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Abstract. The Object Constraint Language (OCL) is a central com-
ponent in modeling and transformation languages such as the Unified
Modeling Language (UML), the Meta Object Facility (MOF), and Query
View Transformation (QVT). OCL is standardized as a strict functional
language. In this article, we propose a lazy evaluation strategy for OCL.
We argue that a lazy evaluation semantics is beneficial in some model-
driven engineering scenarios for: i) lowering evaluation times on very
large models; ii) simplifying expressions on models by using infinite
data structures (e.g., infinite models); iii) increasing the reusability of
OCL libraries. We implement the approach on the ATL virtual machine
EMFTVM.

1 Introduction

The Object Constraint Language (OCL) [1] is widely used in model-driven engi-
neering (MDE) for a number of different purposes. For instance, in the Unified
Modeling Language (UML), OCL expressions are used to specify: queries, in-
variants on classes and types in the class model, type invariants for stereotypes,
pre- and post-conditions on operations and methods, target (sets) for messages
and actions, constraints on operations, derivation rules for attributes. Besides its
role in UML, OCL is embedded as expression language within several MDE lan-
guages, including metamodeling languages (e.g., the Meta Object Facility, MOF)
and transformation languages (e.g., the Query View Transformation language,
QVT, and the AtlanMod Transformation Language, ATL [2]).

In the standard specification of the OCL semantics [1], the language is de-
fined as a side-effect-free functional language. While several implementations of
the specification exist as a standalone language (e.g., [3]), or as an embedded
expression language (e.g., in [2]), they all compute OCL expressions by a strict
evaluation strategy, i.e., an expression is evaluated as soon as it is bound to a
variable. Conversely, a lazy evaluation strategy, or call-by-need [4] would delay
the evaluation of an expression until its value is needed, if ever. In this paper
we want to: 1) clarify the motivation for lazy OCL evaluation and capture the
main opportunities of application by means of examples; 2) propose a lazy eval-
uation strategy for OCL by focusing on the specificities of the OCL language
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w.r.t. other functional languages; 3) present an implementation of the approach
in the ATL virtual machine EMFTVM4 [5].

The first effect we want to achieve is a performance increase in some scenar-
ios by avoiding needless calculations. Companies that use MDE in their software
engineering processes need to handle large amounts of data. In MDE, these
data structures would translate into very large models (VLMs), e.g., models
made by millions of model elements. Examples of such model sizes appear in
a range of domains as shown by industrial cases from literature: AUTOSAR
models [6], civil-engineering models [7], product families [8], reverse-engineered
software models [9]. A lazy evaluation strategy for a model navigation language
like OCL would allow to 1) delay the access to source model elements to the mo-
ment in which this access is needed by the application logic and, by consequence,
2) reduce the number of processed model elements, by skipping the unnecessary
ones (if any). When the OCL evaluator is embedded in an MDE tool, lazy OCL
evaluation may have a significant impact on the global tool performance.

Our second purpose is enabling the use of infinite data structures in the
definition of algorithms with OCL. Indeed, infinite data structures make some
algorithms simpler to program. For instance, they allow to decouple code in a
producer-consumer pattern: a producer function defines data production without
caring for the actual quantity of data produced; a consumer function explores
the data structure, implicitly driving the production of the necessary amount of
data. For instance, it is simpler to lazily generate infinite game trees and then
explore them (e.g., by a min-max algorithm), rather than estimating at each
move the part of the game tree to generate. In this paper we argue that infinite
data structures simplify also the development of common queries in MDE.

Finally our third objective is to use laziness to improve the reusability of OCL
libraries, by reducing their dependencies. Indeed, laziness promotes definitions
reuse. For instance, the minimum of a collection can be defined as the composi-
tion of sorting with selection of the first element. Such a definition reuses code
but it can be vey inefficient in a strict evaluation strategy, requiring the full col-
lection sorting. Laziness makes it practical, at least for some sorting algorithms,
since only the computation for sorting the first element will be executed. Simi-
larly, composing libraries in a producer-consumer pattern, enables the definition
of general (hence reusable) generators that compute many (possibly infinite) re-
sults. Consumers specialize generators to the context of use by demanding only
part of the generated elements.

