
Negotiations and Petri Nets

Jörg Desel1 and Javier Esparza2

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Germany
joerg.desel@fernuni-hagen.de

2 Fakultät für Informatik, Technische Universität München, Germany
esparza@in.tum.de

Abstract. Negotiations have recently been introduced as a model of
concurrency with multi-party negotiation atoms as primitive. This paper
studies the relation between negotiations and Petri nets. In particular,
we show that each negotiation can be translated into a 1-safe labelled
Petri net with equivalent behaviour. In the general case, this Petri net
is exponentially larger than the negotiation. For deterministic negotia-
tions however, the corresponding Petri has linear size compared to the
negotiation, and it enjoys the free-choice property. We show that for this
class the negotiation is sound if and only if the corresponding Petri net
is sound. Finally, we have a look at the converse direction; given a Petri
net; can we find a corresponding negotiation?

Keywords: Negotiations, Petri nets, soundness, free-choice nets

1 Introduction

Distributed negotiations have been identified as a paradigm for process interac-
tion since some decades, in particular in the context of multi-agent systems. A
distributed negotiation is based on a set of agents that communicate with each
other to eventually reach a common decision. It can be viewed as a protocol
with atomic negotiations as smallest elements. Multiparty negotiations can em-
ploy more than two agents, both in the entire negotiation and in its atoms. A
natural way to formally model distributed negotiations is to model the behaviour
of the agents separately and then to model the communication between agents
by composition of these agent models. Petri nets and related process languages
have been used with this aim, see e.g. [2, 8, 7].

In [4, 5] we have introduced a novel approach to formally model negotia-
tions. We argue that this model is sometimes more intuitive than Petri nets
for negotiations, but it can also be applied to other application areas which are
based on the same communication principles. Like Petri nets, our formalism has
a graphical representation. Atomic negotiations are represented as nodes, with
a specific representation of the participating agents. Roughly speaking, the se-
mantics of a negotiation atom is that these agents, called participants of the
atom, come together (and are thus not distributed and do not need any commu-
nication means during the atomic negotiation) to agree on one of some possible

outcomes. Given an outcome, the model specifies, for each participating agent,
the next possible atomic negotiations in which it can participate. Agents have
local states which are only changed when an agent participates in a negotia-
tion. Atomic negotiations are combined into distributed negotiations. The state
of a distributed negotiation is determined by the atomic negotiations which the
agents can participate in next and by all local states. As in Petri nets, these two
aspects are carefully distinguished; the current next possible atomic negotiations
are represented as markings of negotiations.

Our previous contributions [4, 5] concentrate on the analysis of negotiations.
In particular, we studied the efficient analysis of well-behavedness of negotiations
by means of structural reduction rules. Our work was inspired by known reduc-
tion rules of Petri nets but leads to significantly better results when a translation
to Petri nets is avoided, at least for the general case. The present paper makes
the relation to Petri nets explicit, providing a translation rule from distributed
negotiations to Petri nets. It turns out that, for restricted classes of negotiations,
the corresponding Petri nets enjoy nice properties, and in this case the converse
direction is possible, too.

The paper is organised as follows. Section 2 repeats the syntax and semantics
of negotiations. Section 3 provides the translation to Petri nets with the same
behaviour. Section 4 discusses properties of these Petri nets. In Section 5 we show
that Petri nets enjoying these properties can be translated back to negotiations,
this way characterizing a class of Petri nets representable by negotiations.

2 Negotiations: Syntax and Semantics

We recall the main definitions of [4, 5] for syntax and semantics of negotia-
tions. Let A be a finite set (of agents), representing potential parties of a
negotiation. Each agent a ∈ A has a (possibly infinite) nonempty set Qa
of internal states with a distinguished subset Q0a ⊆ Qa of initial states.
We denote by QA the cartesian product

∏
a∈AQa. So a state is represented

by a tuple (qa1 , . . . , qa|A|) ∈ QA. A transformer is a left-total relation τ ⊆
QA × QA, representing a nondeterministic state transforming function. Given
S ⊆ A, we say that a transformer τ is an S-transformer if, for each ai /∈ S,
((qa1 , . . . , qai , . . . , qa|A|), (q

′
a1 , . . . , q

′
ai , . . . , q

′
a|A|)) ∈ τ implies qai = q′ai . So an

S-transformer only transforms internal states of agents in S or in a subset of S.
Internal states of agents and their transformers won’t play an important role

in this contribution. As will become clear later, states do not influence behaviour
in negotiations, i.e., we can consider the control flow and data aspects separately.
For the Petri net translation to be defined, local states and their transformers
can be modelled by means of token colours and transition modes, respectively,
i.e. by means of Coloured Petri nets. These Coloured Petri nets are without
guards, because guards restrict transition occurrences by regarding data values.

42 PNSE’15 – Petri Nets and Software Engineering

2.1 Atomic Negotiations

Definition 1. An atomic negotiation, or just an atom, over a set of agents A is
a triple n = (P,R, δ), where P ⊆ A is a nonempty set of parties or participants
of n, R is a finite, nonempty set (results), and δ is a mapping assigning to each
result r ∈ R a P -transformer δ(r).

