
Automatic Recommendation of Software Design
Patterns Using Anti-patterns in the Design Phase:

A Case Study on Abstract Factory

Nadia Nahar∗ and Kazi Sakib†
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

∗bit0327@iit.du.ac.bd, †sakib@iit.du.ac.bd

Abstract—Anti-patterns, one of the reasons for software design
problems, can be solved by applying proper design patterns. If
anti-patterns are discovered in the design phase, this should lead
an early pattern recommendation by using relationships between
anti- and design patterns. This paper presents an idea called Anti-
pattern based Design Pattern Recommender (ADPR), that uses
design diagrams i.e. class and sequence diagrams to detect anti-
patterns and recommend corresponding design patterns. First of
all, anti-patterns relating to specific design patterns are analyzed.
Those anti-patterns are detected in the faulty software design to
identify the required design patterns. For assessment, a case study
is shown along with the experimental result analysis. Initially,
ADPR is prepared for recommendation of the Abstract Factory
design pattern only, and compared to an existing code-based
recommender. The comparative results are promising, as ADPR
was successful for all cases of Abstract Factory.

Keywords—Software design, design pattern, anti-pattern, design
pattern recommendation, abstract factory

I. INTRODUCTION

Design patterns formalize reusable solutions for common
recurring problems, while anti-patterns are outcome of bad
solutions degrading the quality of software. Design patterns
are often mentioned as double-edged sword, selecting the right
pattern can produce good-quality software while selecting a
wrong one (anti-pattern) makes it disastrous [1]. Thus, which
patterns to use in which situation, is a wise decision to take.
On the contrary, mapping software usage scenario or user
description with pattern intent is a manual and hectic task.
However, this task can be made easier with assistance of
pattern recommendation systems.
The recommendation of a proper design pattern is yet a faulty
process due to the difficulties in connecting software infor-
mation with design pattern intents. The software requirements
do not contain possible design problems’ indication, making
it infeasible to identify the required patterns. However, anti-
patterns can be detected after a faulty design is created from
user requirements. Now, as every design pattern has its own
context of design problems that it solves and every anti-pattern
causes specific design problems, a relationship should exist
between anti- and design patterns that can be beneficial in
pattern recommendation.
This paper presents the idea of incorporating anti-pattern detec-
tion and design pattern recommendation in the software design
phase. This idea is encapsulated in a tool named as Anti-
pattern based Design Pattern Recommender (ADPR). The tool
recommends appropriate patterns in two phases. The analysis

of anti-patterns of particular design patterns is conducted in
the first phase. For capturing the full anti-pattern information
i.e. class structure, interactions, and linguistic relationships, the
analysis is performed in three levels - structural, behavioral and
semantic analysis. In the second phase, the inputted system is
matched with those anti-patterns for recommending the related
design patterns. This matching is also conducted in three
levels similar as the levels of analysis - structural, behavioral
and semantic matching. Based on the matched anti-patterns
from these levels, the corresponding ‘missing [2]’ design
patterns are recommended. ADPR is initially designed for the
recommendation of Abstract Factory as it is one of the most
popular patterns, and can be extended to the other patterns.
Research has been conducted for proposing pattern recom-
mendation systems. However, those cannot provide a good
precision due to the difficulty in logically defining the manual
process of mapping human requirements with design pattern
intents. The human requirements i.e. usage scenario, designers’
answers to questions or cases residing in the knowledge base
in Case Based Reasoning (CBR), have been inadequate to
accurately extract the required design patterns because of the
lack of focus on the design problems. Generally, these three
approaches of design pattern recommendation can be found
in the literature - textual matching of software usage scenario
with design pattern intents [3], [4], [5], question answer session
with designers [6], [7], and CBR [8], [9]. The first approach
is inefficient to identify probable design problems of software
as scenario does not contain design information. The generic
questions of the second approach focuses more on design
pattern features than design problems of particular software.
In the third approach, cases of CBR does not store possible
design problems of software. Oppositely, the field of anti-
pattern detection identifies bad designs in software, assuring
that successful detection of anti-patterns is possible [10], [11].
However, the usage of anti-pattern in the design phase for
identifying correct design patterns is yet to be discovered.
A case study has been conducted for evaluating the applica-
bility of the proposed approach. The case study is carried on a
badly designed java project requiring Abstract Factory, named
as Painter. Based on the step-by-step analysis on the project,
Abstract Factory is recommended by the tool. This case study
justifies the approach that, this recommendation process leads
to the correct recommendations.
The validity of this approach is further justified by experiment-
ing ADPR on the case of Abstract Factory design pattern. For
this, the prototype of ADPR was implemented for Abstract
Factory using java. Moreover, implementation of a prominent

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 9

research on source based design pattern recommendation,
proposed by Smith et al. [12], was also performed for the
comparison. The dataset were created by gathering projects
that require Abstract Factory, but intentionally has not been
applied. The results are encouraging as ADPR provides better
recommendation results in the design phase of software, com-
pared to the source based one operating in the coding phase.

