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Abstract 

This paper shows how an indoor mobile robot equipped with 

a laser sensor and an odometer computes its global map by 

associating landmarks found in the environment. The 

approach developed is based on the observation that humans 

and animals detects where they are in the surrounding by 

comparing their spatial relation to some known or recognized 

objects in the environments, i.e. landmarks. In this case, 

landmarks are defined as 2D surfaces detected in the robot’s 

surroundings. They are recognised if they are detected in two 

successive views. From a cognitive standpoint, this work is 

inspired by two assumptions about the world; (a) the world is 

relatively stable and (2) there is a significant overlap of spatial 

information between successive views. In the implementation, 

the global map is first initialised with the robot’s first view, 

and then updated each time landmarks are found at every two 

successive views. The difference here is, where most robot 

mapping work integrates everything they see in their update, 

this work takes advantage of updating only the landmarks 

before adding the nearby objects associated with them. By 

association, the map is built without error corrections and the 

final map produced is not metrically precise.  

 

Keywords: inexact map; landmark association; autonomous 
robot 

Introduction 

To date, many methods have been proposed in the 

framework of autonomous robot navigation to construct 

maps. From precise geometric maps based on raw data or 

lines to purely topological maps using symbolic 

descriptions; each has its own advantages and drawbacks. 

From reading, cognitive scientists and roboticists have 

different opinions on the mapping issues (Yeap & Jefferies, 

1999; Jefferies & Yeap, 2001).  

On the one hand, roboticists highlighted their effort 

working on the mapping problem by producing metrically 

precise maps of the environment, else their robots would get 

lost while navigating or exploring. Works such as Chatila 

(1982), Iyengar and Elfes (1991), Kuipers (2000), Durrant-

Whyte and Bailey (2006) and Thrun (2008) led the ways of 

using powerful sensory tools (e.g. laser and vision) for robot 

mapping. However, their approach must deal with the main-

product; errors accumulated over time by the sensors, which 

is usually corrected through the use of successful 

probabilistic methods such as the Monte Carlo Localization 

(Roefel & Juengel) and the various Kalman-based filters 

(Caballero et al., 2008; Roumeliotis & Bekey, 2000; 

Nguyen et al., 2012). The requirement for precise metrical 

maps calls for advanced error-correction techniques which 

are often costly to computational complexity.  

On the other hand, cognitive scientists or behavioural 

scientists (psychologists and geographers) took the mapping 

approach from totally the opposite direction; analysing 

humans’ and animals’ behaviour traversing in new 

environments, investigating what is being remembered most 

during such visits, and identifying how an individual 

organized conceptual knowledge gained about the 

environment. Included also in their discussions were 

landmarks which play significant role in reasoning about the 

environment. They also paid close observations on the use 

of higher-level cognitive capabilities such as the ability to 

identify short cuts and the ability to identify oneself in 

complex environment particularly when looping occurs. 

Such studies can be seen in these works; Gallistel and 

Cramer (1996), Wang and Spelke (2000), Biegler (2000), 

and Cheng (1986). These extensive experimental works 

show that robots do not need to build a metrically precise 

global map to navigate in the environment. Moreover, they 

show that inconsistent and unclear sensor data are still 

usable to perform path planning and achieve loop closing 

successfully.  

It has been argued that since human live in a geometrical 

world, humans should be locating objects in the 

environment by means of reference to the geometrical 

features. Plenty of works have adopted this notion of frames 

of reference as a means to represent the location of entities 

in space (Wang & Spelke, 2002; Mou & McNamara, 2002; 

Mou et al., 2004). These researchers believed that different 

frame of reference is used to for different navigational 

activities. For instance, navigating closely spaced trees 

requires accurate self-to-object (egocentric) judgement else 

one could bump into the obstacles (Anderson et al., 1997), 

but planning a distant goal and maintaining a sense of 

orientation in large environment requires one to judge how 

objects are allocentrically related to one another (Loomis & 

Beall, 1998). Figure 1 illustrates how the two reference 

frames configure. Figure 1(a) and 1(b) denote the egocentric 

frame of reference where locations of objects in two 

successive views are encoded in relation to own body (e.g. 

left-right, front-back, or up-down) respectively. Figure 1(c)  
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Figure 1: (a-b) The egocentric (self-to-object) spatial 

representation in two successive views and (c) the 

allocentric (object-to-object) spatial representation. 

 

shows the allocentric frame of reference where locations of 

objects are encoded relative to other objects surrounding the 

person. The work in this paper pays attention to such 

approach. In particular, we are interested to grow the robot’s 

global map by updating only the landmarks (i.e. common 

objects found between the robot’s successive views) and 

then use these landmarks to associate new surfaces into the 

global map. The final map produced will be imprecise as a 

result of landmarks’ association instead of views 

integration. The main advantage here is the mapping 

algorithm is relieved from complex probabilities calculation 

since the approach does not have to deal with the correction 

of accumulated sensor noise errors. The experimental setup, 

mapping algorithm and discussion on the final global map 

produced is presented.  

