
Anukarna: A Software Engineering Simulation
Game for Teaching Practical Decision Making in

Peer Code Review

Ritika Atal∗ and Ashish Sureka†
∗Indraprastha Institute of Information Technology, Delhi (IIIT-D), India

Email: ritika13103@iiitd.ac.in
†ABB (India)

Email: ashish.sureka@in.abb.com

Abstract—Application of educational and interactive simu-
lation games to teach important concepts is an area that has
attracted several Software Engineering researchers and educators
attention. Previous research and studies on usage of simulation
games in classroom to train students have demonstrated positive
learning outcomes. Peer code review is a recommended best prac-
tice during software development which consists of systematically
examining the source code of peers before releasing the software
to Quality Assurance (QA). Practitioners and Researchers have
proposed several best practices on various aspects of peer code
review such as the size of code to be reviewed (in terms of lines
of code), inspection rate and usage of checklists. We describe a
single player educational simulation game to train students on
best practices of peer code review. We define learning objectives,
create a scenario in which the player plays the role of a project
manager and a scoring system (as a factor of time, budget, quality
and technical debt). We design a result screen showing the trace
of events and reasoning (learning through success and failure
as well as discovery) behind the points awarded to the player.
We conduct a survey of the players by conducting a quiz before
and after the game play and demonstrate the effectiveness of our
approach.

Keywords—Peer Code Review, Simulation Game, Software
Engineering Education and Training, Teaching Critical Decision
Making

I. RESEARCH MOTIVATION AND AIM

Software Engineering (SE) being a practice-oriented and
applied field is taught primarily (at University Level) using
instructor-driven classroom lectures as well as team-based
projects requiring hands-on skills. In comparison to classroom
lectures, team-based hands-on projects require more active
participation and experiential learning. SE Educators have
proposed and shown positive student learning outcomes by
teaching certain concepts using simulation games. Some of the
advantages of teaching using simulation games are incorpora-
tion of real-world dynamics such as critical decision making
under multiple and conflicting goals, encountering unexpected
and unanticipated events, allowing exploration of alternatives
(discovery learning) and allowing incorporation of learning
through doing and failure [1][2]. Peer code review consists
of reviewing and critiquing team members source code in
order to detect defects and improve the quality of the software
[3][4][5][6][7]. Software code review is practiced in several
open-source and closed-source software project settings. There
are several best practices on various aspects of peer code

review such as the code review size, coverage and rate. Code
reviewer expertise, reviewer checklist and usage of tools (such
as mailing lists, Gerrit or Rietveld) also play an important role
in influencing the impact of code review on software quality
[5][6]. The work presented in this paper is motivated by the
need to teach the importance and best practices of peer code
review to students using a simulation game. The research aim
of the work presented in this paper is the following:

1) To develop a web-based interactive educational SE
simulation game or environment for teaching benefits
and best-practices of peer-code review process.

2) To investigate a learning framework and model based
on discovery learning, learning from failure, evidence
and reasoning for teaching concepts on the practice
of peer code review.

3) To evaluate the proposed learning framework and tool
by conducting experiments and collecting feedback
from users.

II. RELATED WORK & RESEARCH
CONTRIBUTIONS

In this Section, we discuss closely related work and state
our novel research contributions in context to the related work.
We conduct a literature survey of papers published on the topic
of teaching Software Engineering concepts using simulation
games. Table I shows the result of our literature review. Table
I lists 9 papers in reverse chronological order and reveals
that teaching Software Engineering concepts using simulation
games is an area that has attracted several researchers attention
from the year 2000 until 2013. We characterize 9 papers
based on the tool name, year, simulation topic, University
and interface. We infer that teaching software engineering
processes and project management are the two most popular
target areas for simulation games. The game interfaces various
from simple command line and menu driven model to animated
and 3D interfaces. Researchers have also experimented with
board games in addition to computer-based games. In context
to closely related work, the study presented in this paper makes
the following novel contributions:

1) While there has been work done in the area of
teaching Software Engineering processes and project
management skills, our work is the first in the area