II. RELATED WORK

In terms of recommending suitable patterns for software,
the relationship establishment between the design pattern and
anti-pattern is rare in the literature. Yet investigations have
been conducted for proposing design pattern recommendation
approaches from different perspectives as mentioned below.
On the other hand, anti-pattern detection is a well-established
research trend for successfully identifying anti-patterns to
check whether the software design is bad.

A. Design Pattern Recommendation

As mentioned earlier, design pattern recommendation re-
searches can be divided into three types – text-based search,
question-answer session, and CBR. In text-based search, pat-
tern intents are matched with the problem scenarios for iden-
tifying the design patterns that relate mostly to the software
[3], [4], [5]. This intent matching is based on set of important
words [3], text classification [4], or query text search using
Information Retrieval (IR) techniques [5]. However, problem
scenarios are ambiguous as written in human language; and are
usually not written from a designer’s point of view, making it
impractical to identify possible design problems.
In question-answer based approach, designers are asked to
answer some questions about the software and those answers
lead to find the required patterns for that software [6], [7].
Here, the mapping from question-answers to design patterns
is set by formulating Goal-Question-Metric (GQM) model [6],
or ontology-based techniques [7]. The problem is that, the
questions are often static or generic, and more related to design
pattern features than software specific design problems.
In CBR, recommendations are given according to the previous
experiences of pattern usage stored in a knowledge base in
the form of cases [8], [9]. The retrieval of cases from the
knowledge base is performed either using user provided class
diagrams [8], or using inputted and reformulated problem
descriptions [9]. Matching cases to identify required patterns
are not feasible, as the cases do not focus on the design
problems a software might have.
A few researches were conducted for recommending patterns
which do not fall in any of the mentioned categories. Navarro et
al. proposed a different recommendation system for suggesting
additional patterns to the designer while a collection of patterns
are already selected [13]. Thus, it may not be used for new
software being developed. Kampffmeyer et al. presented a new
ontology based formalization of the design patterns’ intents
making those focus on the problems rather than the solution
structures [14]. However, the problem predicate and concept
constraints, required by the recommendation tool, makes it’s
usage challenging. Both of these approaches require expertize
of the designers to use those effectively.
The research question of this paper is to use anti-pattern
knowledge for design pattern recommendation in the design-
phase of software. The most related paper of this research

is a code-level design pattern recommendation approach [12],
where patterns are recommended dynamically during the code
development phase. That research tried to relate anti-patterns
with design patterns for recommendation. Anti-patterns were
identified using structural and behavioral matching in the code,
and required design patterns to mitigate those anti-patterns
were recommended. However, design pattern recommendation
in the coding phase is too late as the software has already been
designed and needed to be changed after the recommendation.

B. Anti-pattern Detection

Anti-pattern detection is a rich area of research, that
focuses on finding bad designs in software [15], [16],
[17], [18]. Fourati et al. proposed an anti-pattern detection
approach in design level using UML diagrams i.e. the class
and sequence diagrams [10]. The detection was done based
on some predefined threshold values of metrics, identified
through structural, behavioral and semantic analysis. This
prominent research assures that anti-pattern detection can
be performed in the design phase. Another approach for
anti-pattern detection was based on Support Vector Machines
(SVM) [11], where the detection task was accomplished in
three steps - metric specification, SVM classifier training
and detection of anti-pattern occurrences. The concept of
anti-pattern training has made any defined or newly defined
anti-patterns detection possible, breaking the boundary of
only detection of some well-established anti-patterns (e.g.
Blob, Lava Flow, Poltergeists, etc.) [19].

As presented in subsection II-A, the existing approaches
of design pattern recommendation in design phase use textual
match with usage scenario, case match with knowledge base
cases, or ask design pattern related generic questions to
designers. These approaches cannot be the proper ways to
recommend design patterns, as design patterns are used for
mitigating design problems, and these do not focus on the
system design problems. The single paper that focuses on
design problems (anti-patterns), recommends design patterns
in the coding phase, making its usage impractical.