Experimental Setup 

The Robot  

The robot used is a Pioneer 3DX mobile robot from 

MobileRobots Inc with measurement width of about 0.4m. 

It senses the environment using a laser source; a set of SICK 

LMS 200 laser rangefinder which has been mounted on its 

base. The sensor emits laser pulses horizontally at about 

45cm from the ground with scanning range of approximate 

30-32m covering 180 degrees field of view. With each laser 

pulse separated at half a degree from the mechanical sender, 

the sensor provides dense and accurate range data when 

used indoor. However, with two wheels for driving forward 

and backward and a non-driving wheel for rotation, the 

robot is highly vulnerable to drift errors particularly in areas 

where the flooring changes (e.g. tiles to carpet, carpet to 

cement, etc.) or when they are bumpy.  

The Environment 

Figure 2 shows the path (about 30x30m, shaded in yellow) 

traversed by robot in the experiment. The robot begins its 

journey from a random selected point in the office-like 

environment. The robot is allowed to wander on its own 

until commanded to stop. Since the laser data gathered is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The environment used for testing. Arrows 

showing the robot’s clockwise path around the environment. 

 

about a human’s knee height, it is unavoidable for the robot 

to ‘see’ various objects scattered in the environment such as 

walls, table legs, chairs, boxes, cupboards, bins, space 

partitions, doors, pots, etc. These objects are left as it is; 

they are not cleared from robot’s potential pathway. The 

only change done to the environment is the covering of 

glass-based walls and sliding doors with cut-out cardboards 

to prevent laser pulses from passing through them. 

Autonomous Exploration 

For exploring autonomously, the robot must decide where to 

go next and how to get there. In this work, we argue the 

robot should pick a random gap in space closest to the robot. 

A gap is defined as an empty space large enough for the 

robot to cross (i.e. > 0.6m) between two adjacent surfaces in 

view. Our robot calculates such a gap by finding a minimal 

bounded space; a space that contains no gap that can be 

covered by another gap in view. Yeap and Jefferies (1999) 

introduced the notion of covering by a gap as a space in 

which an individual must cross in order to reach another 

part of the environment that is currently in view. While they 

used the idea for computing the ASRs, we used it here to 

compute the minimal bounded space for the robot. The 

minimal bounded space limits the robot to 30 degrees (left 

or right) turn or a maximum of 3m forward drive at each 

interval. The limited movement ensures some parts of the 

view always overlap over two successive views. Algorithm 

for autonomous exploration is presented below. Algorithm 

to compute the minimal bounded space will be discussed 

elsewhere.  

a) Get a scan of the environment 

b) Identify gaps in view 

c) Compute the minimal bounded space 

d) Select a gap as target 

e) Move towards the gap and stop 

f) Repeat 

Data Acquisition 

At each scan, the 2D range data obtained are processed 

using line segmentation algorithm to generate planar  
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Figure 3: Processes involved in extracting surfaces  

from the environment. 

 

surfaces so they would correspond to the geometrical 

properties scanned from the environment. There are many 

sophisticated algorithms such as the popular split-and-

merges, line regressions and Hough transforms to extract 

line from points; all interested in providing an accurate 

polygonal model of the environment. However, since we do 

not need to build an exact map, precision is not of utmost 

important. A straightforward method for computing lines 

from laser points is thus implemented. First, the laser points 

are grouped into different clusters. This is done by going 

through the laser readings one after another in a clockwise 

manner and calculating the Euclidean distance between 

them. If the distance between them exceeds a set of 

threshold (currently set at 1.2m), a new cluster is formed. 

Second, for each cluster, the exact shapes of the lines in it 

are recursively computed using the average gradient descent 

between neighbouring points. Points on the same slope are 

grouped as a line representing a surface (see Figure 3). Note 

that for simplicity, small surfaces (defined as < 500mm) in 

view are simply ignored.  

Computing the Global Map 

Map Initialisation and Surface Tagging 

A robot’s global map is traditionally a structure built from 

integrating robot’s successive views based on correcting the 

cumulative errors collected as the robot explores its 

environment. Here, we will show how we use landmark 

association to compute the map. Same as in traditional 

approach, it begins with initializing the map with the robot’s 

first view. The processes from here on are a little different. 

First, we remove tiny surfaces (defined as surfaces smaller 

than 50cm) when we generate each view so anything larger 

than that are used. We made the assumption that only the 

larger ones are regarded with importance since they have the 

highest change to be the walls or part of the walls or some  

 
Figure 4: The global map initialized with surfaces from    

the first view. ID distinct one surface to the other. 