1st International Workshop on Case Method for Computing Education (CMCE 2015) 63

TABLE I. RELATED WORK (SORTED IN REVERSE CHRONOLOGICAL ORDER) AND TOOLS ON TEACHING SOFTWARE ENGINEERING CONCEPTS USING
SIMULATION GAMES

SNo. Tool Name Year Simulation Topic University Interface

1 AMEISE [8] 2013 [Bollin’13] Managing a SE project (focussing on
software quality)

Alps-Adriatic University, Carinthia Tech Inst.
and Linz University

Menu based, Command
Interface

2 DELIVER [9] 2012 [Wangenheim’12] Earned Value Management Federal University of Santa Catarina Board Game
3 ProMaSi [10] 2011 [Petalidis’11] Project Management T.E.I. of Central Macedonia, Serres-Greece Java based, Desktop environ-

ment
4 SimVBSE [11] 2006 [Jain’06] Value-based Software Engineering University of Southern California Animated, 3D interface
5 Problems and

Programmers
[12]

2005 [Baker’05] Software Engineering Processes University of California, Irvine Card Game

6 SimjavaSP [13] 2005 [Shaw’05] Software Process Knowledge University of Tasmania Menu-based, Graphical Inter-
face

7 Incredible
Manager [14]

2004 [Dantas’04] Project Management Experiential
Learning

Brazilian University Button Driven, Command In-
terface

8 SimSE [1] 2004 [Navarro’04] Software Engineering Processes University of California, Irvine Web-based, Graphical Inter-
face

9 SESAM [15] 2000 [Drappa’00] Software project Management Stuttgart University, Germany Text Based, Pseudo-Natural
Language Command Interface

of building and investigating simulation games for
teaching best practices for peer code review.

2) We propose a simulation game to teach peer code
review practices based on learning by failure, success
and discovery. We demonstrate the effectiveness of
our approach, discuss the strengths and limitations of
our tool based on conducting user experiments and
collecting their feedback.

III. GAME ARCHITECTURE AND DESIGN

A. Learning Objectives

In this game we define 12 learning objectives covering
multiple aspects of peer code review. These learning objectives
are captured in our pre game questions1 and post game
questions2. Table II shows 6 of the 12 learning objectives (due
to space constraint), corresponding decisions and the questions
which we asked to the player in game. Table II shows the
structure that we follow to design the game questions. Each
question is designed keeping in mind the learning objectives of
the game. Based on the learning objectives we come up with a
situation or a decision which best questions that objective. An
evaluation question is then formed around this decision which
challenges the player’s knowledge to its best. We therefore
present different situations to the player where they have to
make decisions like whom to assign the task of review process
(Figure 1), what inspection rate to choose (Figure 2), when
to start with review, steps required to foster good code review
culture in team etc. A decision can map to one or more learning
objectives. Similarly two or more evaluation questions may
map to one decision.

B. Unexpected Events

We introduce unexpected events and unforeseen circum-
stances (such as internal conflicts between the team members,
attrition and change in deadline or demand from the customer)
in the game to make it more realistic. Unexpected events
are unobservable and our goal is to examine the response
and the decision making ability of the player to unexpected
circumstances. Figure 3 shows a screenshot for the simulation
game in which the player is presented with an unexpected

1http://bit.ly/1ddyitO
2http://bit.ly/1GEdBBX

situation. As shown in Figure 3, the project manager is
encountered with a situation wherein a developer quits the team
or organization just one month before the release date.

C. Scoring System

1) Technical Debt: We apply Technical Debt3 concept or
metaphor as one of the elements of our scoring system. We
calibrate our scoring system such that incorrect decisions
(quick and dirty solutions) lead to accumulation of technical
debt. Figure 4 shows technical debt score of various players
(data collected during our experimental evaluation of the
simulation game) as the game progresses from start to finish.
Figure 4 reveals various behaviors: we observe cases in which
technical debt gets build-up due to lack of knowledge and
incorrect decisions and on the other hand we notice cases in
which prudent decisions lead to controlled technical debt. Each
decision a player makes has certain weight or point associated
to it varying from 1 to 5. We take the maximum range value
i.e. 5 as standard TD (Technical Debt) point against which all
calculations are made. For every decision taken by the player,
we calculate the deviation of player’s current decision point
from the standard TD point and find the average TD point value
obtained so far. We then calculate the equivalent percentage
value of this TD point relative to the standard TD point which
is the overall TD incurred by player so far in the game (refer
to Equations 1, 2, 3 and 4).