III. THE PROPOSED APPROACH

The novelty of this research lies in identifying design
problems of software for recommending appropriate design
patterns, and in the design phase of software. Without having
the analysis of bad designs (i.e. anti-patterns), suggesting cor-
rect design patterns is difficult. So, an idea is formalized, where
the appropriate design patterns are suggested from identifying
existing design problems, that reside as anti-patterns in the
initial system design.

A. Overview of ADPR
Existence of an anti-pattern in a software design discloses

that the design is not appropriate; the design can be improved
by application of suitable design patterns. Thus, the detection
of anti-patterns can lead to the recommendation of design
patterns, if the anti-patterns could properly be mapped to their
related design patterns.
This idea is implemented as a system called Anti-pattern
based Design Pattern Recommender (ADPR), which is ini-
tially designed for Abstract Factory design pattern. The top-
level overview of ADPR is shown in Fig. 1. There are two

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 10

Fig. 1: Overview of ADPR

phases in the approach. At first the system analyzes the anti-
patterns of particular design patterns. These anti-patterns do
not necessarily be in the anti-patterns catalog like Blob, Lava
Flow, etc1. These represent the ’missing’ design patterns [2]
and their presence indicate that, a particular design pattern
should have been used [20], [2], [12]. As shown in Fig. 1, in
the second phase, the analyzed anti-patterns are detected in the
initial system design and the corresponding design patterns to
those matched anti-patterns are recommended. The detail of
both these phases are described below.

(a) As Mentioned in [21]

(b) As Mentioned in [2]

Fig. 2: Anti-pattern Variants (Abstract Factory)

B. Analysis of Anti-patterns

To identify the missing design patterns, the related anti-
patterns are collected and analyzed first. The case of Abstract
Factory is presented here as the usage example. Several anti-
pattern variants of Abstract Factory may exist; initially, two of
those are used (Fig. 2 [2], [21]) to show whether the proposed
system works. In Fig. 2(a), there are two families of classes,

1“Anti Patterns Catalog,” http://c2.com/cgi/wiki?AntiPatternsCatalog

ConcreteProductA1 (ConcProdA1), ConcreteProductB1
(ConcProdB1), and ConcreteProductA2 (ConcProdA2),
ConcreteProductB2 (ConcProdB2). As determined by
GoF, instead of being directly instantiated by the Client, these
families should have been instantiated using abstract factories;
this encourages the usage of Abstract Factory design pattern2

in this case. Similarly in 2(b), ProductA1, ProductB1,
and ProductA2, ProductB2 are two families of classes,
which should not be directly instantiated by the Client. Thus,
these two class designs represent the anti-patterns of Abstract
Factory [2], [21].
These anti-patterns are analyzed and stored in the tool for
further design level matching. Three levels of analysis are
performed for ensuring the accurate capture of anti-pattern
information - structural, behavioral and semantic (as shown
in Fig. 1 ‘Anti-pattern Analysis’ phase), similar to the design
pattern analysis in [22].
The structural analysis concentrates on the structural character-
istics of the anti-patterns. Similar structures of different anti-
patterns can be found making this level of analysis inadequate.
Thus, the behavioral analysis is provided for considering the
behaviors of the anti-patterns along with the structure. One
more level of validation is provided by the semantic analysis,
as there can be cases where both structures and behaviors of
different anti-patterns may match. Thus, these three levels of
analysis ensure the proper refinement of the tool for detection
of anti-patterns accurately.

Structural Analysis: The structure of an anti-pattern is
defined by the relationships among the classes of it. Thus,
class diagrams are used in this level [23] (as shown in
Fig. 1, ‘Anti-pattern Class Diagrams’ are inputted to ‘Extract
Structural Info’), as those capture the different class-to-class
relationships e.g. aggregation, generalization, association, etc.
For keeping these relationship information, the structures are
represented and stored in a form of n × n matrix of prime
numbers as noted by Dong et al.[22] (for tracking cardinality

2Abstract Factory intent: “Provide an interface for creating families of
related or dependent objects without specifying their concrete classes.” [20]

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 11

of the relationships). Hence, this level takes the UML class
information of anti-patterns as input and stores those in the
form of matrices. For this, the class diagrams are converted to
program readable format, XML and inputted to the tool.
In case of Abstract Factory, the class XMLs of the collected
anti-pattern variants are provided to the analyzer, that creates
and stores the structure matrices for each of the variants as
shown in Fig. 3. The first matrix of Fig. 3 is generated from
Fig. 2(a). Here,

• C, A1, B1, A2 and B2 represent Client,
ConcProdA1, ConcProdB1, ConcProdA2
and ConcProdB2 respectively.