The remainder of this paper is organized as follows: Section 2 motivating the
need for lazy evaluation in OCL by introducing two running scenarios; Section 3
describes our approach; Section 4 discusses the implementation strategy; Section
5 lists the main related works; Section 6 concludes the paper with a future
research plan.

4 available from http://wiki.eclipse.org/ATL/EMFTVM
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Fig. 1. State Machine metamodel (excerpt)

2 Motivating Examples

This section introduces two examples of OCL queries with the purpose of high-
lighting the benefits of lazy evaluation in the specific case of model queries.

The state machine in Fig. 2 conforms to the State Machine metamodel dis-
played in Fig. 1. This metamodel defines a StateMachine as composed of several
State elements. A kind property is used to distinguish special states, such as the
unique initial state and possibly several final states. Transitions connect
couples of States. Each transition is triggered by a set of events (trigger) and
when it fires it produces new events (effect).

We provide this state machine with a simple execution semantics. The ma-
chine maintains a queue of events to process, that is initially not empty. The
execution starts from the initial state and checks the top of the queue for events
that match the trigger of some outgoing transition. If such events are found, the
transition is fired: the machine moves to the target state of the transition, the
triggering events are removed from the top of the queue and the effect events are
added to the bottom of the queue. In our simple model the machine proceeds
autonomously (no external events are considered) and deterministically (triggers
outgoing from the same state are disjoint).

2.1 Queries on Large Models

As a first example scenario we check if there exists a non-final state that contains
a self-transition5:
5 The query structure is identical to the one introduced in [9] and used in several

works to compare the execution performance of query languages, but here we apply
it to state machines instead of class diagrams.
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Fig. 2. State machine example (transitions are labeled as trigger/effect)
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State . allInstances ( )−>select ( s | not s . kind = ’ final ’ )
−>exists ( s | s . outgoing−>exists ( t | t . target = s ) )

If we assume the number of states of the input state machine to be very
large, the time and memory cost to evaluate such query may be high. Here are
the steps that a strict evaluation of OCL typically performs:

1. Computation of the extent of class State. In this first step, the OCL
evaluator typically traverses the whole model on which the query is evaluated
in order to compute the collection of all elements that have State as type
(directly, or indirectly via inheritance).

2. Filtering out final states. Then, the whole collection computed in previous
step is traversed in order to keep only states that are not final.

3. Finding a state with a self-transition. Finally, the list of non-final states
is traversed in order to discover if one of them satisfies the condition.

Several optimizations may be supported by an OCL evaluator. For instance, with
extent caching, the result of calling allInstances() on a model for a given
type (State in our example) may be cached. Thus, a second extent computation
will not require traversal of the whole model. In our case, this will not reduce the
cost of the first evaluation, but will reduce the cost of subsequent evaluations
(provided the source model is not modified, which may invalidate our cache, and
require a new extent computation). However, with these optimizations alone,
even if a non-final state satisfying the condition appears near the beginning of
the model, the whole model still needs to be traversed for the first computation
of the extent of State, and the whole list of states needs to be traversed for each
evaluation in order to filter out final states.

Especially when the query is performed as part of an interactive tool, there
may be a significant need to reduce the query response time. Moreover, if the
queried model is too large to fit in RAM (e.g., it may be stored in a database and
traversed lazily using frameworks such as CDO6), evaluation of the query will
simply fail. In such a case, the computation of the extent of Class will force all
elements typed by Class to be loaded into RAM (at least a proxy per element
if not the values of all their properties). However, we do not actually need all
such elements to be in memory at the same time.

2.2 Infinite Collections in Model Queries

In the queries of this section we consider also the state machine semantics and in
particular event consumption. The following OCL query computes if a final state
is reachable from the current state in a given number of steps while consuming
all the given events (in this case we say that the state is valid):

1 context State : : isValid ( events : Sequence ( Event ) , steps : I n t eg e r ) : Boolean
2 body :
3 i f ( steps<0) then false else
4 i f ( events−>isEmpty ( ) ) then self . kind = ’ final ’

6 http://www.eclipse.org/cdo/
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5 else self . outgoing−>exists ( t | events−>startsWith ( t . trigger )7

6 and t . target . isValid ( events−>difference ( t . trigger )
7 −>union ( t . effect ) ) , steps−1) ;
8 endif
9 endif ;

The following query searches for a repeating state in the state machine exe-
cution (e.g., to possibly optimize the state machine execution):