deviationV alue = (standardTD − decisionWeight) (1)

sumTD = sumTD + deviationV alue (2)

TDavg = sumTD/decisionCounter (3)

TD = (TDavg/standardTD) ∗ 100 (4)

2) Time: Time is the most valuable resource in any project
and time management is another key aspect of managing a
project. It is therefore required by the player to properly
plan the project time and associated decisions to meet project
deadline. Every decision that a player takes in game has a
positive or negative impact. The magnitude of impact varies
depending on the choice or decision made by the player (as
shown in Figure 5). Series of decisions taken by a player either

3http://martinfowler.com/bliki/TechnicalDebt.html

1st International Workshop on Case Method for Computing Education (CMCE 2015) 64

Fig. 1. Screenshot of the game in which the player needs to make a decision
on developer expertise for a code review assignment

Fig. 2. Screenshot of the game in which the player needs to make a decision
on the best practice of code review rate

TABLE II. MAPPING BETWEEN THE LEARNING OBJECTIVES, DECISION TAKEN OR SITUATION ENCOUNTERED DURING THE GAME AND THE
EVALUATION QUESTION DURING THE TEST

SNo. Learning Objective Decision or Situation Evaluation Question
1 The earlier a defect is found, the better. The

longer a defect remains in an artifact, the
more embedded it will become and the more
it will cost to fix

When to start the code review during project
development

Mr. Manager, This is to inform you that 10% of project
has been developed. Would you like to forward these code
modules for review or send them directly for testing? As a
manager, what would your decision be?

2 Authors should annotate source code before
the review begins

What are some good code development prac-
tices which developers should follow to carry
out the code review process smoothly

Mr. Manager, I have been observing that our novice de-
velopers lack the knowledge of standard code development
practices. I would suggest to get them acquainted with these
practices to fasten up the code review process. Which of the
following guidelines will you issue for developers?

3 Use of checklists substantially improve re-
sults for both authors and reviewers

What are some good code development prac-
tices which developers should follow to carry
out the code review process smoothly

Mr. Manager, I have been observing that our novice de-
velopers lack the knowledge of standard code development
practices. I would suggest to get them acquainted with these
practices to fasten up the code review process. Which of the
following guidelines will you issue for developers?

4 Reviewer should always aim for an inspec-
tion rate of less than 300-500 LOC/hour

What is the optimal inspection rate for car-
rying out code review

The rate at which code is reviewed should minimize the
defect density and at the same time increase the productivity
of reviewer involved Which amongst the following is the
most optimal inspection rate?

5 Review fewer than 200-400 LOC at a time What is the preferable code size to carry out
review

What is the preferable code size to be reviewed at a time,
that you would suggest to reviewer for carrying out his task
efficiently?

6 Verify that defects are actually fixed after
review

How to verify that defects uncovered by
review are actually fixed

Mr. Manager, This to inform you that our developers often
forget to fix bugs found during code reviews. It is hard for
me to keep track of these unresolved defects, which in turn is
affecting the code quality too. Please look into this issue and
suggest a good way to ensure that defects are fixed before
code is given All Clear sign. Choose what steps will you
take to handle this situation?

prevent them from meeting the deadline or they are able to
complete the project successfully. All of the decisions have a
path time associated with them. This path time gets deducted
from the remaining time as the player proceeds further in game
(Equation 5 and 6).

remainingT ime = remainingT ime− pathT ime (5)

timeScore (days) = remainingT ime (6)

3) Budget: At the beginning of game, player is allotted a
budget of Rs 2 million to complete the project. The scoring
system that we have built, tracks player’s utilisation of this
budget. If at any point of time player has consumed the entire
budget value, they can go no further in game. Figure 6 shows
different player behaviours in terms of budget utilisation.
Budget remaining at the end of game is the combined effect of
the cost consumed to perform review, developer’s recruitment,
buying tools, team incentives etc. Refer to Equation 7 and 8

to see how path cost for player’s decision is used to obtain the
cost score.