• The four association (A−→) relations between
Client

A−→ ConcProdA1, Client
A−→ ConcProdB1,

Client
A−→ ConcProdA2, Client

A−→ ConcProdB2
in 2(a) are contained in the matrix using the prime
number ‘2’3.

Similarly, the second matrix of Fig. 3 is generated from 2(b),
where,

• AbsA, A1, A2, AbsB, B1, B2, C represent
AbstractProductA, ProductA1, ProductA2,
AbstractProductB, ProductB1, ProductB2,
Client correspondingly.

• The four generalized (G−→) relations
(ProductA1

G−→ AbstractProductA,
ProductA2

G−→ AbstractProductA,
ProductB1

G−→ AbstractProductB,
ProductB2

G−→ AbstractProductB) and two
association relations (Client

A−→ ProductA1,
Client

A−→ ProductB1) are stored in the matrix
using prime number ‘3’ and ‘2’ consequently3.

Fig. 3: Generated Matrices of Fig. 2

Behavioral Analysis: Behaviors of a system represent the
dynamic characteristics (e.g. class execution sequence in run-
time) of it. Now, it is logical to assume that the behaviors
of a design pattern are inherited by it’s anti-patterns, as
the anti-patterns provide bad software structures compared to
that pattern, but preserve the software behaviors. Thus, in
behavioral analysis, the behaviors of the corresponding design
patterns of anti-patterns are analyzed (Fig. 1, ‘Related Design
Pattern’ leads to ‘Analyze Behavioral Info’).

3The determined prime number value of Association is 2,
Generalization is 3, and Aggregation is 5, similar as [12].

The behavioral feature of Abstract Factory is, there are families
of classes, and these families are always used together [20].
Whenever such families of classes are found, that are always
instantiated in the same execution path, and the classes of
different families are instantiated in different execution paths,
that system is required to use Abstract Factory [20].

Semantic Analysis: Semantic features of a system capture
the logical relationships between classes (e.g. same types of
classes in a system, classes that are always used together,
etc.). Semantics basically relate the structural and behavioral
aspects of the system (information of static structure with
dynamic behavior). The semantic features of anti-patterns are
also assumed to be the same as corresponding design patterns,
as the logical relations among classes should not be changed,
no matter how the system is being designed. Thus, similar as
the behavioral analysis, related design patterns of anti-patterns
are analyzed for capturing semantic information as shown in
Fig. 1, ‘Related Design Pattern’ to ‘Analyze Semantic Info’.
In Abstract Factory, classes of similar types form different fam-
ilies [20]. Therefore, the verification of behaviorally matched
families are done by checking the types of the classes (identi-
fied from static structure) in families. Super-class information
are used for this purpose, as classes having the same super-
classes are generally of similar types; but there can be cases
like Fig. 2 (a), where the design is bad enough to not even
follow that OO convention. For those cases, similarity in the
names of classes can give an indication of similar types.

C. Detection and Recommendation

Once the anti-patterns are analyzed based on corresponding
design patterns, those could be detected in a faulty system
design for recommending the patterns. Detection of anti-
patterns needs three levels of matching similar to the analysis
- structural, behavioral and semantic matchings (as shown in
Fig. 1 ‘Detection & Recommendation’ phase). If a system
design is matched with an anti-pattern completely (structurally,
behaviorally and semantically), only then the corresponding
design pattern is recommended.

Structural Matching: The system structure is represented
similarly as the matrix of anti-patterns using the system
class diagram. The stored anti-patterns’ structures (Fig. 3)
are matched to the system’s structure for finding whether
any of those anti-patterns is present in the system (Fig. 1,
from ‘System Class Diagram’ to ‘Extract and Match Structural
Info’). For this, the system matrix is matched with anti-
patterns’ matrices using naive approach, as the focus is on the
accuracy rather the computational complexity or time. In this
approach, matrices are matched using a brute force method
where every permutation of the system matrix (permutation
of nodes in the system graph) are taken and matched with
the anti-pattern matrices. If no match is found, the detection
is stopped and the other levels of matching are postponed.
Otherwise, for at least one structural match, the behavioral
matching is executed.