 

major obstacles to avoid during exploration. Tiny surfaces 

computed may not be as useful to the robot and are 

dismissed as junks in the implementation. Then, the surfaces 

from the robot view are registered to (1) a frame of 

reference which acts like a buffer or a short term memory to 

track common surfaces or landmarks between every two 

successive views and (2) the global map. Each time a 

surface enters the global map, it will be tagged with an ID 

or a numbering marker. The increment of the ID numbers is 

proportionate to the increment of the number of surfaces 

entering the global map. Similarly these IDs are duplicated 

onto its counterpart in the frame of reference. Note that for 

initialisation the surfaces from the robot’s first view are 

registered into the global map without any coordinate 

change. Figure 4 shows the global map initialised with 

surfaces from the robot’s first view.  

Landmark Identification 

At each step (after robot move), the frame of reference will 

contain two views; the existing one from the previous step 

(with the surfaces tagged), and, a copy of the current view 

(with the surfaces untagged). At this point, both views are in 

their own coordinate systems. In order to compare two 

successive views for the robot, the mapping algorithm must 

describe surfaces in both views under the same coordinate 

system in the frame of reference. To do this, we transformed 

the previous view onto the current’s coordinate by rotating it 

using the turn angle parameter then translating it using the 

move distance recorded. The following is the standard 

coordinate transformation formula used in the 

implementation: 

 

 

 
Where 

  is the transformed -coordinates 

  is the transformed -coordinates 

  is the robot’s turn angle 

 is the translation in -direction, and  

 is the translation in -direction 
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Figure 5: Comparison of overlapping surfaces over two 

successive views. (a) Matching surfaces inherit similar         

ID, and (b) all matching surfaces are normalised. 

 

As mentioned, the main-product of using views 

integration is the measurement errors denoted by  and  

which causes major distortions in the map computed if they 

are accumulated over time. However in this work, the errors 

are over only two successive views which make them trivial 

to the computation. Figure 5 depicts the comparison 

between surfaces in two successive views after the robot 

drives 2m forward. Vn denotes the robot’s current view (in 

green) and Vn-1 the robot’s previous view (in red). Note 

that only matching surfaces from the transformed Vn-1 are 

kept for comparison with Vn therefore surfaces 1-6 and 14-

16 are deleted from the frame of reference. The principles 

applied to determine a match is to calculate the orientation 

between two surfaces that are close together. Two close 

surfaces are considered to be of the same orientation if their 

orientation does not differ by more than 10 degrees. This is 

a liable threshold due to the turning or forward driving at 

each interval is limited by the robot’s minimal bounded 

space, consequently deriving some odometry drift, however 

not too bad drift that the overlapping bits are too disoriented 

or too far apart over two successive views. In the case the 

matching algorithm produces more than one candidate as 

matching surfaces, the surface that has the most similar 

orientation would be chosen as the matched surface or the 

landmarks. Surfaces from the current view which do not 

match any of the surfaces from the previous view are 

labelled as unknown (see U1-U7 in Figure 5(a)) and will be 

mapped as new surfaces in the map. To normalise the 

landmarks, the shorter end-points between both surfaces are 

lengthened to match the longer end-points so both surfaces 

are identical in length. Figure 5(b) shows the two views 

after all landmarks (7-9, 11-13) are normalised. Similarly, 

existing surfaces with similar IDs in the global map are 

normalised as well.  

 

Figure 6: New surfaces (17-21) transferred into the map    

via their nearest landmarks. Green line depicts the robot 

current position in the map after the 2m forward drive. 

Landmark Association for Update 

Once the landmarks are identified and normalised inside the 

frame of reference, and the same landmarks are also 

normalised inside the global map, update is done by 

transferring new (unknown) surfaces from the frame of 

reference into the global map via the landmarks. When 

transferring a new (unknown) surface into the map, one uses 

its position with respect to its nearest landmark in the frame 

of reference. This is significant because if errors were 

introduced in the matching calculation, choosing the nearest 

landmark would suppress the errors to a minimum. For this 

reason, U1-U3 in Figure 5(b) is transferred into the global 

map by landmark 7, U4 by landmark 9 and finally U5-U7 

by landmark 11. Note that not all surfaces transferred into 

the map are new to the map thus it is necessary to check if 

an incoming surface is already known in the map. To 

perform the check, the incoming surface is compared with 

existing surfaces in the map to see if they intersect one 

another. An intersection indicates a cluttered area in the map 

thus there is no need to transfer the incoming surface. If the 

incoming surface is positioned close to another surface in 

the map, the two could possibly be the same surface. In this 

case, the incoming surface inherits the ID already assigned 

to the surface inside the map. However these corresponding 

surfaces may not be of the same length so they are 

normalised since surfaces having the same ID must be of the 

same length. Any successful insertion of surfaces into the 

global map will be registered with an ID and this is done by 

increasing the last ID in the map by 1. The final step is to 

also update Vn in the frame of reference with the ID tags 

from the global map, before forgetting Vn-1 (deleting it 

from memory) so only Vn is brought forward for the 

successive comparison. Figure 6 shows the transfer result. 