remainingCost = remainingCost− pathCost (7)

costScore (Rs) = remainingCost (8)

4) Quality: We incorporate the concept of software quality
in our scoring system to keep a check of code review consis-
tency maintained by the player. The scoring system captures
the quality standards from the beginning of the project. We use
defect density (defects/kLOC) to measure the software quality
maintained during the game. Code bases with a defect density
of 1.0 (or 1 defect for every 1, 000 lines of code) are considered
good quality software[16]. Figure 7 illustrates the varying
quality standards for different players as they progress through
the game with an initial defect density of 145 defects/kLOC
(mentioned at the beginning of game). Each path that player
takes has a defect percentage (defect%) associated with it.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 65

Fig. 3. Screenshot of the game in which the player is presented with an
unexpected situation consisting of developer attrition

Fig. 4. Technical debt values (and increasing or decreasing trends) for
various players during the execution of the game

Fig. 5. Time values (and increasing or decreasing trends) for various players
during the execution of the game

Fig. 6. Budget values (and increasing or decreasing trends) for various
players during the execution of the game

Fig. 7. Project quality values (and increasing or decreasing trends) for
various players during the execution of the game

Fig. 8. Screenshot of the game tree (upto 5 levels) demonstrating the
different game paths and weights associated with each path of the game

Depending on player’s decision, this defect% either increases
or decreases the software quality standards. Equation 9, 10 and
11 captures project quality (projectQlty) calculation.

decisionQlty = defect% ∗ projectQlty (9)

projectQlty = projectQlty ± decisionQlty (10)

qualityScore (defects/kLOC) = projectQlty (11)

D. Game Tree

Each game consists of a problem space, initial state and
single (or a set of) goal states. A problem space is a mathe-
matical abstraction in form of a tree (refer to Figure 8) where
the root represents starting game state, nodes represent states
of the game (decisions in our case), edges represent moves and
leaves represent final states (marked as red circles) [17]. Figure

1st International Workshop on Case Method for Computing Education (CMCE 2015) 66

Fig. 9. Screenshot of the score meters comparing the player’s performance
with that of an ideal performance at the end of game

Fig. 10. Screenshot of the game in which the player is presented with
analysis of his decision to recommend the use of tool assisted review

8 represents the game tree for our game. It has a branching
factor of 4 with a solution depth of 9. The time complexity
for its traversal is O(49).

E. Final Scoring

At the end of game, each player gets a score reflecting their
overall performance. This score produced, takes into account
all the factors like path taken, remaining time, budget con-
sumed, project quality index and technical debt accumulated
at the end of game. Following are the steps depicting the
procedure to compute the performance of each player during
the execution of game and based on the decisions made by the
player.

1) Each decision a player takes has a weight (Wd)
associated with it, which varies from +1 to +5 (repre-
sented in Figure 8). As the player proceeds in game,
the weight associated with each decision keeps on
accumulating and is stored in Psum (refer to Equation
12). Final value of Psum is then used to determine
whether a player followed a poor, optimal, good or
an excellent path during the game.

Psum =
∑

Wd (out of 50) (12)

2) Next we scale and obtain the equivalent values for
cost (Cf), time (Tf) and quality (Qf) remaining at the
end of game. Project attributes sum (Pattr sum) holds
the average of equivalent values of these three project
attributes (Equation 13) [18].

Pattr sum = (Cf + Tf +Qf)/3 (out of 50) (13)

3) Score sum (Sf’) is obtained by adding the values
calculated in step 1 and 2 (Equation 14).

S′
f (out of 100) = Psum + Pattr sum (14)

4) We then make use of TDavg (refer to Equation 3) to
calculate the final score (Sf) in equation 15.