Behavioral Matching: Sequence diagrams are used in this
level as those represent the dynamic interactions of classes in
execution [23] (Fig. 1, ‘System Sequence Diagrams’ are in-
putted to ‘Extract and Match Behavioral Info’). The lifelines

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 12

of a sequence diagram are the roles or object instances4, and
represent the classes in the same execution sequence. Thus,
families of classes in Abstract Factory are identified from these
lifelines, as classes of same families are supposed to be in
the same execution sequence, and so in the same sequence
diagram lifelines. For this, the UML sequence diagrams of
the system are converted to XMLs first, and inputted to the
tool. Then, the XMLs are parsed to identify the lifelines and
the corresponding classes of those are identified. Thus, the
identified classes of each sequence diagram are marked to be
in the same family.

Semantic Matching: Should a particular design pattern
be recommended, is taken in the semantic matching step. In
semantic matching for Abstract Factory, types of the classes are
analyzed to validate the family information acquired from the
behavioral matching as per the findings of semantic analysis
(different classes of similar types form different families). A
matrix containing the similar types of classes information is
generated using the super-class relations. However, as men-
tioned earlier, sometimes the class-types could not be identified
due to missing super-classes in a bad design (Fig. 2 (a)). For
those cases, similarity in the names of the classes are analyzed
to identify the same types (as shown in Fig. 1, ‘System Class
Types Or Naming’ are used to ‘Extract and Match Semantic
Info’). The class names are split based on capital letters,
and the parts are matched (For example, ’WoodenDoor’ is
split to ’Wooden’, ’Door’, and ’GlassDoor’ is split to ’Glass’,
’Door’, and matched to each other). After the class types are
determined, the mentioned type matrix is generated. Then, that
matrix is used to analyze the classes in multiple families to
test whether those are aligned to the assumption of Abstract
Factory that, multiple families contain similar types of, but
different classes.
Now, if the design is too bad to neither have super-classes nor
similar names for the same types of classes, the approach will
fail to generate type matrix and so, match semantics. Thus, for
getting recommendation, the basic design principles should be
followed by the designers. The semantic matching algorithm
is shown in Algorithm 1.
For semantic matching, first of all the type matrix is generated
(Algorithm 1 Line 8). As mentioned previously, it can be
generated from super-class information (generalization rela-
tionship) or similar naming of classes. The type matrix is a
0,1 matrix, where the same type classes share value 1, and the
others share value 0. Then, every sequences (class families)
are compared to each others (Lines 9–13). The procedure
COMPARESEQ is called for this reason. In COMPARESEQ,
the duplicates in the sequences being compared are removed
in Line 25. Then nested loops are executed for getting the
positions of the classes of the sequences in the type matrix
using the class names list (cN) (Line 26–39). The value in
those positions inside the type matrix (0 or 1) is added to the
seq matrix in Lines 41–42. After the calculation of the values
in all the seq positions, maxMatch between the sequences
are identified in Lines 14–21. This maxMatch is returned as
the score of semantic matching. If the score value is >= 2,
there is a valid semantic match.

4R. Perera, “The Basics & the Purpose of Sequence Diagrams -
Part 1,” http://creately.com/blog/diagrams/the-basics-the-purpose-of-sequence-
diagrams-part-1/

Algorithm 1 Semantic Matching

1: system: System Matrix
2: cN : System Class Names
3: behavioralMetric: Behaviors of Anti-pattern (Sequence

Diagram for Abstract Factory)
4: procedure MATCHSEMANTIC
5: seqs← behavioralMetric.sequenceDiagrams
6: size← seqs.size()
7: seq ← [size][size]
8: type[cN.length][cN.length]← GENTYPEMATRIX()
9: for i← 0 to size do

10: for j ← i+ 1 to size do
11: COMPARESEQ(seqs.get(i), seqs.get(j), i, j)
12: end for
13: end for
14: maxMatch← 0
15: for i← 0 to size do
16: for j ← 0 to size do
17: if maxMatch < seq[i][j] then
18: maxMatch← seq[i][j]
19: end if
20: end for
21: end for
22: return maxMatch
23: end procedure
24: procedure COMPARESEQ(s1, s2, p1, p2)
25: REMOVEDUPLICATES(s1, s2)
26: for i← 0 to s1.size() do
27: for j ← 0 to s2.size() do
28: s← −1, d← −1
29: for k ← 0 to cN.length do
30: if s1.get(i) = cN.get(k) then
31: s← k
32: end if
33: if s2.get(j) = cN.get(k) then
34: d← k
35: end if
36: if s! = −1 and d! = −1 then
37: break
38: end if
39: end for
40: if s! = −1 and d! = −1 then
41: seq[p1][p2]← seq[p1][p2] + type[s][d]
42: seq[p2][p1]← seq[p2][p1] + type[s][d]
43: end if
44: end for
45: end for
46: end procedure

IV. CASE STUDY ON “PAINTER”, A PROJECT REQUIRING
ABSTRACT FACTORY

For an initial assessment of the competency, ADPR was
used on a sample java project named Painter (Shown
in Table I). This step-by-step study might increase the
understanding of the tool as well as justify the feasibility of
the approach.

