
Scaling up the Mining of Semantically-enriched
Trajectories: TripBuilder at the World Level

Igo Brilhante1, Jose Antonio Macedo1,
Franco Maria Nardini2, Raffaele Perego2, Chiara Renso2

1 Federal University of Ceará, Brazil – 2 ISTI-CNR, Italy

Abstract. TripBuilder is an unsupervised system helping tourists to
build their own personalized sightseeing tour [1, 3, 2]. Given a target
touristic city, the time available for the visit, and the tourist’s profile,
TripBuilder provides a time-budgeted tour that maximizes tourist’s
interests and takes into account both the time needed to enjoy the at-
tractions and to move from one Point of Interest (PoI) to the next one.
The knowledge base feeding the sightseeing tour generation algorithm of
TripBuilder is entirely mined from publicly available sources, namely,
Wikipedia, Flickr and Google Maps. This paper introduces a scalable and
robust Cloud architecture (combining both stream and batch processing)
to download the data from the heterogeneous sources and build a huge
TripBuilder knowledge base covering most popular cities worldwide.

1 Introduction
The generation of the TripBuilder knowledge base is a unsupervised process
that involves several steps:

PoIs. The first step is to identify the set of points of interest (PoI) in the target
city. Given the bounding box BBcity containing the city, we download all the
geo-referenced Wikipedia pages falling within this region. We assume each geo-
referenced Wikipedia named entity, whose geographical coordinates falls into
BBcity, to be a fine-grained PoIs. For each Wikipedia PoI, we consider its de-
scriptive label, its geographic coordinates, and the set of Wikipedia categories
the PoI belongs to. By considering the set C of categories associated with all the
Wikipedia PoIs, we generate the normalized relevance vector of each PoI. Since a
tourist in a given place can enjoy all the attractions in the surroundings, we also
perform a density-based clustering to group in a single PoI sightseeing entities
which are very close one to each other. At the end of this step each PoI p ∈ P of
the city is enriched with its geographic coordinates, a name and a description,
and a relevance vector, vp ∈ [0, 1]|C|, measuring its normalized relevance of p
w.r.t the categories C.

Users and PoI histories. As second step we need a method for collecting
tourists and their long-term itineraries crossing the discovered PoIs. We query
Flickr to retrieve the metadata (user id, timestamp, tags, geographic coordinates,
etc.) of geo-referenced photos taken in the given area BBcity. The assumption
we are making is that photo albums made by Flickr users implicitly represent
sightseeing itineraries within the city. This process thus collects a large set of
geo-tagged photo albums taken by different users within BBcity. We discard

photo albums containing only one photo and we spatially match the photos
with the set of PoIs previously collected. Moreover, we consider the timestamps
associated with the first and last photos taken by each user in a given PoI to
estimate the average PoI visiting time ρ(p). The popularity pop(p) of each PoI p
is computed instead by normalizing the number of distinct users that shot it in
at least one photo. The above process allows us to generate the set of users, their
PoI history (the temporally ordered sequence of PoIs visited by a user u), and
estimate for the popularity and visiting time of each PoI. Finally, a preference
vector vu ∈ [0, 1]|C| stating the normalized interest of u for the categories in
C is built by summing up and normalizing the relevance vectors of all the PoIs
occurring in u PoI history.

Trajectories. In order to build the set S of trajectories used by TripBuilder
we split users’ PoI histories by cutting the ordered list where the time interval
between the visit to two subsequent PoIs is greater than a given threshold δ
derived by analyzing the inter-arrival time of each pair of consecutive photos
taken in different PoIs. Given the distribution of probability of such inter-arrival
time P (x ≤ δ), we compute for each city the time threshold δ such that P (x ≤
δ) = 0.9.

Traveling time estimation. TripBuilder recommend personalized sightsee-
ing tours fitting the time budget of the user. Therefore also the time τ(·, ·)
needed to move between consecutive PoIs in the itinerary has to be estimated.
Since measuring intra-PoI moving time from the photo albums resulted to be
inaccurate for less popular PoIs, we query Google Maps for the distance between
the PoIs.

User-PoI Interest. Given a PoI p, its relevance vector vp, a user u, and the
associated preference vector vu, we define the User-PoI Interest function as a
the following function Γ (p, u) : P × U → [0, 1]: Γ (p, u) = α · sim(vp,vu) +
(1− α) · pop(p) where sim(vp,vu) =

vp·vu

||vp|| ||vu|| is the cosine similarity between

the user preference and the PoI relevance vectors, and α ∈ [0, 1] is a parameter
controlling how much user preference and popularity of PoIs have to be taken
into account.

Sightseeing Tour Generation. Once the knowledge base for a given city is
available, TripBuilder addresses the problem of planning the visit to the city
as a two-step process detailed in [3].