1 context State : : repeatingState ( events : Sequence ( Event ) ) : State body :
2 self . repeatingStateRec ( events , Set {}) ;
3 context State : : repeatingStateRec ( events : Sequence ( Event ) ,
4 visited : Set ( State ) ) : State body :
5 i f ( visited−>includes ( self ) ) then self
6 else self . outgoing−>select ( t | events−>startsWith ( t . trigger ) )
7 −>any ( ) . target . repeatingStateRec ( events−>difference ( t . trigger )
8 −>union ( t . effect ) , visited−>including ( self ) ) )
9 endif ;

The logic of the two recursive queries have clear similarities, being both based
on a simulation of the state-machine execution. However the simulation logic is
embedded in the query definitions, and interleaved with query-specific logic, i.e.
validity or repetition checks. Factorizing the logic for state-machine simulation
would simplify the definition of the queries, avoid code duplication, and increase
code-reusability. We may try to achieve this factorization by writing a simulate

OCL query that given a set of events returns an execution trace:

1 context State : : simulate ( events : Sequence ( Event ) ) :
2 Sequence ( Tuple ( state : State , events : Sequence ( Event ) ) ) body :
3 l e t tr : Transition = self . outgoing
4 −>select ( t | events−>startsWith ( t . trigger ) )−>any ( ) in
5 Sequence{ Tuple{ state=self , events=events }}
6 −>union ( tr . target . simulate ( events−>difference ( tr . trigger )
7 −>union ( tr . effect ) ) ;

Reusing the simulate function considerably simplifies the definition of the
previous queries, that can be re-written as:

1 context State : : isValid ( events : Sequence ( Event ) , steps : I n t eg e r ) : Boolean
2 body : self . simulate ( events )−>subSequence (1 , steps )
3 −>exists ( tu | tu . state . kind = ’ final ’ and tu . events−>isEmpty ( ) ) ;

1 context State : : repeatingState ( events : Sequence ( Event ) ) : Boolean

2 body : self . simulate ( events )−>collect ( tu | tu . state )−>firstRepeating ( ) 8 ;

However the result of simulate is in general an infinite sequence of states
and the use we describe would be possible only by providing OCL with a lazy
semantics.

3 Lazy Evaluation of OCL

3.1 Approach Overview

In general, lazy evaluation consists in delaying computations, detecting when the
result of such a delayed computation is needed, and forcing the delayed compu-

7 startsWith is a shortcut for as self.subSequence(1,argument->size())=argument
8 firstRepeating is defined as an operation on ordered collections (independent from

state machines) finding the first repeating occurrence

50



tation. In functional languages, there is a single way to define computation: func-
tions. When function (application) is lazy, the language is lazy. Object-oriented
languages (with late binding) do not fit well with laziness. Indeed, evaluation
of a method call requires to evaluate its receiver in order to lookup the method
definition. Overloading also requires to evaluate arguments. Hence, method call
in object orientation is essentially strict. For this reason, in OCL we choose to
restrict laziness to collections. Our approach relies on iterators which allow us
to produce and consume incrementally (lazily) the elements of a collection.

3.2 Laziness and the OCL Specification

One of the main design goals of our approach for lazy OCL is maximizing com-
patibility with standard (strict) OCL.

We choose not to extend or change the OCL syntax. In particular we avoid in-
troducing language constructs to control if an expression (or data value, function
call...) will be eagerly/lazily computed, like strict/lazy keywords or explicit
lazy data types (e.g., LazySet). This enables programmers to directly reuse
existing programs and libraries. We also argue that this choice preserves the
advantage of declarative languages like OCL, i.e. programmers do not need to
worry about how statements are evaluated. As we will see in the next section,
keeping laziness completely implicit is indeed a challenge for the lazy evaluation
of high-level declarative languages like OCL.

We also do not change the semantics of existing terminating OCL programs:
if a query terminates in strict OCL and returns a value, it also terminates in
lazy OCL and returns the same value (although it may require less computation
to do so). The only exception to this property are queries that during their
computation produce an invalid value, as we will soon see.

We are not only backward compatible, but some non-terminating OCL queries
terminate in lazy OCL. In particular, we allow the definition of infinite collections
and the application of OCL collection operations to them, with some restrictions
that we discuss in the next section. Queries that make use of infinite collections
terminate, as long as only a finite part of the collection is required by the compu-
tation. This is a deviation (extension) of the OCL standard, which defines that
all collections are finite: potential infinite sets such as Integer.allInstances()
are invalid in the standard.

