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Abstract. In this paper we are concerned with the logical difference
problem between ontologies. The logical difference is the set of subsump-
tion queries that follow from a first ontology but not from a second one.
We revisit our solution to logical difference problem for EL-terminologies
based on finding simulations between hypergraph representations of the
terminologies, and we investigate a possible extension of the method to
general EL-TBoxes.

1 Introduction

Ontologies are widely used to represent domain knowledge. They contain spec-
ifications of objects, concepts and relationships that are often formalised using
a logic-based language over a vocabulary that is particular to an application
domain. Ontology languages based on description logics [2] have been widely
adopted, e.g., description logics are underlying the Web Ontology Language
(OWL) and its profiles.3 Numerous ontologies have already been developed, in
particular, in knowledge intensive areas such as the biomedical domain, and they
are made available in dedicated repositories such as the NCBO bioportal.4

Ontologies constantly evolve, they are regularly extended, corrected and re-
fined. As the size of ontologies increases, their continued development and main-
tenance becomes more challenging as well. In particular, the need to have auto-
mated tool support for detecting and representing differences between versions
of an ontology is growing in importance for ontology engineering.

The logical difference is taken to be the set of queries that produce differ-
ent answers when evaluated over distinct versions of an ontology. The language
and vocabulary of the queries can be adapted in such a way that exactly the
differences of interest become visible, which can be independent of the syntac-
tic representation of the ontologies. We consider ontologies formulated in the
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lightweight description logic EL [1, 3] and queries that are EL-concept inclu-
sions. The relevance of EL for ontologies is emphasised by the fact that many
ontologies are largely formulated in EL. For instance, the dataset of the ORE
2014 reasoner evaluation comprises 8 805 OWL-EL ontologies.5

The logical difference problem was introduced in [7] and investigated for
EL-terminologies [6]. A hypergraph-based approach for EL-terminologies was
presented in [4], which was subsequently extended to EL-terminologies with ad-
ditional role inclusions, domain and range restrictions of roles in [8]. In this
paper we investigate a possible extension of the method to general EL-TBoxes.
Clearly, such an extension needs to account for the additional expressivity of
general TBoxes w.r.t. terminologies. After normalisation, a terminology may
contain at most one axiom of the form ∃r.A v X or A1 u . . . u An v X for any
concept name X, whereas a general TBox does not impose such a restriction.

We first show that for every concept inclusion C v D that follows from a
TBox T , there exists a concept name X in T that acts as an interpolant between
the concepts C and D, i.e., we have that T |= C v X and T |= X v D. Then we
describe the set of all subsumees C of X in T using a concept of EL extended
with disjunction and a least fixpoint operator, and the set of all subsumers D of
X in T using a concept of EL extended with greatest fixpoint operators. Finally,
we reduce the problem of deciding the logical difference between two EL-TBoxes
to fixpoint reasoning w.r.t. TBoxes in a hybrid µ-calculus [10].

The paper is organised as follows. We start by recalling some notions re-
garding the description logic EL and its extensions with disjunction and fix-
point operators. In Section 3, we discuss how the logical difference problem for
EL-terminologies could be extended to general EL-TBoxes, and we establish a
witness theorem for general EL-TBoxes. In Section 4, we show how fixpoint
reasoning can be used to decide whether two general EL-TBoxes are logically
different, and how witnesses to the logical difference can be computed. Finally
we conclude the paper.

2 Preliminaries

We start by briefly reviewing the lightweight description logic EL and some
notions related to the logical difference, together with some basic results.

Let NC, NR, and NV be mutually disjoint sets of concept names, role names,
and variable names, respectively. We assume these sets to be countably infinite.
We typically use A,B to denote concept names and r to denote role names.