It is assumed here that, the analysis of anti-patterns
have already been performed. And thus, the tool has stored

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 13

the required anti-patterns’ information for the purpose of
detecting those and recommending the corresponding design
patterns for the inputted systems.

A. About Painter

The project, Painter is a well-known example of Abstract
Factory usage5. For testing the recommendation tool, the
project is designed without implementing Abstract Factory
(badly designed). The scenario of the project is as follows:
“The Paint can draw three types of Shape - Circle,
Triangle, or Square. The Shapes can be filled with three
Colors - Red, Blue, or Green. Circles will be Red,
Triangles will be Blue, and Squares will be Green.”

B. Structural Matching of Painter

As mentioned in ‘Structural Matching’ in subsection III-C,
the system structure is to be matched with the anti-patterns’
structure. For this, the initial class diagram of Painter, shown
in Fig. 4, is inputted into the tool in XML format. This
inputted XML is converted into a matrix of prime numbers
for preserving the relationships between the classes (as in-
structed in [22]), as shown in Fig. 5. There are six association
(Paint

A−→ Blue, Paint
A−→ Green, Paint

A−→ Red,
Paint

A−→ Square, Paint
A−→ Triangle, Paint

A−→ Circle)
and six generalization ((Blue

G−→ IColor, Green
G−→ IColor,

Red
G−→ IColor, Square G−→ IShape, Triangle G−→ IShape,

Circle
G−→ IShape)) relationships in the diagram. These are

fully preserved by putting value ‘2’ in places of association
and ‘3’ in places of generalization3.

Fig. 4: Class Diagram of Painter

The anti-patterns’ structures are assumed to be stored in the
tool. Now, the structures of those stored anti-patterns are
matched with the Painter matrix using naive matrix matching.
From Fig. 4 and Fig. 2 (a), a match is encountered. Thus, the
structural matching is accomplished, and the tool will proceed
to the next level of matching.

5“Design Pattern - Abstract Factory Pattern,”
http://www.tutorialspoint.com/design pattern/abstract factory pattern.htm

Fig. 5: Class Relation Matrix of Painter

C. Behavioral Matching of Painter

For behavioral matching, the information about the interac-
tions between classes in execution is required. This information
is extracted from the sequence diagrams. From the scenario of
Painter, three sequence diagrams can be drawn (Fig. 6).

(a) Circle Is Red

(b) Triangle Is Blue

(c) Square Is Green

Fig. 6: Sequence Diagrams of Painter

The class families are identified from the lifelines of these
sequence diagrams. As, three sequence diagrams are inputted,
three families are identified from those. The first family
consists of Paint, Circle, and Red; the second family has
the classes Paint, Triangle, and Blue; and the third family
is comprised of Paint, Square, and Green.

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 14

D. Semantic Matching of Painter

The three families identified in the behavioral matching
is validated in this level. First of all, the type matrix (as
mentioned in subsection III-C ‘Semantic Matching’) is
generated using the super-class information from the class
relation matrix (Fig. 5). The type matrix is shown in Fig. 7.
Situations can occur that the super-class information can be
missing. For example, another variation of bad-designed class
diagram can be created by the designer as shown in Fig. 8. It
is noticeable here that, though the super-classes are missing,
type matrix will still be generated from the similarity in the
names of the same types of classes. RedColor, BlueColor,
GreenColor; and CircleShape, TriangleShape, SquareShape
are identified as same types. However, if the names of same
types are not similar in this case, the approach will fail to
generate the type matrix. For example - if the names of the
classes are similar as Fig. 4, but the super-classes IShape
and IColor are missing, then the approach will fail.

Fig. 7: Type Matrix of Painter

Fig. 8: Another Bad Class Diagram Example of Painter

After the type matrix is generated, the class families are
analyzed to test whether different classes having the same
types are situated in different families. Thus, the three
identified families are analyzed here, and found that all three
families contain classes of same types. Circle (family-1),
Traiangle (family-2) and Square (family-3) are of the
same type, and similarly Red (family-1), Blue (family-2)
and Green (family-3) are also same typed. So, the semantic
matching ensures that the identified families from the
behavioral matching are valid families.