The TripBuilder System

The architecture of the TripBuilder system involves four different layers:

Stream Layer with Apache Storm. This layer is composed of two different
modules that retrieve the relevant information from Flickr and Wikipedia by
receiving city bounding boxes as a stream. In particular, each item of the stream
is used by Photo Discovery to query Flickr to retrieve the metadata (user id,
timestamp, tags, geographic coordinates, etc.) of photo albums, i.e., sequences
of photos taken in the given geographic area. An important assumption we are

doing is that photo albums implicitly represent sightseeing itineraries within a
city. To strengthen the accuracy of our method, this module retrieves only the
photos having the highest geo-referencing precision. This process thus collects
a large set of geo-tagged photo albums taken by different users in the given
geographic area. The second module, Wikipedia PoI Discovery, collects PoIs
from Wikipedia. In particular, we assume each geo-referenced Wikipedia named
entity, whose geographical coordinates falls into a given area, to be a Point of
Interest. For each PoI, we retrieve its descriptive label, its geographic coordinates
as reported in the Wikipedia page, and the set of categories the PoI belongs to,
which are reported at the bottom of the Wikipedia page. Then, photos from
Flickr and PoIs from Wikipedia are matched by spatial proximity according to
their coordinates. Figure 1 highlights the components on the Stream layer.

Wikipedia PoI
Discovery

Photo
Discovery

Stream Layer

City

Streams

City

City
Users'
Photos

Poi Visiting
Time

Estimation

Trajectories
Creation

Batch Layer

Trajectory
Split

Estimation

Distributed Data Storage

HDFS HDFS HDFSHDFS

Fig. 1. Layers of the TripBuilder architecture.

The stream layer is built by means of Apache Storm1, a free and open source
distributed realtime computation system. Apache Storm allows to reliably pro-
cess unbounded streams of data. Storm organizes the computation in a graph,
called topology, where data flows through nodes, called bolts. Our stream layer is
thus able to crawl Flickr and Wikipedia in a real-time fashion by receiving from
an input Kafka2 queue a given bounding box representing the target geographic
area. The results of the real-time computation are stored on a distributed data
storage. Figure 2 highlights the topology responsible for processing streams on
TripBuilder, where spout nodes read data streams like city bounding boxes,
PoIs, passing them through bolt nodes (Wiki and Photo) to discovery PoIs and
photos respectively, which are stored by HDFS bolt nodes. Note that, this topol-
ogy is highly scalable where spout and bolt nodes can have as many instances as
needed spread across several machines.

Batch Layer with Apache Spark. This layer is made up of different com-
ponents each one manipulating the data previously collected. It is in charge of
cleaning and transforming the data by means of distributed computing frame-
works like Apache Hadoop3 and Spark4 to speed up the data processing step.
In particular, the modules here transform sequences of photos from Flickr to
sequences of visited Wikipedia PoIs, i.e., trajectories, to be used in the Trip-

1 https://storm.apache.org
2 http://kafka.apache.org/
3 http://hadoop.apache.org
4 http://spark.apache.org

Builder module. Moreover, this step is in charge of computing popularity and
other important characteristics of PoIs by considering metadata and information
extracted both from Flickr and Wikipedia. We take advantage of the functional
capabilities of Spark to distribute and parallelize the computation on the cloud
cluster. Spark has shown to be a great tool for large-scale data processing. The
data obtained are then stored on a “Distributed Data Storage” layer. This is an
important point in favour of enabling the flexibility of TripBuilder: different
sources of information for trajectories and PoIs can be easily integrated into the
system by modifying only the two lowest layers. Moreover, the approach taken
allows to scale to large geographic areas as the two layers effectively exploits
modern state-of-the-art technologies for distributed and parallel computation.

City Spout

Wiki Bolt

Wiki Bolt

Wiki Bolt

Wiki Bolt

HDFS Bolt

HDFS Bolt

BBox Spout

Photo Bolt

Photo Bolt

Photo Bolt

Photo Bolt

HDFS Bolt

HDFS Bolt

Wikipedia PoI Discovery Photo Discovery

Fig. 2. TripBuilder Storm topology.

Distributed Data Storage. This component is responsible for storing, query-
ing and indexing trajectory and PoI data. It is composed by a database manage-
ment system and a distributed filesystem that efficiently provides information
to the “TripBuilder Engine” component and a distributed data storage to sup-
port Stream and Batch layers. The database component contains a well-defined
schema to enable flexibility in integrating other data sources. Geo-spatial indexes
are used for searching spatial objects, such as PoIs and tourist traces, within a
given region (e.g. polygon). The system also takes advantage of indexes over
PoI categories and tourist traces, both represented as arrays, to efficiently re-
trieve relevant PoIs to the user preferences. Moreover, the distributed filesystem
is built by using the Apache Hadoop Distributed Filesystem (HDFS). We choose
the HDFS technology as it is a mature solution for storing data in distributed en-
vironments. As an example, it provides effective and efficient mechanisms to deal
with faults thus preventing us to avoid data loss in case of hardware problems.

References

1. Brilhante, I.R., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Where shall
we go today?: Planning touristic tours with tripbuilder. In: Proc CIKM’13. pp.
757–762. ACM (2013)

2. Brilhante, I.R., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: Tripbuilder: A
tool for recommending sightseeing tours. In: Proc. ECIR 2014, LNCS, vol. 8416, pp.
771–774. Springer (2014)

3. Brilhante, I.R., Macedo, J.A., Nardini, F.M., Perego, R., Renso, C.: On planning
sightseeing tours with tripbuilder. IP& M 51(2), 1 – 15 (2015)