In the sequel, Pn, Rn and δn will denote the components of an atom n. For each
result r ∈ Rn, the pair (n, r) is called an outcome. The difference between results
and outcomes is that the same result can belong to different atoms whereas the
sets of outcomes are pairwise disjoint. If we choose disjoint sets for the respective
sets of results then we do not have to distinguish results and outcomes.

If the states of the agents before an atomic negotiation n are given by a tuple
q and the result of the negotiation is r, then the agents change their states to q′
for some (q, q′) ∈ δn(r). Only the parties of n can change their internal states.
However, it is not required that a Pn-transformer δn(r) actually changes the
states of all agents in Pn. Each result r ∈ Rn is possible, independent of the
previous internal states of the parties of n.

As a simple example, consider an atomic negotiation nFD with parties F (Fa-
ther) and D (teenage Daughter). The goal of the negotiation is to determine
whether D can go to a party, and the time (a number between 8 and 12) at which
she must return home. The possible results are {yes, no, ask_mother}. Both sets
QF and QD contain a state angry plus a state t for every time T1 ≤ t ≤ T2 in a
given interval [T1, T2]. The transformer δnFD includes

δnFD(yes) = { ((tf , td), (t, t)) | tf ≤ t ≤ td ∨ td ≤ t ≤ tf }
δnFD(no) = { ((tf , td), (angry , angry)) }

δnFD(ask_mother) = { ((tf , td), (tf , td)) }

where tf and td are variables used to denote that F is in state tf 6= angry and
D in state td 6= angry before engaging in the negotiation atom nFD. Moreover, if
one of the local states before the negotiation atom was angry, then δnFD specifies
that both agents will be angry after executing the atom.

If both parties are not angry and the result is yes, then F and D agree on a
time t which is not earlier and not later than both suggested times. If it is no,
then there is a quarrel and both parties get angry. If it is ask_mother, then the
parties keep their previous times.

2.2 Combining Atomic Negotiations

If the result of the atomic negotiation above is ask_mother, then nFD is followed
by a second atomic negotiation nDM between D and M (Mother). The combined
negotiation is the composition of nFD and nDM, where the possible internal states
of M are the same as those of F and D, and nDM is a “copy” of nFD, but without
the ask_mother result. In order to compose atomic negotiations, we add a tran-
sition function X that assigns to every triple (n, a, r) consisting of an atom n, a
participant a of n, and a result r of n a set X(n, a, r) of atoms. Intuitively, this

J. Desel, J. Esparza: Negotiations and Petri Nets 43

DF

M

F D M

MDF

D
y,n,am

st stst

nFD

am

y,n

y,n y,n

nDM

n0

nf

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

D

D MF

F D

D

F D M

M

n0

am

st

nf

st st

af

y,n y,n y,n

gu

afy,n c

am

nFD

nDM

nD

Fig. 1. An acyclic negotiation and the ping-pong negotiation.

is the set of atomic negotiations agent a is ready to engage in after the atom n,
if the result of n is r.

Definition 2. Given a finite set of agents A and a finite set of atoms N over A,
let T (N) denote the set of triples (n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn.
A (distributed) negotiation is a tuple N = (N,n0, nf ,X), where n0, nf ∈ N
are the initial and final atoms, and X : T (N) → 2N is the transition function.
Further, N satisfies the following properties:

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .

The graph associated with N has vertices N and edges

{(n, n′) ∈ N ×N | ∃ (n, a, r) ∈ T (N) : n′ ∈ X(n, a, r)}.

The initial and final atoms mark the beginning and the end of the negotiation
(and sometimes this is their only role). We may have n0 = nf . In this case, due
to (2), N = {n0}, i.e, the negotiation has only one single atom. Notice that nf
has, as all other atoms, at least one result end ∈ Rnf

.

2.3 Graphical Representation of Negotiations

Negotiations are graphically represented as shown in Figure 1. For each atom
n ∈ N we draw a bar; for each participant a of Pn we draw a circle on the bar,
called a port. For each (n, a, r) ∈ T (N) with n 6= nf , a hyperarc leads from the
port of a in n to all the ports of a in the atoms of X(n, a, r), labelled by the result
r. Figure 1 shows on the left the graphical representation of a negotiation where
Father (F), Daughter (D) and Mother (M) are the involved agents. After the initial
atom n0, which has only one possible result st (start), the negotiation atoms

44 PNSE’15 – Petri Nets and Software Engineering

sketched above take place. Notice that possibly Father and Daughter come to
an agreement without involving Mother. So the agents of a negotiation can be
viewed as potential participants, which necessarily participate only in the initial
and the final atom. Instead of multiple (hyper)arcs connecting the same input
port to the same output ports we draw a single (hyper)arc with multiple labels.
In the figure, we write y for yes, n for no, and am for ask mother. Since nf has
no outgoing arc, the results of nf do not appear in the graphical representation.

The negotiation on the right (ignore the black dots on the arcs for the mo-
ment) is the ping-pong negotiation, well-known in every family. The nDM atom
has now an extra result ask_father (af), and Daughter can be sent back and
forth between Mother and Father. After each round, D “negotiates with herself”
(atom nD) with possible outcomes continue (c) and give up (gu).