All these three levels of matching indicate that the Abstract
Factory design pattern is required to improve the project
design. Thus, Abstract Factory is recommended for this
project. This recommendation is obtained in the design phase
of the project making it possible to re-design it, and provide
a better design of the system.

V. IMPLEMENTATION AND RESULT ANALYSIS:
FOR ABSTRACT FACTORY

To assess the new approach, preliminary experiments have
been conducted on Abstract Factory design pattern. A proto-
type of ADPR has been implemented in java for this purpose.
The existing anti-pattern based pattern recommendation tool
using source code [12] is also implemented for comparative
analysis. For the justification of correct recommendations, GoF
is followed [20].

A. Environmental Setup

As mentioned earlier, the ADPR prototype has been imple-
mented in java. The equipments, used to develop the prototype
are as follows:

• Eclipse Luna (4.4.1): java IDE for ADPR implemen-
tation

• StarUML Version-2.1.4: UML editor and XML con-
verter

Four cases requiring Abstract Factory according to GoF, have
been used as dataset. To test any occurrence of false positive,
one project using Template pattern is used. The project source
codes and UML diagrams are uploaded on GitHub [24]. The
projects are shown in Table I.

TABLE I: Experimented Projects

Project Name No. of Classes
in Class Diagram

No. of Sequence
Diagrams

CarDriver 8 2
GameScene 10 2
Painter 9 3
MazeGame 12 2
Trip 9 3

Before running ADPR on the sample project set, the XMLs
are generated from the UMLs using StarUML to be used as
input of the prototype. If the UMLs are not available, those
can be produced from source code by reverse engineering in
Visual Paradigm, a software design tool.

B. Comparative Analysis

For comparative analysis, the projects were run using both
ADPR and the source based tool. The results of the experi-
mentation are depicted in Table II, which shows that the code-
based tool could detect two missing Abstract Factory patterns
out of four. This is because, it assumed that the Abstract
Factory has a behavioral aspect of having if-else or switch-
case conditions for instantiating the families, which may not
be always true (for example, class instantiations inside GUI
onclick listener). On the other hand, ADPR was successful in
all cases as the sequence diagrams do not assume the presence
of any conditional operations, rather match the classes in one
execution sequence. Both the tools did not produce any false-
positive results.
The result identifies the fact that recommendations can be
provided based on anti-patterns before the code development
phase. Recommendation in the design phase gives opportunity

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 15

TABLE II: Results for Abstract Factory

Project Name Recommend Abstract Factory
Code-Based ADPR GoF

CarDriver Yes Yes Yes
GameScene No Yes Yes
Painter Yes Yes Yes
MazeGame No Yes Yes
Trip No No No

to correct the design of software which is not feasible in the
coding phase. Thus, the results of ADPR are encouraging, as
it could provide correct recommendations in the design phase,
making the re-design of software possible.

VI. CONCLUSION

This paper introduces a new idea to recommend design
patterns using anti-patterns. A tool is proposed named ADPR,
where anti-pattern detection is utilized for recommendation of
appropriate design patterns in the software design phase.
The recommendation task is executed in two phases; analysis
of anti-patterns is performed in the first phase, and in the
next phase, anti-patterns are detected and design patterns are
recommended. For anti-pattern analysis in the first phase, anti-
patterns of particular design patterns are collected and analyzed
in three levels - structural, behavioral, and semantic. Then
in the second phase, the identified anti-patterns are matched
with system designs for recommending corresponding design
patterns using the similar three levels of matching.
A case study on a sample java project evaluates the appli-
cability of the approach. The tool was initially implemented
for Abstract Factory only. A comparative analysis with an
existing code based tool showed that, ADPR could correctly
recommend design patterns in the design phase rather in the
coding phase.
As currently the tool is developed for Abstract Factory, the
future direction lies in extending it to the other design patterns
incrementally, and generalizing the process.

REFERENCES

[1] N. Bautista, “A Beginners Guide to Design Patterns,” http://code.
tutsplus.com/articles/a-beginners-guide-to-design-patterns--net-12752,
accessed: 2015-01-01.

[2] C. Jebelean, “Automatic Detection of Missing Abstract-Factory Design
Pattern in Object-Oriented Code,” in Proceedings of the International
Conference on Technical Informatics, 2004.

[3] Y.-G. Guéhéneuc and R. Mustapha, “A Simple Recommender System
for Design Patterns,” in Proceedings of the 1st EuroPLoP Focus Group
on Pattern Repositories, 2007.