 The Map Produced 

This work is aimed to demonstrate that the mapping 

algorithm is robust, at least for mapping in a reasonably 

large office environment. It is also crucial to show that the 

final map produced is imprecise yet of sensible shape in 

comparison to the physical environment (see Figure 1). In 

the experiment, the robot is let to wander on its own where 

it computes its global map in real-time. Over 130m were  
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Figure 7: (a) Final map produced via our approach            

and (b) map produced via traditional approach           

without error correction 

 

traversed and 103 robot views were collected and used 

throughout the exploration. Figure 7(a) depicts the final map 

produced using our approach after the robot loop the 

environment in a clockwise fashion. Since we argue that our 

landmark association approach does not require error 

corrections, we reproduced a map using views integration 

without one for simple comparison (see Figure 7(b)). 

Without error corrections, the same environment traversed 

by the robot would produce a heavily distorted map if the 

errors accumulated by views integration are not corrected.  

Discussion and Future Directions 

From a robotics perspective, the map shown in Figure 

7(a) is considered imprecise in the sense it is not metrically 

accurate and has missing surfaces. However, when 

compared to the physical world (Figure 1), it can be seen 

that the overall shape of the environment experienced is 

captured and well maintained by said map. The approach 

therefore can be considered successful, at least on a laser 

mobile robot. The present implementation shows that one 

can utilize recognized objects i.e. landmarks between 

successive egocentric views to represent allocentrically 

other objects within one’s surroundings. The key hypothesis 

in this approach is the premise that the world is generally 

stable enough; that the objects in the environment is there 

however one reorients and views them. Consequently, there 

is also significance overlap of information in our successive 

views, more if we consider taking smaller steps or limits our 

orientation while moving, letting us know what lies 

immediately behind us and what may appear in front as we 

continue our journey.  

It can be argued that compared to views integration, our 

approach offers a simpler and less computationally 

expensive method for computing a laser robot’s global map. 

This is mainly due the robot not having to deal with 

accumulated errors while integrating views. While there are 

other works, notably Steinhage and Schoner (1997) that 

constantly recalibrates from one error prone local reference 

frame to the next, and memorising different vantage point of 

views of the home base for homing, they are by principles 

still limited to errors due to the need to integrate multiple 

sources of information. In our case, recalibration is based on 

recognising some landmarks between two successive views 

and homing is performed by simply recognising some 

landmarks registered in the allocentric global map.  

The implementation using landmark association also 

shows how a robot is able to produce an imprecise global 

map. This means the algorithm developed here may shed 

some light on how human cognitive mapping process work. 

Rough overall shape of the environment (imprecise and 

incomplete map) accords to two key features of the human 

and animal cognitive mapping process, namely; (a) human 

and animal do not remember everything they experienced in 

their journey, and (b) what they actually remember is an 

abstract representation of objects in relation to other objects 

in the environment. 

As exciting as the current result may be, the approach 

developed here is not restricted to a mobile robot equipped 

with laser and odometry sensors. We believe it should also 

work well or even better with visual robots. This is due to 

the fact that vision allows a richer description of the 

environment, which in consequence improves landmark 

recognitions. For this reason, heading towards the utility of 

vision would be an important future research. It would also 

be interesting to extent the current work into incorporating 

local spaces concept and the notion of exits (Yeap & 

Jefferies, 1999) to reason about the global and the 

immediate spaces computed by the robot. Continue 

refinement of the algorithm and testing in larger 

environment would also ensure the approach is ready for 

practical robot applications. Finally, it would also be 

interesting to consider conducting some human studies by 

showing the results from the implementation and ask the 

human subjects to sketch their own map or answer some 

basic questions about the landmark locations captured by 

the robot.  
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Conclusion 

A new approach to build a mobile robot’s map of the 

environment is presented which shows how a global map is 

computed using landmark association and not views 

integration. The interesting finding from this work is how a 

frame of reference is utilised to compare and track landmark 

across two successive views of the robot. The approach is 

supported by numerous observations on how human and 

animal perceive the stable world particularly in how they 

use recognized objects (landmarks) to estimate and relate 

approximately the positions of other objects in their 

immediate surroundings. The implementation of the 

approach shows the map computed does not have to be 

metrically precise or complete for the robot to successfully 

close loops and maintains a good overall shape of the 

environment traversed. 
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