The sets of EL-concepts C, ELUµ-concepts D, and ELν-concepts E are built
according to the following grammar rules:

C ::= > | A | C u C | ∃r.C
D ::= > | A | D uD | D tD | ∃r.D | x | µx.D
E ::= > | A | E u E | ∃r.E | x | νx.E

5 http://dl.kr.org/ore2014/
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where A ∈ NC, r, s ∈ NR, and x ∈ NV. For an ELUµ-concept C, the set of free
variables in C, denoted by FV(C) is defined inductively as follows: FV(>) = ∅,
FV(A) = ∅, FV(D1 u D2) = FV(D1) ∪ FV(D2), FV(D1 t D2) = FV(D1) ∪
FV(D2), FV(∃r.D′) = FV(D′), FV(x) = {x}, FV(µx.D′) = FV(D′) \ {x}.
The set FV(E) of free variables occurring in an ELν-concept E can be defined
analogously. An ELUµ-concept C (an ELν-concept D) is closed if C (D) does
not contain free occurrences of variables, i.e. FV(C) = ∅ (FV(D) = ∅). In the
following we assume that every ELUµ-concept C and every ELν-concept D is
closed.

An EL-TBox T is a finite set of axioms, where an axiom can be a concept
inclusion C v C ′, or a concept equation C ≡ C ′, where C,C ′ range over EL-
concepts. An EL-terminology T is an EL-TBox consisting of axioms α of the
form A v C and A ≡ C, where A is a concept name, C an EL-concept and no
concept name A occurs more than once on the left-hand side of an axiom.

The semantics of EL, ELUµ, and ELν is defined using interpretations I =
(∆I , ·I), where the domain ∆I is a non-empty set, and ·I is a function mapping
each concept name A to a subset AI of ∆I and every role name r to a binary
relation rI ⊆ ∆I×∆I . Interpretations are extended to concepts using a function
·I,ξ that is parameterised by an assignment function that maps variables x ∈ NV

to sets ξ(x) ⊆ ∆I . Given an assignment ξ, the extension of an EL, ELUµ, or
ELν-concept is defined inductively as follows: >I,ξ := ∆I , xI,ξ := ξ(x) for
x ∈ NV, (C1 u C2)I,ξ := CI

1 ∩ CI
2 , (∃r.C)I,ξ := {x ∈ ∆I | ∃y ∈ CI,ξ : (x, y) ∈

rI }, (µx.C)I,ξ =
⋂{W ⊆ ∆I | CI,ξ[x 7→W ] ⊆ W }, and (νx.C)I,ξ =

⋃{W ⊆
∆I | W ⊆ CI,ξ[x 7→W ] }, where ξ[x 7→ W ] denotes the assignment ξ modified by
mapping x to W .

An interpretation I satisfies a concept C, an axiom C v D or C ≡ D if,
respectively, CI,∅ 6= ∅, CI,∅ ⊆ DI , or CI,∅ = DI,∅. We write I |= α iff I
satisfies the axiom α. An interpretation I satisfies a TBox T iff I satisfies all
axioms in T ; in this case, we say that I is a model of T . An axiom α follows
from a TBox T , written T |= α, iff for all models I of T , we have that I |= α.
Deciding whether T |= C v C ′, for two EL-concepts C and C ′, can be done in
polynomial time in the size of T and C,C ′ [1, 3]. For an ELUµ-concept D and
an ELν-concept E, it is known that T |= D v E can be decided in exponential
time in the size of T , D and E [10].

A signature Σ is a finite set of symbols from NC and NR. The signature
sig(C), sig(α) or sig(T ) of the concept C, axiom α or TBox T is the set of
concept and role names occurring in C, α or T , respectively. An ELΣ-concept C
is an EL-concept such that sig(C) ⊆ Σ.

An EL-TBox T is normalised if it only contains EL-concept inclusions of the
forms > v B, A1 u . . . uAn v B, A v ∃r.B, or ∃r.A v B, where A,Ai, B ∈ NC,
r ∈ NR, and n ≥ 1. Every EL-TBox T can be normalised in polynomial time in
the size of T with a linear increase in the size of the normalised TBox w.r.t. T
such that the resulting TBox is a conservative extension of T [6]. Note that in
a normalised terminology T , we have that for every axiom of the form ∃r.A v
B ∈ T , there exists an axiom of the form B v ∃r.A ∈ T ; similarly for axioms of
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the form A1 u . . . u An v B with n ≥ 2. When convenient, we will abbreviate
two axioms A v ∃r.B and ∃r.B v A by the single axiom A ≡ ∃r.B; similarly for
A ≡ B1 u . . . uBn.

3 Towards Logical Difference between General
EL-TBoxes

The logical difference between two TBoxes witnessed by concept inclusions over
a signature Σ is defined as follows.