Sf = S′
f ∗ (1− TDavg/standardTD) (15)

F. Feedback and Analysis

To meet the game’s objective, it is necessary to ensure
that player is learning throughout the course of game. The
player is given a proper feedback at each step of the game
so they can observe the effect of decisions taken by them on
the project. Every decision of player has a direct impact on
the four parameters of scoring system i.e. time, cost, quality
and technical debt, which is made visible by the presence
of four dynamic meters in game screens (demonstrated in
Figure 1, 2 and 3). The value of score meters change after
each decision and makes player aware of the consequences
of his decision on the available resources. In the end, final
values in score meters obtained for the player is compared
with the ideal values that should be there (refer to Figure 9).
It helps student compare the consumption of resources done
during their project course and the quality standards that they
managed to maintain. Along with step wise feedback, we also
provide a detailed analysis of player’s performance at the end
of the game. We reflect to player’s the decisions taken by them
during the game and provide feedback in form of remarks.
The remark that a player gets, help them discover about the
correctness of their decisions. For example, if a player chooses
to recruit a full time reviewer (refer to screenshot in Figure
1) they are reminded that there is a more experienced and
expert co developer present in the team who can carry out
this task. In case they select a very fast inspection rate like
900 or above LOC/hour (Figure 2) they are told that with this
high inspection rate they can conclude that the reviewer is not
looking at the code at all. This in depth analysis helps player
trace the events and reasoning (learning through success and
failure as well as discovery) behind the points awarded to them
(Figure 10 shows remarks provided to player).

IV. EXPERIMENTAL ANALYSIS AND PERFORMANCE
EVALUATION

We conduct experiments to evaluate our proposed approach
by asking 17 students (10 Undergraduate or Bachelors in Com-
puter Science and 7 Graduate or Masters in Computer Science
students) to play the game. Table III, IV presents the list of
questions and their responses in the pre-game questionnaire4.

4http://bit.ly/1ddyitO

1st International Workshop on Case Method for Computing Education (CMCE 2015) 67

TABLE III. QUESTIONNAIRE RESULTS BEFORE THE GAME PLAY

[1] Peer code review is a staple of the software industry. Why?
Reduces the number of delivered bugs [] 70.58%
Eliminates the need to perform testing 17.64%
Keeps code maintainable [] 47.05%
Makes new hires productive quickly and safely[] 47.05%
[2] Who amongst the following is most suitable for the job of peer code review?
Any co-developer from the team 23.53%
A full time reviewer from outside the team, having full expertise in code review 47.05%
Team’s senior co developer with required expertise and experience [] 29.42%
Developers should self select the peer reviewer for their own code 00.00%
[3] What is the most optimal inspection rate to carry out an effective code review ?
Reviewing 100-300 LOC per hour 17.65%
Reviewing 300-600 LOC per hour [] 29.41%
Reviewing 600-900 LOC per hour 41.18%
Reviewing 900 or more LOC per hour. 11.76%
[4] What is the role of checklist in peer code review?
It keeps track of whether reviews are consistently performed throughout your team 23.52%
Omissions in code are the hardest defects to find and checklist combat this problem [] 29.41%
They perform mapping of user requirement to code 35.29%
Reminds authors and reviewers about common errors and issues which needs to be handled [] 76.47%
[5] Which of the following is preferable review code size?
100-200 LOC 05.88%
200-400 LOC [] 17.65%
400-600 LOC 35.29%
600-800 LOC 41.18%
800 or more LOC 00.00%
[6] What are some of the best code development practices which act as catalyst in peer code review process?
Maintaining checklists of common issues and errors [] 76.47%
Author preparation- adding annotations to code etc [] 64.70%
Sending code for review only when the entire implementation phase is complete 23.52%
Sending code modules for review as and when they are developed [] 35.29%
Allowing all developers self select changes they are interested and competent to review 17.64%
[7] Which of the following ensures that developers maintain a positive outlook towards code review?
Incorporating review feedback in their performance evaluation 52.94%
Providing reviewer complete freedom to carry out code review process 17.64%
Ensuring that defect densities will never be used in performance reports [] 29.42%
Allowing developers to skip code review if they are confident about their code 00.00%

TABLE IV. QUESTIONNAIRE RESULTS BEFORE THE GAME PLAY

Select which form of review is more efficient in following categories
Tool assisted review Heavy weight review Both

[8] Cost 47.05 % 29.42 % [] 23.53%

[9] Time 70.59 % [] 05.88 % 23.53 %

[10] Review Effectiveness 23.53 % 41.18 % 35.29 % []

[11] Resource Consumption 35.29 % [] 17.66 % 47.05 %

Fig. 11. Survey score values (in pre game and post game survey) of students who took part in the game evaluation