[4] S. M. H. Hasheminejad and S. Jalili, “Design Patterns Selection:
An Automatic Two-phase Method,” Journal of Systems and Software,
Elsevier, vol. 85, no. 2, pp. 408–424, 2012.

[5] S. Suresh, M. Naidu, S. A. Kiran, and P. Tathawade, “Design Pattern
Recommendation System: a Methodology, Data Model and Algo-
rithms,” in Proceedings of the International Conference on Computa-
tional Techniques and Artificial Intelligence (ICCTAI), 2011.

[6] F. Palma, H. Farzin, Y.-G. Guéhéneuc, and N. Moha, “Recommen-
dation System for Design Patterns in Software Development: An
DPR Overview,” in Proceedings of the 3rd International Workshop on
Recommendation Systems for Software Engineering. IEEE, 2012, pp.
1–5.

[7] L. Pavlič, V. Podgorelec, and M. Heričko, “A Question-based Design
Pattern Advisement Approach,” Computer Science and Information
Systems, vol. 11, no. 2, pp. 645–664, 2014.

[8] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L. Ferreira, and
C. Bento, “Using CBR for Automation of Software Design Patterns,”
Advances in Case-Based Reasoning, Springer Berlin Heidelberg, vol.
2416, pp. 534–548, 2002.

[9] W. Muangon and S. Intakosum, “Case-based Reasoning for Design
Patterns Searching System,” International Journal of Computer Appli-
cations, vol. 70, no. 26, pp. 16–24, 2013.

[10] R. Fourati, N. Bouassida, and H. B. Abdallah, “A Metric-Based
Approach for Anti-pattern Detection in UML Designs,” Studies in
Computational Intelligence, Springer Berlin Heidelberg, vol. 364, pp.
17–33, 2011.

[11] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y.-G. Guéhéneuc,
G. Antoniol, and E. Aı̈meur, “Support Vector Machines for Anti-
pattern Detection,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2012, pp. 278–
281.

[12] S. Smith and D. R. Plante, “Dynamically Recommending Design
Patterns,” in Proceedings of the 24th International Conference on
Software Engineering and Knowledge Engineering (SEKE), 2012, pp.
499–504.

[13] I. Navarro, P. Dı́az, and A. Malizia, “A Recommendation System to
Support Design Patterns Selection,” in Proceedings of the IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 2010, pp. 269–270.

[14] H. Kampffmeyer and S. Zschaler, “Finding the Pattern You Need: The
Design Pattern Intent Ontology,” Model Driven Engineering Languages
and Systems, Springer Berlin Heidelberg, vol. 4735, pp. 211–225, 2007.

[15] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
Method for the Specification and Detection of Code and Design Smells,”
IEEE Transactions on Software Engineering, IEEE, vol. 36, no. 1, pp.
20–36, 2010.

[16] T. Feng, J. Zhang, H. Wang, and X. Wang, “Software Design Improve-
ment through Anti-patterns Identification,” in Proceedings of the 20th
IEEE International Conference on Software Maintenance. IEEE, 2004,
p. 524.

[17] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Guéhéneuc, and
E. Aimeur, “SMURF: A SVM-based Incremental Anti-pattern Detection
Approach,” in Proceedings of the 19th Working Conference on Reverse
Engineering (WCRE). IEEE, 2012, pp. 466–475.

[18] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani,
“Digging into UML Models to Remove Performance Antipatterns,” in
Proceedings of the 32nd ICSE Workshop on Quantitative Stochastic
Models in the Verification and Design of Software Systems. ACM,
2010, pp. 9–16.

[19] W. J. Brown, H. W. McCormick, T. J. Mowbray, and R. C. Malveau,
AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis. Wiley New York, 1998.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education,
1994.

[21] A. Jarvi, “Abstract Factory: 2005,” http://staff.cs.utu.fi/kurssit/
Programming-III/AbstractFactory(10).pdf, accessed: 2015-01-03.

[22] J. Dong, D. S. Lad, and Y. Zhao, “DP-Miner: Design Pattern Discovery
Using Matrix,” in Proceedings of the 14th Annual IEEE International
Conference and Workshops on Engineering of Computer-Based Systems
(ECBS). IEEE, 2007, pp. 371–380.

[23] H. Zhu and I. Bayley, “An Algebra of Design Patterns,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), ACM,
vol. 22, no. 3, p. 23, 2013.

[24] N. Nahar, “NadiaIT/ADPR-dataset: 2015,” https://github.com/NadiaIT/
ADPR-dataset, accessed: 2015-06-05.

3rd International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2015) 16