As we mentioned, the error management mechanism of OCL has a signifi-
cant impact on the backward compatibility of the lazy semantics. In OCL, errors
are represented as invalid values that propagate: for instance when invalid

is added to a collection, the resulting whole collection is invalid. In lazy OCL,
the value of an element is unknown until it is accessed. So, if an invalid ele-
ment is never accessed, it does not propagate and the prefix of the collection is
well defined. This means that strict queries that return invalid, may return a
different value in lazy semantics.

Moreover OCL provides the programmer with the oclIsInvalid function to
handle invalid values (somehow analogously to catching exceptions in Java).
The function returns true if its argument is invalid and at the same time stops
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the propagation of invalid, allowing the program to recover from the error and
possibly terminate correctly. Hence terminating queries in strict semantics that
use oclIsInvalid may produce a different valid value than the same queries in
lazy semantics.

Summarizing: 1) expressions that return a valid result in strict semantics
return the same result in lazy semantics, 2) expressions that return an invalid
result or do not terminate in strict semantics may return a valid result in lazy
semantics, 3) expressions that use the oclIsInvalid function are an exception
to (1) and (2), as they are in general not compatible with the lazy semantics.
Note that the other special OCL value, null, is a valid value that can be owned
by collections, hence it does not pose any compatibility problem to the lazy
semantics.

3.3 OCL Operations

OCL functions benefit from laziness in a different degree. In Table 1 we list all
the OCL operations on collections and Table 2 all the iterators (according to [1]).
For each operation, and each kind of collection it can be applied to, we provide
two properties that characterize its lazy behavior:

– We add a constraint to the Restrictions column to indicate that the opera-
tion/iterator may not terminate, or it is simply not well-defined, if its source
(context) or argument is an infinite collection. Examples of such cases are:
appending an element at the end of an infinite collection, reversing it, cal-
culating its maximum.

– We specify in the Strictness column if the operation/iterator always evalu-
ates the totality of the source or argument collection. Simple examples are:
sorting the collection, summing it, or generically iterating over it (iterate).

The properties in Tables 1 and 2 implicitly categorize OCL operations and
iterators w.r.t. laziness: operations that can be lazily applied without restrictions
(e.g., product), operations that can lazily navigate only some of the arguments
(e.g., src - c lazily navigates the source/context collection src but strictly
evaluates the argument c) and operations that do not support lazy evaluation
(e.g., iterate).

For brevity, in the following we illustrate in detail only a subset of the OCL
functions. The reader may extend the principles we introduce to analogous func-
tions.

AllInstances. While not being an operation in the context of a collection type,
allInstances returns a collection, made by the instances of the type in argu-
ment, and this collection can be lazily computed. OCL implementations usu-
ally perform a depth-first traversal on the model containment tree to find the
model instances and populate the result collection, but this traversal order is
not defined in the OCL specification. We propose a lazy evaluation semantics
for allInstances that supports the navigation of infinite models. However, even
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Table 1. Laziness for OCL collection operations

Context Operation Restrictions Strictness
Collection =/<> (c : Collection) src and c finite -
Collection size () src finite strict on src

Collection includes/excludes (o : OclAny) src finite -
Collection includesAll/excludesAll (c : Collection) src and c finite -
Collection isEmpty/notEmpty () - -
Collection max/min/sum () src finite strict on src

Set/Bag
including (o : OclAny)

- -
OrdSet/Sequence src finite -

Collection excluding (o : OclAny) - -
Set/Bag

union (c : Collection)
- -

OrdSet/Sequence src finite -
Collection product (c : Collection) - -
Collection selectByKind/selectByType (t: OclType) - -
Collection asSet/asOrdSet/asSequence/asBag () - -
Set/Bag

flatten (c : Collection)
- -

OrdSet/Sequence src finite -
Set/Bag intersection (c : Collection) - -

Set - (c : Set) c finite strict on c

Set symmetricDifference (c : Set) src and c finite, strict on src and c

OrdSet/Sequence append (o : OclAny) src finite -
OrdSet/Sequence prepend (o : OclAny) - -
OrdSet/Sequence insertAt (n : Integer, o : OclAny) - -
OrdSet/Sequence subOrdSet/subSeq (f : Integer, l : Integer) - -
OrdSet/Sequence at (n : Integer) - -
OrdSet/Sequence indexOf (o : OclAny) - -
OrdSet/Sequence first () - -
OrdSet/Sequence last () src finite -
OrdSet/Sequence reverse () src finite -