1st International Workshop on Case Method for Computing Education (CMCE 2015) 68

Fig. 12. Survey score values (in pre game and post game survey) for various questions asked to students while performing game evaluation

Fig. 13. Rating distribution in post game survey by players of the game evaluating learning done through the game, scoring and analysis provided at the end
of game, motivation to try again on failure and introduction of new concepts

The pre-game questionnaire consists of questions having one
correct answer (2, 3, 5, 7, 8, 9, 10 and 11) and also questions
having more than one correct answer (1, 4 and 6). Table III
displays the questions, answer choices, correct answer(s) and
the responses of 17 students. Table III reveals that 30% of the
respondents selected the correct choice for the most optimal
inspection rate for peer code review and only 18% selected the
correct answer for optimal code review size. We asked such
questions to test the knowledge of the students and investigate
improvement after playing our game. As shown in Figure III,
our pre-game questionnaire consists of questions on various
aspects of peer code review.

Table IV displays a set of inter related questions, answer
choices (common for all questions) and the responses of 17
students for the same. We asked students these questions to test
their knowledge of existing review processes. The questions
test the efficiency of review processes when compared in
different categories like cost of using that process, time taken

to carry out review process, review effectiveness and resource
consumption. It can be observed that 47.05% of students think
that tool assisted review process is more efficient in terms of
cost and only 29.42% are aware that manual review processes
actually have low investment cost. The general belief that tool
assisted reviews are better that manual review processes in
every aspect is evident from Table IV, despite the fact that
both of the review process find just as many bugs.

As observed from Table III and IV, there are total 11 ques-
tions in the survey questionnaire, which we made mandatory
for each student to answer. To obtain the score of pre and
post game survey questions we assign a weight age of 1 mark
to each question. For every wrong response +0 marks were
given and for each right response selected +1/n marks were
given (n is the number of correct answers for that question).
As mentioned above, questions in survey have both single and
multiple correct answers, therefore value of n varies from 1
to 3 (n=1 for Q2, 3, 5, 7, 8, 9, 10, 11; n=2 for Q4; n=3

1st International Workshop on Case Method for Computing Education (CMCE 2015) 69

for 1,6). Using this scoring criteria, we made a bar graph
to see the improvement in score before and after playing the
game (refer to Figure 11). It can be seen that mean score of
students in pre game survey is 4.44 which increases to 7.75
in post game survey. Thus, there is an average improvement
of 74.54% i.e. 3.31 in score. In terms of absolute score a
maximum improvement of 5.67 (Student ID 10) and minimum
improvement of 1.5 (Student ID 2) can be seen.

Figure 12 is a bar graph representing how survey scores
vary for each question, before and after game play. The values
in Figure 12 are the values for each question that we obtained
from the responses of 17 students who took part in evaluation.
We follow the same scoring criteria that we use to draw Figure
11. It explores the improvement trend that exists for each and
every question, before and after the game play. As visible
from the graph, there are some questions which could be
categorized easy as more than 50% of students could answer
them correctly in pre game survey (Q1, 3, 5 and 9). Similarly
there is another set of questions which students found hard and
only 30% or less could answer correctly like Q2, Q4, Q6, Q7
and Q8. A mean pre game score of 6.86 is observed for these
questions, which then raises to 11.98 in post game survey.
Thus an average improvement of 74.63% (5.12 in absolute)
is observed, which is similar to that observed in Figure 11.
In absolute terms, a maximum improvement of 12 (Q7) and
minimum improvement of 2 (Q9 and Q11) is observed.

We perform post game survey once the students are done
playing the game. It is divided into two sections. First section
contains all the questions specified in Table III and IV, to
test student’s learning after the game play. There is another
section which requires the player to rate the game on different
aspects like learning done throughout the game, score and
analysis provided at the end of game, motivation to try again on
strategy or decision failure and introduction of new concepts or
practices which student was not aware of. Figure 13 represents
the box plot demonstrating the distribution of ratings provided
by the player to game in these categories. It can be seen that
learning done throughout the game has a median of 4 with
most of the rating distribution spread from 3.75 to 4 with 7
outliers (3, 5) as visible from Figure 13. Similar information
can be obtained about other aspects too from Figure 13.