Definition 1. The Σ-concept difference between two EL-TBoxes T1 and T2 for
a signature Σ is the set cDiffΣ(T1, T2) of all EL-concept inclusions α such that
sig(α) ⊆ Σ, T1 |= α, and T2 6|= α.

EL-TBoxes can be translated into directed hypergraphs by taking the sig-
nature symbols as nodes and treating the axioms as hyperedges connecting
the nodes. For normalised EL-TBoxes, the axiom > v B is translated into
the hyperedge ({x>}, {xB}), the axiom A1 u . . . u An v B into the hyperedge
({xB1 , . . . , xBn}, {xA}), the axiomA v ∃r.B into the hyperedge ({xA}, {xr, xB}),
and the axiom ∃r.A v B into the hyperedge ({xr, xB}, {xA}), where each node
xY corresponds to the signature symbol Y , respectively. A feature of the trans-
lation of axioms into hyperedges is that all information about the axiom and
the logical operators in it is preserved. In fact we can treat the ontology and its
hypergraph representation interchangeably. The existence of certain simulations
between hypergraphs for EL-terminologies characterises the fact that the corre-
sponding terminologies are logically equivalent and, thus, no logical difference
exists [4, 8].

As the set cDiffΣ(T1, T2) is infinite in general, we make use of the following
“primitive witnesses” theorem from [6] that states that we only have to con-
sider two specific types of concept differences. If there is an inclusion C v D ∈
cDiffΣ(T1, T2) for two terminologies T1 and T2, then we know that there is a con-
cept name A ∈ Σ such that A occurs either on the left-hand or the right-hand
side of an inclusion in the set C v D ∈ cDiffΣ(T1, T2). For checking whether
cDiffΣ(T1, T2) = ∅, we only have to consider such simple inclusions. However, if
T1 and T2 are general EL-TBoxes, the situation is different.

Example 1. Let T1 = {X ≡ A1 u A2, X v ∃r.>}, T2 = ∅, and let Σ =
{A1, A2, r}. Note that T1 is not a terminology as the concept name X occurs
twice on the left-hand side of an axiom. Then every difference α ∈ cDiffΣ(T1, T2)
is equivalent to the inclusion A1 uA2 v ∃r.>. In particular, there does not exist
a difference of the form ψ v θ, where ψ or θ is a concept name from Σ.

As illustrated by the example, we need to account for a new kind of differences
C v C ′ ∈ cDiffΣ(T1, T2) which are induced by a concept name X ∈ sig(T1)
such that X 6∈ Σ, T1 |= C v X, and T1 |= X v C ′. We obtain the following
witness theorem for EL-TBoxes as an extension of the witness theorem for EL-
terminologies.
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Theorem 1 (Witness Theorem). Let T1, T2 be two normalised EL-TBoxes
and let Σ be a signature. Then, cDiffΣ(T1, T2) 6= ∅ iff there exists an ELΣ-
inclusion α = ϕ v ψ such that T1 |= α and T2 6|= α, where

(i) ϕ is an ELΣ-concept and ψ = A ∈ Σ,
(ii) ϕ = A ∈ Σ and ψ is an ELΣ-concept, or

(iii) there exists X ∈ sig(T1) \Σ such that T1 |= ϕ v X and T1 |= X v ψ.

The proof of the witness theorem for terminologies [6] is based on analysing
the subsumption T1 |= ϕ v ψ syntactically, using a sequent calculus [5]. A similar
technique can be used for the proof of Theorem 2.

For deciding whether cDiffΣ(T1, T2) = ∅ in the case of general TBoxes, we now
have to additionally consider differences of Type (iii). Differences of types (i)
or (ii) can be checked by using forward or backward simulations adapted to
normalised EL-TBoxes, respectively, whereas Type (iii) differences require a
combination of both techniques.