Table 2. Laziness for OCL collection iterators

Iterator Restrictions Strictness
iterate src finite strict on src

any - -
closure src finite strict on src

collect - -
collectNested - -

count src finite strict on src

exists src finite -
forAll src finite -

isUnique src finite -
one src finite -

reject - -
select - -

sortedBy src finite strict on src
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Fig. 3. Fair-first traversal (numbers indicate traversal order)

when models are finite but large, lazy allInstances can lead to easier program-
ming and better performance.

Applying allInstances to infinite models is not trivial. Depth-first traver-
sal of the containment tree does not work in the case of models with infinite
depth: a query like Type.allInstances()->includes(e) will not terminate
if e appears in a rightmost branch w.r.t. an infinite-depth branch. Dually a
breadth-first traversal will not work if the model contains a node with infinite
children: the traversal will never move to the next tree level. According to our
principle of implicit laziness, we avoid introducing user-defined model traversals
(e.g., State.allInstancesBreadthFirst()), that would leave to the user the
burden of selecting the correct traversal strategy for allInstances depending
on the model structure.

Instead, we propose a specific model-traversal order for lazy evaluation of
allInstances. We still traverse the containment tree with a traversal strategy
that alternates at each step a movement in depth and one in width (in an ideally
diagonal way). Listing 1.1 formalizes the semantics of the traversal in Haskell
(function fairFS) and Figure 3 graphically illustrates the traversal order.

For instance, applying the example query of Section 2.1 in strict semantics
to a state machine with infinite states, the first allInstances would never
terminate and the following select would never start computing. In our lazy
semantics instead, allInstances would traverse the infinite model by need,
and the full query would actually terminate if a non-final state containing a
self-transition was found.

Listing 1.1. Fair traversal for lazy semantics of allInstances

1 class Tree t where
2 subs :: t a -> [t a]
3

4 data RoseTree a = Node a [RoseTree a] deriving Show
5

6 label :: RoseTree a -> a
7 label (Node l _) = l
8

9 instance Tree RoseTree where
10 subs (Node _ ts) = ts
11
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12 type Visitor a = a -> [a]
13

14 type Brothers t = [t]
15

16 nextBrother :: Visitor (Brothers t)
17 nextBrother [_] = []
18 nextBrother (_:ts) = [ts]
19

20 nextSon :: Tree t => Visitor (Brothers (t a))
21 nextSon (t:_) | null (subs t) = []
22 | otherwise = [subs t]
23

24 fairFS :: Tree t => Visitor (t a)
25 fairFS t = ffsIter [[t]]
26 where ffsIter (ts:tss) = head ts:ffsIter (tss++ nextSon ts++ nextBrother ts)
27 ffsIter [] = []

Union. The union operator computes the union of two collections. In lazy OCL
each collection is represented as an iterator of elements, hence their union is also
represented as an iterator of elements.

Four versions of the union, in function of the type of their arguments, are
detailed in Listing 1.2. When the collection arguments are Sequences the union
appends (recursively) the elements of the first collection to the head of the second
one. When the arguments are Bags the union is a fair interleaving of the two
collections. When the arguments are OrderedSets the union concatenates the
first collection to the second, but elements of the first collection are deleted
from the second, to preserve the unicity property. Finally, when the arguments
are Sets, the union interleaves the two collections while deleting duplicated
elements.

The different lazy behavior of the four union semantics stands out when they
are used with infinite collections. When collections are not ordered no restriction
is required, since the interleaving allows to fairly navigate and merge both of
the infinite collections. When the collections are ordered if the first argument is
infinite the elements of the second arguments will not occur in the infinite result,
because in the declarative semantics of OCL the elements of the first collection
must occur before the elements of the second collection. In other words, if c1 is
infinite and ordered, than c1.union(c2) is equivalent to c1 for all uses in OCL.