V. CONCLUSION

We describe an education and interactive software engi-
neering simulation game to teach important peer code review
concepts and best practises. We define 12 learning objectives
covering various aspects of peer code review and design our
game as well as scoring system to teach the pre-defined
learning goals. We evaluate the effectiveness of our approach
by conducting experiments involving 17 undergraduate and
graduate students. We observe a variety of responses and
behaviour across various players. We found that students lack
basic knowledge of peer code review and its standard industrial
practices. Our experiments reveal that there is a significant
improvement in the knowledge of the participants after playing
the game. We observe that students find simulation game more
engaging and interesting platform for learning.

REFERENCES

[1] E. O. Navarro and A. van der Hoek, “Simse: An educational simulation
game for teaching the software engineering process,” in Proceedings of
the 9th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’04, pp. 233–233, 2004.

[2] N. bin Ali and M. Unterkalmsteineré, “Use of simulation for software
process education:a case study,”

[3] M. Mittal and A. Sureka, “Process mining software repositories from
student projects in an undergraduate software engineering course,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, (New York, NY, USA),
pp. 344–353, ACM, 2014.

[4] R. Mishra and A. Sureka, “Mining peer code review system for com-
puting effort and contribution metrics for patch reviewers,” in Mining
Unstructured Data (MUD), 2014 IEEE 4th Workshop on, pp. 11–15,
Sept 2014.

[5] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey, “Peer review
on open-source software projects: Parameters, statistical models, and
theory,” ACM Trans. Softw. Eng. Methodol., vol. 23, pp. 35:1–35:33,
Sept. 2014.

[6] S. McIntosh, Y. Kamei, B. Adams, and A. Hassan, “An empirical study
of the impact of modern code review practices on software quality,”
Empirical Software Engineering, pp. 1–44, 2015.

[7] S. Sripada, Y. Reddy, and A. Sureka, “In support of peer code review
and inspection in an undergraduate software engineering course,” in
Software Engineering Education and Training (CSEET), 2015 IEEE
28th Conference on, pp. 3–6, May 2015.

[8] E. H. S. J. Roland Mittermeir1, Andreas Bollin1 and D. Wakounig1é,
“Ameise: An interactive environment to acquire project-management
experience,” 2013.

[9] R. S. Christiane Gresse von Wangenheim and A. F. Borgattoé, “De-
liver! an educational game for teaching earned value management in
computing courses,” vol. 54, pp. 286–298.

[10] A. T. Nicholaos Petalidis, Gregory Gregoriadis and A. Chronakisé,
“Promasi a project management simulator,” in Proceedings of the 2011
15th Panhellenic Conference on Informatics, PCI ’11, pp. 33–37, 2011.

[11] A. Jain and B. Boehmé, “Simvbse: Developing a game for value-
based software engineering,” in Proceedings of the 19th Conference
on Software Engineering Education and Training, pp. 103–114, 2006.

[12] E. O. N. Alex Baker and A. van der Hoek, “An experimental card game
for teaching software engineering processes,” in The Journal of Systems
and Software, pp. 3–16, 2005.

[13] K. Shaw and J. D. é, “Engendering an empathy for software engineer-
ing,” in Proceedings of the 7th Australasian Conference on Computing
Education, ACE’05, pp. 135–144, 2005.

[14] M. B. Alexandre Dantas and C. Werneré, “A simulation-based game
for project management experiential learning,” in Proceedings of the
16th International Conference on Software Engineering and Knowledge
Engineering, SEKE’04, pp. 19–24, 2004.

[15] A. Drappa and J. Ludewigé, “Simulation in software engineering
training,” in Proceedings of the 22nd International Conference on
Software Engineering, ICSE ’00, pp. 199–208, 2000.

[16] “Coverity scan: 2012 open source integrity report,” 2012-Coverity-Scan-
Report.pdf.

[17] R. B. Myerson, Game theory. Harvard university press, 2013.
[18] K. Jha and K. Iyer, “Commitment, coordination, competence and the

iron triangle,” International Journal of Project Management, vol. 25,
no. 5, pp. 527–540, 2007.

1st International Workshop on Case Method for Computing Education (CMCE 2015) 70