Before we illustrate how Type (iii) differences can be dealt with, we first
introduce some auxiliary notions. We define cWtnlhs

Σ (T1, T2) as the set of all
concept names A from Σ such that there exists an ELΣ-concept C with A v
C ∈ cDiffΣ(T1, T2). Similarly, cWtnrhs

Σ (T1, T2) is the set of all concept names
A ∈ Σ such that there exists an ELΣ-concept C with C v A ∈ cDiffΣ(T1, T2).
The concept names in cWtnlhs

Σ (T1, T2) are called left-hand side witnesses and
the concept names in cWtnrhs

Σ (T1, T2) right-hand side witnesses. Additionally, we
define cWtnmid

Σ (T1, T2) as the set of all concept names X from sig(T1) but not
from Σ such that there exists C v C ′ ∈ cDiffΣ(T1, T2) and T1 |= C v X and
T1 |= X v C ′. The concept names in cWtnmid

Σ (T1, T2) are called interpolating
witnesses. To summarise, we have the following sets:

cWtnlhs
Σ (T1, T2) = {A ∈ Σ | ∃C ∈ ELΣ : A v C ∈ cDiffΣ(T1, T2) }

cWtnrhs
Σ (T1, T2) = {A ∈ Σ | ∃C ∈ ELΣ : C v A ∈ cDiffΣ(T1, T2) }

cWtnmid
Σ (T1, T2) = {X ∈ sig(T1) \Σ | ∃C,C ′ ∈ ELΣ : T1 |= C v X,

T1 |= X v C ′, T2 6|= C v C ′ }

We illustrate the witness sets with the following example.

Example 2. Let T1 = {X ≡ A1 u A2, X v ∃r.>, A3 v A2, A3 v ∃r.A2}, T2 =
{A2 v ∃r.>}, and let Σ = {A1, A2, r}. Then it holds that cWtnlhs

Σ (T1, T2) = {A3}
(e.g. {A3 v A2, A3 v ∃r.A2} ⊆ cDiffΣ(T1, T2)), cWtnrhs

Σ (T1, T2) = {A2} (e.g.
A3 v A2 ∈ cDiffΣ(T1, T2)), and cWtnmid

Σ (T1, T2) = {X} (e.g. T1 |= A1 uA3 v X,
T1 |= X v ∃r.> and T2 6|= A1 uA3 v ∃r.>).

We obtain as a corollary of Theorem 2 that, to decide the logical difference
between two EL-TBoxes, it is sufficient to check the emptiness of the witness
sets.

Corollary 1. Let T1, T2 be two normalised EL-TBoxes and let Σ be a signature.
Then it holds that cDiffΣ(T1, T2) = ∅ iff cWtnlhs

Σ (T1, T2) = cWtnrhs
Σ (T1, T2) =

cWtnmid
Σ (T1, T2) = ∅.
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To characterise an interpolating witness of a Type-(iii) difference, we use
the sets of its of subsumees and subsumers formulated using certain signature
symbols only. A similar approach was used for the construction of uniform in-
terpolants of EL-TBoxes in [9].

Definition 2. Let T be an EL-TBox, let Σ be a signature and let C be an
EL-concept. We define PremisesΣT (C) := {E ∈ ELΣ | T |= E v C } and
ConclusionsΣT (C) := {E ∈ ELΣ | T |= C v E }.
The set PremisesΣT (C) contains all EL-concepts formulated using Σ-symbols only
that entail C w.r.t. T ; or are entailed by C in the case of ConclusionsΣT (C). The
elements of PremisesΣT (C) are also called Σ-implicants or Σ-subsumees of C
w.r.t. T , and the elements of ConclusionsΣT (C) are also named Σ-implicates or
Σ-subsumers of C w.r.t. T .

In [4], it was established that a concept name X is forward simulated by a
concept name Y in an EL-terminology T iff it holds that ConclusionsΣT (X) ⊆
ConclusionsΣT (Y ); and similary,X is backward simulated by Y iff PremisesΣT (X) ⊆
PremisesΣT (Y ). We aim now at lifting this result to general EL-TBoxes.

Example 3. Let T1 = {A v X, ∃r.X v X, X v B1, X v B2} and T2 = {A v
Y, ∃r.Y v Y ′, ∃r.Y ′ v Y, ∃r.Y v Z1, ∃r.Y v Z2, Y v B1, Y v B2, Z1 v
B1, Z2 v B2} be two EL-TBoxes. Let Σ = {A,B1, B2, r} be a signature. Note
that X in T1 is cyclic and intuitively, the interpretation of X in a model I of T1
contains all finite r-chains “ending in A”. In T2 the concept name Y is cyclic
and its interpretation contains all r-chains ending in A that are of even length,
whereas the interpretations of the concept names Z1 and Z2 contain all r-chains
ending in A that are of odd length. Formally, we have that:

{A,∃r.A, ∃r.∃r.A, . . . } ⊆ PremisesΣT1
(X)

{A, ∃r.∃r.A, ∃r.∃r.∃r.∃r.A, . . . } ⊆ PremisesΣT2
(Y )

{∃r.A, ∃r.∃r.∃r.A, . . . } ⊆ PremisesΣT2
(Zi) for i ∈ {1, 2}

In particular, for i ∈ {1, 2}, we have

PremisesΣT1
(X) = PremisesΣT2

(Y ) ∪ PremisesΣT2
(Zi).