2.4 Semantics

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N . Intu-
itively, x(a) is the set of atoms that agent a is currently ready to engage in next.
The initial and final markings, denoted by x0 and xf , are given by x0(a) = {n0}
and xf (a) = ∅ for every a ∈ A. Obviously, the set of markings is finite.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn, i.e., if every
agent that participates in n is currently ready to engage in n. If x enables n,
then n can take place and its participants agree on a result r; we say that the
outcome (n, r) occurs. The occurrence of (n, r) produces a next marking x′ given
by x′(a) = X(n, a, r) for every a ∈ Pn, and x′(a) = x(a) for every a ∈ A \ Pn.
We write x

(n,r)−−−−→ x′ to denote this, and call it a small step.
We write x1

σ−→ to denote that there is a sequence

x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

of small steps such that σ = (n1, r1) . . . (nk, rk) If x1
σ−→ , then σ is an

occurrence sequence from the marking x1, and x1 enables σ. If σ is finite, then
we write x1

σ−→ xk+1 and say that xk+1 is reachable from x1. If x1 is the initial
marking then we call σ initial occurrence sequence. If moreover xk+1 is the final
marking xf , then σ is a large step.

As a consequence of this definition, for each agent a, x(a) is always either
{n0} or equals X(n, a, r) for some outcome (n, r). The marking xf can only be
reached by the occurrence of (nf , end) (end being a possible result of nf), and
it does not enable any atom.

Reachable markings can be graphically represented by placing tokens (black
dots) on the forking points of the hyperarcs (or in the middle of an arc). Thus,
both the initial marking and the final marking are represented by no tokens, and
all other reachable markings are represented by exactly one token per agent.

Figure 1 shows on the right the marking in which Father is ready to engage
in the atomic negotiations nFD and nf , Daughter is only ready to engage in nFD,
and Mother is ready to engage in both nDM and nf .

J. Desel, J. Esparza: Negotiations and Petri Nets 45

As mentioned before, the enabledness of an atom does not depend on the
internal states of the agents involved; it suffices that all agents are ready to
engage in this atom, no matter which internal states they have. Moreover, each
result of the atom is possible, independent from the internal states. A given
result then determines a state transformer and thus possible next states.

2.5 Reachability Graphs

As known from any family, an occurrence sequence of a negotiation can be arbi-
trarily long (see the ping-pong negotiation above). Therefore, the set of possible
occurrence sequences can be infinite. Since we have markings and steps, an ob-
vious way to describe behaviour with finite means is by reachability graphs:

Definition 3. The reachability graph of a negotiation N has all markings reach-
able from x0 as vertices, and an arc leading from x to x′ and annotated by (n, r)

whenever x
(n,r)−−−−→ x′. The initial marking x0 is the distinguished initial vertex.

Generally, atoms with disjoint sets of parties can proceed concurrently,
whereas atoms sharing a party cannot. Formally, if two outcomes (n1, r1) and
(n2, r2) are enabled by the same reachable marking x and Pn1

∩Pn2
= ∅ then the

outcomes can occur concurrently. The condition Pn1
∩ Pn2

= ∅ is also necessary
for concurrent occurrences of outcomes because, in our model, a single agent
cannot be engaged concurrently in two different atoms, and because two state
transformers cannot operate concurrently on the local state of an agent. Thus
concurrency between outcomes depends only on the involved atoms (and their
parties) and not on the results.

Concurrency is formally captured by the concurrent step reachability graph,
defined next. A concurrent step enabled at a reachable marking x is a nonempty
set of pairwise concurrent outcomes, each of them enabled by x. It is immediate
to see that all the outcomes of a concurrent step can be executed subsequently
in arbitrary order and that the marking finally reached does not depend on the
chosen order. We call this marking reached by the concurrent step.

Definition 4. The concurrent step reachability graph of a negotiation N has
all markings reachable from x0 as vertices. An arc, annotated by a nonempty
set of outcomes, leads from x to x′ whenever the outcomes of this set are pair-
wise concurrent and the concurrent step leads from x to x′. Again, x0 is the
distinguished initial vertex.

3 From Negotiations to Petri Nets

We assume that the reader is acquainted with (low-level) initially marked Petri
nets, the occurrence rule, reachable markings, liveness, and the graphical repre-
sentation of nets as directed graphs. For each place, there are directed arcs from
all input transitions to the place and directed arcs from the place to all output

46 PNSE’15 – Petri Nets and Software Engineering

DF

M

F D M

MDF

D
y,n,am

st stst

nFD

am

y,n

y,n y,n

nDM

n0

nf

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

����
����
����
����
����

����
����
����
����
����

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

������
������
������
������

������
������
������
������

������
������
������
������
������

������
������
������
������
������

��������
��������
��������
��������

��������
��������
��������
��������

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

[F, n0]

[D, n0]

[M, n0]

[F, nFD] [D, nFD]

st]

y n am

y n

end end

[D, nDM]

[F, nf] [D, nf]

[M, {nDM, nf}]

[M, nf]

Fig. 2. Petri net semantics of the negotiation of Figure 1

transitions. Input places and output places of transitions are defined analogously.
A labelled Petri net is a Petri net with a labelling function λ, mapping transitions
to some set of labels. Graphically, the label λ(t) of a transition t is depicted as
an annotation of t.

