

8. CONCLUSION
In this paper, we presented new methods to cope with

defects of anonymization techniques resulting from unsafe
data correlation. We defined a new safety constraint to deal
with correlation between quasi-identifier and sensitive at-
tributes. We provided a sanitization algorithm to ensure
the safe correlation in a post-anonymization process. Fi-
nally, we showed, using a set of experiments, that there is
a trade-off to be made between privacy and utility. This
trade-off is quantified based on the number of tuples and
values to be anonymized using anonymization algorithms.

A related problem is coping with correlations in transac-
tional datasets where multiple tuples could be related to an

2Note that while suppression prevents privacy violations, it
does not necessarily prevent discovery of correlations. Pre-
liminary results on a decision tree learning approach cus-
tomized to anatomized data show comparable classification
accuracy to decision trees learned on the original data.
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Figure 6: Correlation Sanitization for l = 2, 3 and 4

individual [1]. Under such assumption, a straightforward
extension of safety constraint could not be achieved leading
eventually to more sophisticated privacy violation detection
and elimination methods. Achieving sufficient utility in such
environments may also need to consider alternative privacy
models such as LKC-privacy [18] or (k,m)-anonymity [24].
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