Intuitively, the set of Σ-implicants of X in T1 are distributed over the concept
names Y and Zi in T2. Moreover it holds that

ConclusionsΣT1
(X) = ConclusionsΣT2

(Y ) = ConclusionsΣT2
(Z1 u Z2).

The concept name X in T1 could be forward simulated either by Y or Z1 u Z2

in T2. Note that Z1 or Z2 individually are not sufficient. Analogously, X could be
backward simulated by Y tZ1 or Y tZ2. None of the concept names X, Z1, or
Z2 are sufficient individually for the backward simulation. Combining backward
and forward simulation, X could be simulated by Y t (Z1 u Z2).

In general, we hypothesise that non-Σ-concept names X in T1 need to be
“simulated” by concepts of the form

⊔n
i=1 Ci, where Ci are EL-concepts.

36



4 Finding Logical Differences via Fixpoint Reasoning

We now show how fixpoint reasoning can be used to find difference witnesses
between general EL-TBoxes.

Given Theorem 2, we know that any difference C v C ′ ∈ cDiffΣ(T1, T2), for
two ELΣ-concepts C and C ′, is connected to some concept name X occurring
in T1 for which either T1 |= C v X, or T1 |= X v C ′ (or both) holds. To check
whether X is indeed a difference witness, we construct concepts BΣT1

(X) and

FΣT1
(X) formulated in ELUΣµ and in ELΣν , respectively, to describe the (poten-

tially infinite) disjunction of Σ-concepts that are subsumed by X w.r.t. T1, and
the conjunction of all the Σ-concepts that subsume X w.r.t. T1, respectively.
Note that the use of fixpoint allows for a finite description of infinite disjunc-
tions or conjunctions. The ELUΣµ -concept BΣT1

(X) hence is a finite representation

of the set PremisesΣT1
(X), whereas the ELΣν -concept FΣT1

(X) represents the set

PremisesΣT1
(X) in a finite way. Using the fixpoint descriptions of the premises

and conclusions of X w.r.t. T1, we can verify whether X is a difference witness
by checking T2 |= BΣT1

(X) v FΣT1
(X).

We first turn our attention to the set PremisesΣT1
(X). Before we can give a

formal definition for the concept BΣT1
(X), we have to introduce the following

auxiliary notion to handle concept names X in the definition of BΣT1
(X) for

which there exist axioms of the form Z1 u . . .uZn v Z in a normalised TBox T
such that T |= Z v X. Intuitively, given a concept name X, we construct a
set ConjT (X) containing sets of concept names which has the property that for
every EL-concept D with T |= D v X, there exists a set S = {Y1, . . . , Ym} ∈
ConjT (X) such that T |= D v Yi follows without involving any axioms of the
form Z1 u . . . u Zn v Z. Nested implications between such axioms also have to
be taken into account.

Definition 3. Let T be a normalised EL-TBox and let X ∈ NC. We define the
set ConjT (X) ⊆ 2sig(T )∩NC to be smallest set inductively defined as follows:

– {X} ∈ ConjT (X);
– if S ∈ ConjT (X), Y ∈ S, and Z1 u . . . u Zn v Z ∈ T such that n ≥ 2 and
T |= Z v Y , then S \ {Y } ∪ {Z1, . . . , Zn} ∈ ConjT (X).

Note that for every concept name X the set ConjT (X) is finite as sig(T )∩NC

is finite.

Example 4. Let T1 = {A v X,∃r.X v X}. Then ConjT1
(X) = {{X}}. For

T2 = {X1 uX2 v X, X3 uX4 v X1, Y1 u Y2 v X}, we have that

ConjT2
(X) = {{X}, {X1, X2}, {X3, X4, X2}, {Y1, Y2}}.