3.1 Examples

The semantics of negotiations uses many notions from Petri net theory. In this
section, we provide a translation and begin with an example.

Figure 2 shows on the right the net for the negotiation shown on the left
(which was also shown in Figure 1). Since the number of places of the net equals
the number of ports of the negotiation, one might assume that the relation be-
tween ports and places is a simple one-to-one mapping. Moreover, the transitions
of the net have an obvious relation to the outcomes, i.e., to the results of the
negotiation atoms (if the two end-transitions are ignored).

Now we have a look at the two end-transitions of the Petri net. The
left transition refers to the last result of the negotiation’s occurrence se-
quence (n0, st), (nFD, am), (nDM, y), (nf , end), where end is a result of nf .
The right transition refers to the last result of the occurrence sequence
(n0, st), (nFD, y), (nf , end). Hence, roughly speaking, the left transition refers to
the left branch of the (only) proper hyperarc of the graphical representation of
the negotiation, and the right transition refers to the right branch.

J. Desel, J. Esparza: Negotiations and Petri Nets 47

...

... ...

...

y yn n

n0

nf

naccept nreject

a1

a1 ak

ak

Fig. 3. A (not yet completely correct) negotiation for unanimous vote (all agents par-
ticipate in all atoms)

For a negotiation with more than one proper hyperarc, each occurrence se-
quence can involve a particular branching of a hyperarc (moreover, an atom can
occur more than once, leading to different branches of the same hyperarc). For k
hyperarcs with binary branching, this results in 2k possible patterns. As can be
seen in the following example, this can result in exponentially many transitions
of the associated Petri net.

Figure 3 shows a class of negotiations with parameter k, involving agents
a1, . . . , ak. These negotiations represent a distributed voting process. Each agent
votes with possible outcome yes or no (one-party-negotiations). For each yes-
outcome there are two possible next atoms, naccept and nreject, whereas for each
no-outcome nreject is the only possibility. So the atom naccept is only enabled
if all agents vote yes, while the atom nreject is always enabled when all agents
have voted.

A Petri net representing this behaviour necessarily has to distinguish the k
possible yes-outcomes and no-outcomes, because final acceptance is only possible
if all agents have accepted. So we need 2·k corresponding places, k for acceptance
and k for rejection. When all agents came to a result, one of 2k possible markings
is reached. Only for one of these markings (all agents accepted), final acceptance
is possible, and this will be represented by one transition. For each of the 2k − 1
alternative constellations, we need a separate transition to remove the tokens
and come to final rejection. So we end up with 2k transitions.

3.2 Formal Translation of Negotiations

We associate with a negotiation N = (N,n0, nf ,X) a (labelled) Petri net. The
places of this net are, for each atom n except nf , the pairs [a, S] such that
a ∈ Pn, r ∈ Rn, and X(n, a, r) = S, plus, for each a ∈ A, the pair [a, {n0}].
Observe that the number of places is linear in the size of N (which might exceed
|N | significantly, because, for each n in N , for each a in Pn and for each result

48 PNSE’15 – Petri Nets and Software Engineering

r ∈ Rn we have a set of possible successor negotiations in X). In the sequel (and
in the figures) we write [a, n] instead of [a, {n}]. The initial marking assigns one
token to each place [a, {n0}] and no token to all other places.

The net has a set of transitions T (n, r) for each outcome (n, r). An input
place of a transition in T (n, r) reflects that a party of negotiation n is actually
ready to engage in n (and possibly in other atoms as well). For a single agent,
there might be more than one such place, resulting in several transitions. Each
transition in T (n, r) has input places referring to all involved parties, which
results in a transition for each combination of respective input places.

Formally, let Pn = {a1, . . . , ak}. T (n, r) contains a transition [n, r, L] for
every tuple L = ([a1, S1], . . . , [ak, Sk]) such that n ∈ S1 ∩ . . . ∩ Sk. The set
of input places of [n, r, L] is {[a1, S1], . . . , [ak, Sk]}, and its set of output places
is {[a1,X(n, a1, r)], . . . , [ak,X(n, ak, r)]}. All transitions of the set T (n, r) are
labelled by the outcome (n, r). They all have the same output places. Moreover,
they have the same number of input and output places, both of them equal to
the number of parties of n.

For the negotiation on the left of Figure 2, we get seven sets of transitions:
T (n0, st), T (nFD, y), T (nFD, n), T (nFD, am), T (nDM, y), T (nDM, n), and T (nf , end).
All of them are singletons, with the exception of T (nf , end), which contains the
two transitions shown at the bottom of the figure. In the figure, we annotate
transitions only by results r instead of outcomes (n, r). Notice that here we
assume a unique result end of nf .