Listing 1.2. Lazy union

1 unionSequence (x:xs) ys = x:unionSequence xs ys
2 unionSequence [] ys = ys
3

4 unionOrderedSet (x:xs) ys = x:unionOrderedSet xs (delete x ys)
5 unionOrderedSet [] ys = ys
6

7 unionBag (x:xs) ys = x:unionBag ys xs
8 unionBag [] ys = ys
9

10 unionSet (x:xs) ys = x:unionSet (delete x ys) xs
11 unionSet [] ys = ys

Intersection. The intersection operator computes the intersection of two Sets
or Bags. Such a computation requires an occurrence check (an element belongs
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to the result only if it belongs to both collections), that is in general an operation
that is not applicable to infinite sets.

In the lazy execution algorithm we propose (Listing 1.3) both collections are
inspected in parallel (note how the arguments are swapped in the recursive call)
and the check of occurrence in the other collection is performed with respect to
the already considered elements.

Listing 1.3. Lazy intersection

1 intersect xs ys = intersect ’ xs [] ys []
2 where intersect ’ (x:xs) seenInXs ys seenInYs
3 | x ‘elem ‘ seenInYs = x:intersect ’ ys (delete x seenInYs) xs

seenInXs
4 | otherwise = intersect ’ ys seenInYs xs seenInXs
5 intersect ’ [] _ _ _ = []

Table 3 shows an example of execution trace of this algorithm where two
infinite integer collections are intersected. In the columns of Table 3 we show,
for each step: the part of the collections that is still to evaluate (columns set1

and set2), the elements of the two collections that have already been considered
(columns buffer1 and buffer2), the test applied at the current step (column
test), the result being built (column set1∩set2).

Table 3. Example of lazy intersection: {powers of 2} ∩ {squares}
set1 (powers of 2) buffer1 test buffer2 set2 (squares) set1∩set2

{1,2,4,8,16,32,64,128,256...} {} {} {1,4,9,16,25,36,49,64...} {}
{2,4,8,16,32,64,128,256...} {} 1 /∈ {} {1,4,9,16,25,36,49,64...} {}
{2,4,8,16,32,64,128,256...} {1} 3 1 {} {4,9,16,25,36,49,64...} {}
{4,8,16,32,64,128,256...} {} 2 /∈ {} {4,9,16,25,36,49,64...} {1}
{4,8,16,32,64,128,256...} {2} 63 4 {} {9,16,25,36,49,64...} {1}
{8,16,32,64,128,256...} {2} 4 ∈ {4} {9,16,25,36,49,64...} {1}
{8,16,32,64,128,256...} {2} 63 9 {} {16,25,36,49,64...} {1,4}
{16,32,64,128,256...} {2} 8 /∈ {9} {16,25,36,49,64...} {1,4}
{16,32,64,128,256...} {2,8} 63 16 {9} {25,36,49,64...} {1,4}
{32,64,128,256...} {2,8} 16 ∈ {9,16} {25,36,49,64...} {1,4}
{32,64,128,256...} {2,8} 63 25 {9} {36,49,64...} {1,4,16}
{64,128,256...} {2,8} 32 /∈ {9,25} {36,49,64...} {1,4,16}
{64,128,256...} {2,8,32} 63 36 {9,25} {49,64...} {1,4,16}
{128,256...} {2,8,32} 64 /∈ {9,25,36} {49,64...} {1,4,16}
{128,256...} {2,8,32,64} 63 49 {9,25,36} {64...} {1,4,16}
{256...} {2,8,32,64} 128 /∈ {9,25,36,49} {64...} {1,4,16}
{256...} {2,8,32,64,128} 3 64 {9,25,36,49} {...} {1,4,16}
{...} {2,8,32,64,128} 256 /∈ {9,25,36,49} {...} {1,4,16,64}

4 Lazy OCL in ATL/EMFTVM

We have implemented lazy OCL evaluation upon the ATL virtual machine
EMFTVM. We compile the underlying OCL expression into imperative byte
codes, like INVOKE, ALLINST and ITERATE as explained in [5]. In order to
lazily evaluate collections, we implemented the LazyCollection type and its
subtypes, LazyList, LazySet, LazyBag, and LazyOrderedSet corresponding to
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four collection types of OCL (Sequence, Set, Bag and OrderedSet). An iterator
such as select or collect does not immediately iterate over its source collec-
tion, but rather returns a lazy collection to its parent expression that keeps a
reference to the source collection, and to the body of the iterator. This is pos-
sible because EMFTVM supports closures (also known as lambda-expressions).
Then, when a collection returned by an iterator is traversed, it only executes the
body of the iterator on the source elements as required by the parent expression.