We can now give a formal definition of the concept BΣT (X).

Definition 4. Let T be a normalised EL-TBox, let Σ be a signature, and let
X ∈ sig(T ). For a mapping η : NC → NV, we define a closed ELUµΣ-concept

BΣT (X, η) as follows. We set BΣT (X, η) = > if T |= > v X; otherwise BΣT (X, η)
is defined recursively in the following way:
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– If X ∈ dom(η), then
BΣT (X, η) = η(X)

– If X 6∈ dom(η), we set

BΣT (X, η) = µx.
⊔

S∈ConjT (X)
S={Y1,...,Ym}

(Y ′
1 u . . . u Y ′

m)

where x is a fresh variable, and Y ′
i (1 ≤ i ≤ n) is defined as follows for

η′ := η ∪ {X 7→ x}:

Y ′
i =

⊔

T |=BvYi

B∈Σ

B t
⊔

∃r.ZvY ∈T
r∈Σ

T |=YvYi

∃r.BΣT (Z, η′)

Finally, we set BΣT (X) = BΣT (X, ∅).
Intuitively, the construction of BΣT (X) starts from X and recursively collects

all the concept names contained in Σ and all the left-hand sides of axioms in T
that could be relevant for X to be entailed by a concept w.r.t. T . By taking
into account all possible axioms that could lead to a logical entailment, it is
guaranteed that we capture every Σ-concept from which X follows w.r.t. T .
Reasoning involving axioms of the form Z1 u . . .uZn v Z is handled by the set
ConjT (X). Infinite recursion over concepts of the form ∃r.C is avoided by keeping
track of the concept names that been visited already using the mapping η.

We note that for a normalised EL-terminology T , the concept BΣT (X) is of a
simpler form than for normalised EL-TBoxes. This is because the concept name
X can occur on the right-hand side of at most one axiom of the form ∃r.A v X
or A1 u . . . u An v X with n ≥ 2 in T , whereas in a TBox several such axioms
may occur.

We illustrate the concept BΣT (X) with the following examples.

Example 5. Let T1 = {A1 u A2 v X, A3 v A2,∃r.A2 v A1,∃r.A2 v X}, T2 =
T1 ∪ {∃r.X v A2}, and let Σ = {A1, A2, A3, r}. We obtain the following ELUµΣ-
concepts. We write ϕ instead of µx.ϕ if x does not occur freely in ϕ.

BΣT1
(A1) = A1 t ∃r.(A2 tA3) BΣT1

(A2) = A2 tA3

BΣT1
(X) = ((A1 t ∃r.(A2 tA3)) u (A2 tA3)) t ∃r.(A2 tA3)

BΣT2
(X) = µx.(((A1 t ∃r.(A2 tA3 t ∃r.x)) u (A2 tA3 t ∃r.x))

t ∃r.(A2 tA3 t ∃r.x))

Example 6. Let T1, T2 be defined as in Example 3, and let Σ = {A,B1, B2, r}.
We have that for i ∈ {1, 2}:

BΣT1
(X) = µx.(A t ∃r.x) BΣT1

(Bi) = Bi tA t ∃r.µx.(A t ∃r.x)

BΣT2
(Y ) = µy.(A t ∃r.∃r.y) BΣT2

(Zi) = ∃r.µy.(A t ∃r.∃r.y)

BΣT2
(Bi) = Bi tA t ∃r.µy1.(∃r.(A t ∃r.y1)) t ∃r.µy2.(A t ∃r.∃r.y2)
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By inspecting Definition 4 it is easy to see that |= BΣT (X) ≡ ⊥ if there does
not an ELΣ-concept C with T |= C v X. Overall, one can establish the following
correctness and completeness properties.

Lemma 1. Let T be a normalised EL-TBox, let Σ be a signature, and let X ∈
sig(T ). Then the ELUΣµ -concept BΣT (X) satisfies the following properties:

(i) T |= BΣT (X) v X, and
(ii) for every D ∈ PremisesΣT (X),

T |= D v X iff |= D v BΣT (X).

The following lemma states that the ELUµ-concept BΣT (X) exactly captures

the infinite set PremisesΣT (X). More formally, the concept BΣT (X) is equivalent to
the infinite disjunction over all the concepts contained in the set PremisesΣT (X).