Proposition 1. For each atom n 6= nf , each transition labelled by (n, r) has
exactly one input place [a,X] for each agent a ∈ Pn, and exactly one output
place [a, Y] for each agent a ∈ Pn. Transitions labelled by (nf , end) have no
output places. ut

Corollary 1. For each agent a, the number of tokens on places [a,X] never
increases. Since this number is one initially, it is at most one for each reachable
marking. ut

Corollary 2. The net associated with a negotiation is 1-safe, i.e., no reachable
marking assigns more than one token to a place. ut

Lemma 1. The net associated with a negotiation is deterministic, i.e., no reach-
able marking enables two distinct transitions with the same label.

Proof. A transition labelled by (n, r) has an input place for each participant of
n. Two equally labelled transitions cannot have identical sets of input places by
construction. Hence, for at least one agent a there is a place [a,X] which is input
place of one of the transitions and a distinct place [a, Y] which is input place
of the other transition. Since, by Corollary 1, each reachable marking marks at
most one of these two places, each reachable marking enables at most one of the
transitions. ut

The (sequential) behaviour of a labelled Petri net is represented by its reach-
ability graph:

J. Desel, J. Esparza: Negotiations and Petri Nets 49

Definition 5. The reachability graph of a Petri net has all reachable markings
m as vertices, an arc annotated by t leading from m to m′ when m enables
transition t and the occurrence of t leads to m′, and a distinguished initial mark-
ing m0. The label reachability graph of a labelled Petri net is obtained from its
reachability graph by replacing each transition by its label.

In terms of reachability graphs, a labelled Petri net is deterministic if and
only if its label reachability graph has no vertex with two outgoing edges which
carry the same label. An occurrence sequence of a deterministic labelled Petri
net is fully determined by the sequence of transition labels, as shown in the
following proposition, and so is the sequence of markings reached.

For a labelling function λ and an occurrence sequence σ = t1 t2 t3 . . ., we
write λ(σ) for the sequence of labels λ(t1) λ(t2) λ(t3) . . . in the sequel.

Proposition 2. Let σ1 and σ2 be two finite, initially enabled occurrence se-
quences of a deterministic labelled Petri net with labelling function λ. Let m1

be the marking reached by σ1, and let m2 be the marking reached by σ2. If
λ(σ1) = λ(σ2) then m1 = m2. ut

3.3 Behavioural Equivalence between Negotiations and Nets

In this subsection, we will employ the usual notion of isomorphism between
reachability graphs:

Definition 6. Two reachability graphs are isomorphic if there exists a bijective
mapping ϕ between their sets of vertices, mapping the initial vertex of the first
graph to the initial vertex of the second graph, such that there is an edge from
u to v labelled by some t in the first graph if and only if there is an edge from
λ(u) to λ(v) labelled by t in the second graph.

Reachability graph isomorphism is a very strong behavioral equivalence notion
for sequential behaviour. If moreover the concurrent step reachability graphs of
two models are isomorphic, then also the concurrent behaviour of the systems
coincide. We will show the existence of both isomorphisms between negotiations
and associated Petri nets.

Proposition 3. The reachability graph of a negotiation and the label reachability
graph of the associated labelled Petri net are isomorphic.

Proof. (Sketch). We interpret a token on a place [a, {n1, . . . , nk}] on the negoti-
ation side as “agent a is ready to engage in the atoms of the set {n1, . . . , nk}”. It
is immediate to see that this holds initially. By construction of the Petri net, a
small step (n, r) of the negotiation is mimicked by an occurrence of a transition
of the set T (n, r), and hence by a transition labelled by (n, r). By construction,
the marking of the negotiation reached by the occurrence of the outcome corre-
sponds to the marking of the net reached by the occurrence of the transition. ut

For comparing the concurrent behaviour of negotiations and associated la-
belled Petri nets, we have to define concurrent enabledness of transitions. This
is easy in our setting, because the considered nets are 1-safe.

50 PNSE’15 – Petri Nets and Software Engineering

Definition 7. Two transitions t and t′ of a 1-safe Petri net are concurrently
enabled at a reachable marking m if m enables both t and t′ and if moreover t
and t′ have no common input place.

Concurrent behaviour is captured by the concurrent step reachability graph
and, for labelled Petri nets, by its label version. In the following definition, a set
of transitions is said to be concurrently enabled if any two distinct transitions in
this set are concurrently enabled.

Definition 8. The concurrent step reachability graph of a Petri net has all
reachable markings m as vertices, a distinguished initial marking m0 and an arc
labelled by U leading from m to m′ when m concurrently enables a nonempty set
U of transition and the occurrence of all transitions of U (in any order) leads
from m to m′.

The label concurrent step reachability graph of a labelled Petri net is obtained
from its concurrent step reachability graph by replacing each set of transitions by
the multiset of its labels.

Fortunately, in our setting two equally labelled transitions are never enabled
concurrently, so that the labels of concurrent steps will never be proper multisets,
but just sets.

Lemma 2. If two outcomes (n, r) and (n′, r′) of a negotiation are concurrently
enabled at a marking reached by an initial occurrence sequence σ, then there is an
initially enabled occurrence sequence µ of the associated labelled Petri net such
that λ(µ) = σ and the marking reached by µ concurrently enables two transitions
labelled by (n, r) and (n′, r′) respectively.