Listing 1.4 for instance shows the relevant code excerpts for implementing
the collect operation for Bags. A LazyBag class extends LazyCollection and
defines methods for each operation on Bags, e.g. collect(). In the strict ver-
sion the collect() method would contain the code for computing the resulting
collection (i.e., applying the argument function to each element of the source col-
lection). In our lazy implementation the method just returns another LazyBag.
A LazyBag is constructed by passing an Iterable as the data source of the col-
lection. In the case of collect the Iterable is built around a CollectIterator

(from LazyCollection), and the collect logic is embedded in the two meth-
ods next() and hasNext() of the iterator. In the CollectIterator the next()

method executes a function CodeBlock, representing the lamba-expression as-
sociated with it.

Listing 1.4. LazyCollection

1 public class LazyBag <E> extends LazyCollection <E> {
2 // ...
3 /**
4 * Collects the return values of <code >function </code > for
5 * each of the elements of this collection .
6 * @param function the return value function
7 * @return a new lazy bag with the <code >function </code > return values.
8 * @param <T> the element type
9 */

10 public <T> LazyBag <T> collect(final CodeBlock function) {
11 // ...
12 return new LazyBag <T>(new Iterable <T>() {
13 public Iterator <T> iterator () {
14 return new CollectIterator <T>(inner , function , parentFrame);
15 }
16 });
17 }
18 // ...
19 }
20 public abstract class LazyCollection <E> implements Collection <E> {
21 // ...
22 public static class CollectIterator <T> extends ReadOnlyIterator <T> {
23

24 protected final Iterator <?> inner;
25 protected final CodeBlock function;
26 protected final StackFrame parentFrame;
27

28 /**
29 * Creates a {@link CollectIterator } with <code >condition </code > on <

code >inner </code >.
30 * @param inner the underlying collection
31 * @param function the value function
32 * @param parentFrame the parent stack frame context
33 */
34 public CollectIterator(final Iterable <?> inner , final CodeBlock

function , final StackFrame parentFrame) {
35 super();
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36 this.inner = inner.iterator ();
37 this.function = function;
38 this.parentFrame = parentFrame;
39 }
40

41 public boolean hasNext () {
42 return inner.hasNext ();
43 }
44

45 public T next() {
46 return (T) function.execute(parentFrame.getSubFrame(function ,

inner.next()));
47 }
48 }
49 // ...
50 }

In EMFTVM, allInstances() returns a lazy list that traverses the source
model lazily, as illustrated in Listing 1.5. The method allInstancesOf() in the
class ModelImpl is executed at each call to OCL allInstances. The method re-
turns a LazyList whose data source is a ResourceIterable. ResourceIterable
contains a DiagonalResourceIterator that implements in its next() method
the fair tree traversal strategy specified in Listing 1.19.

Listing 1.5. allInstances

1 public class ModelImpl extends EObjectImpl implements Model {
2 // ...
3 public LazyList <EObject > allInstancesOf(final EClass type) {
4 return new LazyList(new ResourceIterable(getResource ()), type));
5 }
6 // ...
7 }
8 public class ResourceIterable implements Iterable <EObject > {
9 // ...

10 public Iterator <EObject > iterator () {
11 // the DiagonalResourceIterator implements the fair tree traversal
12 return new DiagonalResourceIterator <EObject >(this , false)
13 }
14 // ...
15 }

Our implementation allows to define and use lazy queries on very large or
infinite models, including the examples of Section 2. We have not performed
a systematic performance experimentation and time execution performance of
the lazy implementation clearly depends on the ratio of the large collections
that is actually visited by the query. When performance is the main concern,
lazy semantics has to be preferred if a small part of collections is used; strict
semantics is still faster in other cases because of the lower overhead.