Lemma 2. Let T be a normalised EL-TBox, let Σ be a signature, and let X ∈
sig(T ). Then for every interpretation I it holds that

(BΣT (X))I,∅ =
⋃
{CI,∅ | C ∈ PremisesΣT (X) }.

Analogously to the concept BΣT (X), it is possible to construct an ELΣν -
concept FΣT (X) which exactly captures the set ConclusionsΣT (X) for a concept
name X and an EL-TBox T . Due to lack of space, we cannot give a full definition
of the concept FΣT (X). Instead, we state its existence and its essential property
in the following lemma.

Lemma 3. Let T be a normalised EL-TBox, let Σ be a signature, and let
X ∈ sig(T ). Then there exists an ELν-concept FΣT (X) such that for every inter-
pretation I it holds that

(FΣT (X))I,∅ =
⋃
{CI,∅ | C ∈ ConclusionsΣT (X) }.

We can now state the following theorem, which establishes how the concepts
BΣT (X) and FΣT (X) can be used to search for difference witnesses.

Theorem 2. Let T1, T2 be two normalised EL-TBoxes. Then it holds that:

(i) A 6∈ cWtnlhs
Σ (T1, T2) iff T2 |= A v FΣT1

(A), for every A ∈ Σ;

(ii) A 6∈ cWtnrhs
Σ (T1, T2) iff T2 |= BΣT1

(A) v A, for every A ∈ Σ; and

(iii) X 6∈ cWtnmid
Σ (T1, T2) iff T2 |= BΣT1

(X) v FΣT1
(X), for every X ∈ sig(T1)\Σ.

Theorem 2 together with Corollary 1 give rise to an algorithm for deciding the
logical difference between EL-TBoxes. Procedure 1 is such an algorithm based
on reasoning in the hybrid µ-calculus, which allows for fixpoint reasoning w.r.t.
TBoxes [10].

Theorem 3. Procedure 1 runs in ExpTime.
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Procedure 1 Deciding existence of logical difference

Input: Normalised EL-TBoxes T1, T2 and signature Σ

Output: true or false

1: for every concept name X ∈ sig(T1) ∪Σ do

2: B := BΣT1
(X)

3: F := FΣT1
(X)

4: if X ∈ Σ then

5: if T2 6|= X v F or T2 6|= B v X then

6: return true

7: end if

8: else if T2 6|= B v F then

9: return true

10: end if

11: end for

12: return false

We note that the lower bound for the running time of Procedure 1 may also be
exponential as the underlying problem of deciding the logical difference of two
EL-TBoxes is ExpTime-complete [6, 7].

Example 7. Continue Example 3, where sig(T1) ∪ Σ = {A,X,B1, B2, r}. For
A, B = BΣT1

(A) = A, and F = FΣT1
(A) = B1 u B2. As T2 |= A v F and

T2 |= B v A, the loop continues. Then for X, B = BΣT1
(X) = µx.(A t ∃r.x)

and F = FΣT1
(X) = B1 u B2 (cf. Example 6). Since it holds that T2 |= B v F ,

the loop continues. For B1, B = B1 t A t ∃r.µx.(A t ∃r.x) and F = B1. As
T2 |= B1 v F and T2 |= B v B1, the loop continues. The case of B2 is similar to
that of B1. Finally, the algorithm returns false.

Procedure 1 can be modified to obtain witnesses to difference subsumption.

Example 8. We run Procedure 1 on T1, T3 = T2\{Z1 v B1} and Σ, where T1, T2
and Σ are the same as in Example 3. Then, for X, we have that B = BΣT1

(X) =

µx.(A t ∃r.x) and F = FΣT1
(X) = B1 uB2. However, T3 6|= B v F , which means

X ∈ cWtnmid
Σ (T1, T3). Similarly, it can readily be seen that B1 ∈ cWtnrhs

Σ (T1, T3).

5 Conclusion

We have revisited our solution to logical difference problem for EL-terminologies
which was based on finding simulations between hypergraph representations of
the terminologies [4]. We have shown that there is a new type of witness in
the logical difference between two EL-TBoxes. We have shown that deciding the
logical difference between two EL-TBoxes can be reduced to fixpoint reasoning
w.r.t. TBoxes.
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