Conversely, if a marking of the (λ-)labelled Petri net reached by an occurrence
sequence µ concurrently enables two transitions t and t′, then the marking of the
negotiation reached by λ(µ) concurrently enables the two outcomes λ(t) and λ(t′).

Proof. (Sketch). By construction of the Petri net, a transition t has an input
place [a,X] only if λ(t) = (n, r) for an agent a ∈ Pn. Assume that two enabled
transitions are not concurrent. Then they share an input place [a,X] only if their
labels refer to two outcomes (n, r) and (n′, r′) such that a ∈ Pn and a ∈ Pn′ . So
Pn ∩ Pn′ 6= ∅, and thus the two outcomes are not concurrent.

Conversely, if two outcomes (n, r) and (n′, r′) are enabled but not concurrent,
then some agent a belongs to both Pn and Pn′ . In the Petri net, each transition
labelled by (n, r) or by (n′, r′) has an input place [a,X]. Since each reachable
marking marks only one place [a,X] by Corollary 1, two distinct enabled transi-
tions labelled by (n, r) or by (n′, r′) share this marked input place, whence they
are not concurrent. ut

Corollary 3. The concurrent step reachability graph of a negotiation and the
label concurrent step reachability graph of its associated Petri net are isomorphic.

ut

J. Desel, J. Esparza: Negotiations and Petri Nets 51

...

...

... ...

...

y

n

reject1 rejectk

n

y

a1 akn0

a1 ak

accept

nf

Fig. 4. A corrected negotiation for unanimous vote (all agents participate in all atoms)

3.4 Excursion: On the Voting Example

The reader possibly finds unsatisfactory that the negotiation given in Figure 3
can reject even when all parties vote yes. This results in 2k respective transi-
tions of the Petri net. If we want to avoid this possibility in the Petri net, we just
remove the single transition that removes tokens from all accept-places and en-
ables overall rejection. For the negotiation, we found the following work-around:
we replace the atom nreject by k rejecting atoms rejecti, for 1 ≤ i ≤ k. If agent
ai votes yes, then it is ready to engage in accept and in all rejectj such that
j 6= i. Any of the rejecjj-atoms have a single result that leads to final rejection.
When all agents vote yes then none of the rejecti-atoms are enabled, whence
only overall acceptance can take place. Notice that this construction is a bit
clumsy (see Figure 4), but still does not require exponentially many elements,
as the associated Petri net does.

4 Properties of the Net Associated with a Negotiation

4.1 S-components

An S-component of a Petri net is a subnet such that, for each place of the subnet,
all input- and output-transitions belong to the subnet as well, and such that each
transition of the subnet has exactly one input- and exactly one output-place of
the subnet. It is immediate to see that the number of tokens in an S-component
never changes. A net is covered by S-components if each place and each transition
belongs to an S-component. Nets covered by S-components carrying exactly one

52 PNSE’15 – Petri Nets and Software Engineering

token are necessarily 1-safe. For example, every live and 1-safe free-choice net
enjoys this nice property [3].

Petri nets associated with negotiations are not covered by S-components,
only because the end-transitions have no output places. However, if we add an
arc from each end-transition to each initially marked place, then the resulting
net is covered by S-components:

Proposition 4. The Petri net associated with a negotiation, with additional
arcs from each end-transition to each initially marked place, is covered by S-
components.

Proof. (Sketch). For each agent a, the subnet generated by all places [a,X]
and all transitions labelled by (n, r), where a ∈ Pn, is an S-component (being
generated implies that the arcs of the subnet are all arcs of the original net
connecting nodes of the subnet). An arbitrary place of the net belongs to one
such subnet, because it corresponds to an agent. Each transition has a label
(n, r), and each atom n has a nonempty set of participants. ut

4.2 Soundness

The following notion of sound negotiations was inspired by van der Aalst’s sound-
ness of workflow nets [1].

Definition 9. A negotiation is sound if each outcome occurs in some initial
occurrence sequence and if, moreover, each finite occurrence sequence is a large
step or can be extended to a large step.

All the negotiations shown in the figures of this paper are sound. For an
example of an unsound negotiation, consider again the ping-pong negotiation
shown in Figure 1 on the right hand side. Imagine that Daughter could choose
to start negotiating with Father or with Mother. This could be expressed by
replacing the arc from port D of n0 to port D of nFD by a hyperarc from port D of
n0 to ports D of both nFD and nDM. If the first negotiation is between Daughter and
Mother, and if it is successful, a marking is reached where both Daughter and
Mother can only engage in the final atom nf , whereas father is still only able to
participate in nFD. So the distributed negotiation has reached a marking which
is neither final nor enables any outcome. We call such a marking a deadlock.
Clearly, sound negotiations have no reachable deadlocks.

Since the Petri nets associated with negotiations are not workflow nets, we
cannot immediately compare the soundness notions of workflow nets and of ne-
gotiations. Instead, we first provide a translation of nets associated with negotia-
tions to workflow nets. It turns out that a sound negotiation does not necessarily
lead to a sound workflow net in the general case. However, for the subclass of
deterministic negotiations the two concepts coincide, as will be shown next.