As an example, we perform the OCL query from Section 2.1 in a strict way
with the classic (strict) ATL virtual machine and in a lazy way with the lazy

9 Note that the current implementation of allInstances() in standard ATL returns
a Sequence of elements in depth-first order, instead of a Set. This deviation from
the OCL standard may improve the engine performance (by avoiding occurrence
checks). The drawback is that the traversal order is exposed to the user, that can
consider it in its transformation. In such cases our change in traversal order may
break backward-compatibility.
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EMFTVM on an Intel core i7, 2.70GHz x 8, x86 64 CPU with 8GiB of RAM.
We provide a large state machine made of 38414 elements, where the first state
satisfies the query condition. Then, we compare results returned from the two
OCL evaluation methods and summarize them in Table 4. The column Calls

presents the number of operation calls on elements of the underlying collection,
i.e., iterations over the ->select() and the ->exists(). As shown in Table 4,
the lazy evaluator stops the iteration on both ->select() and ->exists() as
soon as the condition is satisfied (i.e., for the first state), resulting in a much
faster execution.

5 Related Work

Lazy evaluation of functional languages is a subject with a long tradition [4],
yet it is still studied [10]. We refer the reader to [11] for an example based
on Lisp, and to [12] for its formal treatment. Lazy evaluation can be mixed
with strict one [13][14]. Hughes has argued that laziness makes programs more
reusable [15]. Our approach based on lazy iterators is a simplified version of
iteratees [16]. Indeed, iteratees are composable abstractions for incrementally
processing of sequences. However, our iterators do not isolate effects with a
monad, nor distinguish producers, consumers and transducers. Moreover, in our
iterators either there is a next value or the iteration is over, but we do not
consider raising errors.

The idea of defining and using infinite models has been already addressed
in previous work. In [17] transformation rules are lazily executed, producing a
target model that can be in principle infinite. In [18] the authors extend MOF
to support infinite multiplicity and study co-recursion over infinite model struc-
tures. Both works do not provide the query language with an explicit support
of infinity. Streaming models can be considered a special kind of infinite models,
and their transformation has been recently studied in [19] with languages like
IncQuery, but the focus is more on incrementality than laziness.

As alternatives to laziness, other improvements to OCL evaluation have been
explored in several works. In [20] the OCL execution engine has been optimized
“locally” (i.e., by changing code generated for a given construct). With lazi-
ness, we perform only the necessary iterations in many more cases. However,

Table 4. Lazy vs. Strict OCL evaluation in ATL.

Query Model Size
Lazy Eval. Strict Eval.

Calls Time Calls Time

Example 1

38414

2

0.002 s

38412

0.200 s
State.allInstances()->select(s |

not s.kind = ’final’)

1 25608

->exists(s | s.outgoing->exists(t |

t.target = s))))

1 12804
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from a performance point of view, laziness overhead should also be considered.
The paper in [21] proposes a mathematical formalism that describes how the
implementation of standard operations on collections can be made active. In
that way they could evaluate the worst case complexities of active loop rules on
collections with a case study. The work in [22] reports on the experience devel-
oping an evaluator in Java for efficient OCL evaluation. They aim to cope the
novel usages of the language and to improve the efficiency of the evaluator on
medium-large scenarios. [23] proposes to extend the OCL evaluator to support
immutable collections. Finally, an issue tightly coupled to lazy navigation, is
on-demand physical access to the source model elements, i.e. lazy loading. For
lazy loading of models for transformation we refer the reader to [24].

6 Conclusions

In this paper we argue that a lazy evaluation semantics for OCL expressions
would increase the performance of OCL evaluators in some scenarios, simplify
the definition of some queries and foster the development of more reusable OCL
libraries in a producer-consumer pattern. We illustrates by example the main
challenges of lazy OCL, we provide novel lazy algorithms for some OCL oper-
ations (i.e., allInstances and intersection) and perform an implementation
of the approach in the ATL virtual machine EMFTVM.

In future work we plan to perform an extensive performance evaluation on
a corpus of real-world OCL queries used in ATL transformation projects. From
this study we plan to derive a systematic approach for identifying queries that
benefit from lazy evaluation.
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2. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Sci. Comput. Program. 72(1-2) (2008) 31–39

3. Eclipse Model Development Tools Project: Eclipse OCL website http://www.

eclipse.org/modeling/mdt/?project=ocl.

4. Wadsworth, C.P.: Semantics And Pragmatics Of The Lambda-Calculus. PhD
thesis, University of Oxford (1971)

5. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition
semantics for rule-based model transformation. In: MoDELS. (2011) 623–637
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