We begin with a very simple equivalence transformation of nets:

J. Desel, J. Esparza: Negotiations and Petri Nets 53

Definition 10. Two Petri nets N and N ′ are in the relation R if

– either N has two distinct places with identical sets of input transitions, iden-
tical sets of output transitions and equal initial markings, and N ′ is obtained
from N by deletion of one of these places (and adjacent arcs),

– or N has a place without output transition, and N ′ is obtained from N by
deletion of this place.

The symmetrical, reflexive and transitive closure of R is called place equivalence.

Obviously, two place-equivalent nets have identical behaviour, i.e., their reacha-
bility graphs are isomorphic and so are their concurrent step reachability graphs.
Notice, however, that place-equivalence does not respect 1-safety. If the only
place that violates 1-safety has no output-transition, then deletion of this place
can make a net 1-safe.

A workflow net is a Petri net with two distinguished places pin and pout such
that pin has no input transition, pout has no output transition and, for each
place or transition x, there are directed paths from pin to x and from x to pout.
The initial marking of a workflow net assigns one token to the place pin and
no token to all other places. Workflow nets also have a final marking, assigning
only one token to pout. A workflow net is sound if it has no dead transitions (i.e.,
each transition is in an initially enabled occurrence sequence) and, moreover,
each initially enabled occurrence sequence is a prefix of an occurrence sequence
leading to the final marking.

Proposition 5. The net associated with a sound negotiation is place-equivalent
to a workflow net.

Proof. (Sketch). We derive a single input place pin by deleting all but one of
the initially marked places. We add a new place pout with all end-transitions
as input transitions. Both transformations apparently lead to place equivalence
nets.

Since, by soundness of the negotiation, every atom (and therefore every out-
come) can be enabled, a token can be moved from the initial atom to any other
atom, and therefore there is a directed path from the initial atom to any other
atom (more precisely, there is a path in the graph of the negotiation). By the
construction of the Petri net, there are according paths from the place pin to
arbitrary places and transitions of the net.

Again by soundness of the negotiation, every occurrence sequence can be
extended to a large step, i.e., the final atom can eventually be enabled and
the final marking reached. So every “token” can be led to the final atom, and
therefore there are paths in the graph of the negotiation from every atom to
the final atom. By construction of the Petri net, there are thus paths from any
element to an end-transition, and finally to the new place pout. ut

Unfortunately, soundness of a negotiation does not necessarily imply sound-
ness of a related workflow net. The reason is that soundness requires that every
atom can occur but not that every branch of a hyperarc is actually used. If,

54 PNSE’15 – Petri Nets and Software Engineering

for example, there would be an additional hyperarc in Figure 1 from the port
F in n0 to the ports F in nFD and nf instead of the arc from n0 to nFD, then
the resulting negotiation would still be sound (actually, the behaviour does not
change at all). In the associated Petri net, however, there would be an additional
transition end with new input place [F, {nFD, nf}] (and other input places) which
never is enabled. This net is therefore not sound.

4.3 Deterministic Negotiations

In [5], we concentrate on deterministic negotiations which are negotiations with-
out proper hyperarcs.

Definition 11. A negotiation is deterministic if, for each atom n, agent a ∈ Pn
and result r ∈ Rn, X(n, a, r) contains at most one atom (and no atom only if
n = nf).

The term deterministic is justified because there is no choice for an agent
with respect to the next possible atom.

Since both, the exponential blow-up and the problem of useless arcs (branches
of hyperarcs) stem from proper hyperarcs, we can expect that deterministic
negotiations allow for better results. Actually, the Petri net associated with a
deterministic negotiation is in fact much smaller, because all its places have the
form [a,X], where a is an agent and X is a singleton set of atoms. So the set of
places is linear in agents and in atom.

Before discussing soundness of deterministic negotiations, we make a struc-
tural observation:

Proposition 6. The net associated with a deterministic negotiation is a free-
choice net, i.e., every two places either share no output transitions, or they share
all their output transitions.

Proof. (Sketch). Since, in nets associated with deterministic negotiations, each
place has the form [a,X], whereX is a singleton set {n}, all its output transitions
are labelled by (n, r), r being a possible result of n. By construction, every other
place [b, {n}] has exactly the same output transitions as [a, {n}] whereas all other
places have no common output transition with [a, {n}]. ut

Proposition 7. The net associated with a deterministic negotiation is sound if
and only if it is place equivalent to a sound workflow net.

Proof. (Sketch). Observe that the translation from the negotiation to the associ-
ated Petri net is much easier in this case: for each atom n we add places [a, n] for
each a in Pn and transitions (n, r) for each r ∈ Rn. There are no two transitions
for any outcome (n, r), and so transition labels are not necessary (formally, we
can label each transition by itself). For each such place [a, n] of an atom n and
each such transition (n, r) we add an arc from [a, n] to (n, r). Finally we add arcs
from transitions (n, r) to places [b, n′] whenever X(n, a, r) = {n′} and b ∈ Pn′ .

J. Desel, J. Esparza: Negotiations and Petri Nets 55

It is immediate that to see this net is free-choice and that the behaviour of
the negotiation is precisely mimicked by the net. So the negotiation is sound if
and only if the net has no dead transitions and moreover can always reach the
final (empty) marking.

The result follows since the net can, as above, be translated into a place
equivalent workflow net. ut

5 From Nets to Negotiations

In this section we study the converse direction: Given a labelled Petri net, is there
a negotiation such that the net is associated with the negotiation? Obviously,
for a positive answer the net has to enjoy all the properties derived before. In
particular, it must have disjoint S-components and initially marked input places.
However, in the general case it appears to be difficult to characterise nets that
have corresponding negotiations.

We will provide an answer for the case of sound deterministic negotiations
and sound free-choice workflow nets.

Proposition 8. Every sound free-choice workflow net is place equivalent to a
net which is associated with a sound deterministic negotiation.

Proof. (Sketch). A workflow net is sound if and only if the net with an additional
feedback transition moving the token from pout back to pin is live and 1-safe [1].
Live and 1-safe workflow nets are covered by S-components [3]. Therefore a sound
workflow net is covered by S-components as well. However, these S-components
have not necessarily disjoint sets of places. Consequently, we cannot easily find
candidates for agents involved in the negotiation to be constructed.

Instead we proceed as follows: We choose a minimal set of S-components that
cover the net. Since each S-component of a live net has to carry a token, all these
S-components contain the place pin. Each S-component will be an agent of the
net to be constructed, and each conflict cluster (i.e., each maximal set of places
together with their common output transitions) a negotiation atom.

Each place p of the net is contained in at least one S-component of the cover.
Let Cp be the set of all S-components of the derived minimal cover containing
p. If Cp contains more than one S-component, we duplicate the place p, getting
a new place p′ with input and output transitions like p. Now the new net still
has a cover by S-components, where one of the S-components containing p now
contains p′ instead. Repetition of this procedure eventually leads to a net where
each place p belongs to exactly one S-component Cp of the cover. Finally we
delete the place pout. Both operations, duplication of places and deletion of pout,
lead to place-equivalent nets.

The resulting net is associated with the following negotiation: The set of
agents is the set of S-components of the minimal cover. The atoms are the
conflict clusters of the net. The results of an atom are the transitions of the
corresponding conflict cluster. The X-function can be derived from the arcs of
the Petri net leading from transitions to places. ut

56 PNSE’15 – Petri Nets and Software Engineering

6 Conclusions

This contribution presented the translation from distributed negotiations to
Petri nets such that a negotiation and its associated Petri nets are behaviourally
equivalent in a strong sense. In the general case, the Petri net is exponentially
larger than the negotiation, wheras for deterministic negotiations its size is only
linear. Petri nets do not inherit many properties from arbitrary negotiations,
but for deterministic negotiations soundness and non-soundness is respected by
the transformation to workflow-like Petri nets, whence in this case the reverse
translation is possible as well.

Analysis results for negotiations might be transferable to Petri nets and vice
versa via the translation. In future work, we will study this question in particular
for the respective sound and complete sets of reduction rules for negotiations [4,
5] and for free-choice Petri nets [3].

Based on the reduction results, a very recent work [6] introduces a global
specification language for negotiations and characterises the negotiations ex-
pressible with this language. Similar results for Petri nets could be derived via
the translation procedure of this paper.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circuits, Syst. and Comput. 08(01), 21–66 (1998)

2. Chen, Y., Peng, Y., Finin, T., Labrou, Y., Chu, B., Yao, J., Sun, R., Willhelm,
B., Cost, S.: A negotiation-based multi-agent system for supply chain management.
In: In Proceedings of Agents 99 - Workshop on Agent Based Decision-Support for
Managing the Internet-Enabled Supply-Chain. pp. 15–20 (1999)

3. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New
York, NY, USA (1995)

4. Esparza, J., Desel, J.: On negotiation as concurrency primitive. In: D’Argenio,
P.R., Melgratti, H.C. (eds.) CONCUR. Lecture Notes in Computer Science,
vol. 8052, pp. 440–454. Springer (2013), extended version in arXiv:1307.2145,
http://arxiv.org/abs/1403.4958

5. Esparza, J., Desel, J.: On negotiation as concurrency primitive II: Determinis-
tic cyclic negotiations. In: Muscholl, A. (ed.) FoSSaCS. Lecture Notes in Com-
puter Science, vol. 8412, pp. 258–273. Springer (2014), extended version in CoRR
abs/1403.4958, http://arxiv.org/abs/1403.4958

6. Esparza, J., Desel, J.: Negotiation programs. In: Devillers, R., Valmari, A. (eds.)
Petri Nets. Lecture Notes in Computer Science, vol. 9115, pp. 157–178. Springer
(2015)

7. Simon, C.: Negotiation Processes – The Semantic Process Language and Applica-
tions. Shaker, Aachen, Germany (2008)

8. Xu, H., Shatz, S.M.: An agent-based Petri net model with application to seller/buyer
design in electronic commerce. In: Fifth International Symposium on Autonomous
Decentralized Systems, ISADS 2001, Dallas, Texas, USA, March 26-28, 2001. pp.
11–18. IEEE Computer Society (2001)

J. Desel, J. Esparza: Negotiations and Petri Nets 57

