
Experiences of Teaching Model-based
Development

Kevin Lano1, Sobhan Yassipour-Tehrani1, Hessa Alfraihi1

1Dept of Informatics, King’s College London, Strand, London, UK

Abstract. Since 2012 we have been teaching agile development and
model-based development (MBD) in undergraduate courses at King’s
College London. In this paper we analyse the results of practical course-
works in agile MBD, taken from 2013-14 and 2014-15. We identify the
factors which have contributed to the success or failure of students to
apply theoretical knowledge to these practical problems, and we consider
how educational techniques can be improved in this area.

Keywords — Model-based development (MBD) education; Model-based develop-
ment; Agile development education.

1 Educational context

The case studies described here are the practical coursework component (count-
ing for 15% of the overall marks) in a second year compulsory undergraduate
course “Object-oriented Specification and Design” (OSD) in Computer Science.
This course is our students first exposure to UML and to concepts of software
specification and design: the first year of the degree programme is dedicated
to mathematical foundations and introductory programming in Java. The OSD
course covers: UML modelling (class diagrams, state machines, OCL); concepts
of specification and design; design patterns; model transformations and MBD;
agile development. The coursework takes place in the last four weeks of term,
after all necessary theoretical material has been taught. As well as an exercise
in MBD, the coursework is an exercise in effective teamwork and project man-
agement. Students already have experience of team working on the concurrent
Software Engineering Group project (SEG). For OSD, the students are assigned
randomly to teams of between 8 to 10 people. The teams are instructed to specify
and implement the coursework project using the UML-RSDS agile MBD toolset
[3]. They also need to produce a project report describing their work. Teams
are assessed on the quality of the implementation, of the report, and on their
team management and organisation. Teams are advised to select a leader, and to
apply an agile development process, although a specific process is not mandated.
A short requirements document is provided, and links to the UML-RSDS tools
and manual. Each week during the coursework there is a one hour timetabled
lab session where teams can meet and ask for help from postgraduate students
who have some (but not expert-level) UML-RSDS knowledge.

In Section 2 we give an overview of UML-RSDS. Sections 3 and 4 describe
the courseworks and their outcomes, and Section 5 draws conclusions about the
results of these projects. Section 6 discusses related work, and Section 7 gives
conclusions.

2 UML-RSDS

UML-RSDS uses UML class diagrams and use cases to specify the data and
behaviour of systems at a high level of abstraction. From these specifications,
designs and executable code (in Java) can be automatically generated. Develop-
ers using UML-RSDS should focus on defining and improving the specification,
and should never need to manually modify the generated code.

For example, one solution to the 2013-14 coursework below could consist of
the class diagram and use cases of Figure 1.

Fig. 1. FIXML system specification in UML-RSDS

The class XMLParser is an external class (its code is provided by handwrit-
ten Java). The xml2java use case has the initial postcondition constraint:

XMLNode::

JavaClass->exists(jc | jc.name = tag)

The operational interpretation of this postcondition is that it creates a Java class
for each XMLNode (task 2a of the coursework). It can be read logically as “For
all XMLNode instances, there is a JavaClass with the same name”. For task 2b
there is the postcondition:

XMLNode::

att : attributes & jc = JavaClass[tag] &

att.name /: jc.jattributes@pre.name@pre =>

JavaAttribute->exists(ja | ja.name = att.name &

ja.type = "String" & ja.initialValue = att.value &

ja : jc.jattributes)

This maps all XML attributes of a given XML node self to program attributes
of the program class JavaClass[tag] corresponding to self . For each pair of an
XML node self and attribute att : attributes a new JavaAttribute is created and
added to JavaClass[tag].

Both metamodels and application models are represented using UML-RSDS
class diagram notation. Instance models are represented as text files with a
simple format to identify (i) that an object belongs to a type x : T ; (ii) that
a single-valued object feature has a particular value x .f = v ; or (iii) that an
object belongs to a collection-valued feature x : y .f . The code generated from
a UML-RSDS system specification can read and write instance models in this
format, alternatively, as in Section 3, instance models can be read or written in
XML formats.

3 Coursework 2013-14: FIXML code generation

This problem was based on the project described in [4]. Financial transactions
can be electronically expressed using formats such as the FIX (Financial Infor-
mation eXchange) format. New variants/extensions of such message formats can
be introduced, which leads to problems in the maintenance of end-user software:
the user software, written in various programming languages, which generates
and processes financial transaction messages will need to be updated to the lat-
est version of the format each time it changes. For this coursework we restricted
attention to generating Java, C# and C++ class declarations from messages in
FIXML 4.4 format, as defined at http://fixwiki.org/fixwiki/FPL:FIXML Syntax,
and http://www.fixtradingcommunity.org.

The solution transformation should take as input a text file of a message in
XML FIXML 4.4 Schema format, and produce as output corresponding Java,
C# and C++ text files representing this data.

The problem is divided into the following use cases:

1. Map data represented in an XML text file to an instance model of the XML
metamodel.

2. Map a model of the XML metamodel to a model of a suitable metamodel
for the programming language/languages under consideration. This has sub-
tasks: 2a. Map XML nodes to classes; 2b. Map XML attributes to attributes;
2c. Map subnodes to object instances.

3. Generate program text from the program model.

An XML parser written in Java was provided to assist students with task 1.
Approximately 120 students were on the OSD course in 2013-14, and these

were divided into 12 teams of 10 students each.
The coursework involves research into FIXML, XML, the UML-RSDS tools

and into C# and C++, and the definition of use cases in UML-RSDS using

OCL. Students need to understand the concept of metamodelling of XML and
of programming languages. None of these topics had been taught to the students.
Scrum, XP, and an outline agile development approach using UML-RSDS had
been taught, and the teams were recommended to appoint a team leader. A
short (5 page) requirements document was provided.

3.1 Outcomes

The outcome of the coursework is summarised in Table 1.

Teams Mark range Result

5, 8, 9, 10 80+ Comprehensive solution and testing,
well-organised team

12 80+ Good solution, but used manual
coding, not UML-RSDS

4, 7, 11 70-80 Some errors/incompleteness

2, 3, 6 50-60 Failed to complete some tasks

1 Below 40 Failed all tasks, group split into two.
Table 1. Coursework 1 results

The main technical problems encountered by teams were:

– Inability to understand the requirements of the problem, or to understand
how to use UML-RSDS to solve it. Seven of the 12 teams achieved a good
or adequate understanding of UML-RSDS, however this took considerable
time and effort. The other five teams failed to achieve an adequate level of
understanding.

– Difficulty in learning new programming languages (C++ and C#) suffi-
ciently to be able to generate correct code in them.

A small minority (perhaps 5%) of the students were enthusiastic about the code-
generation concept, once they understood how to use UML-RSDS correctly. A
larger set of students (perhaps 40%) were able to understand the concepts and
technologies sufficiently to solve the problem, whilst the remainder either did
not understand the approach or chose a traditional coding solution instead.

Organisational problems included:

– Some team members were unable to participate because all the tasks were
beyond their technical capabilities. These members became ‘observers’. This
left the remaining members (sometimes a minority of the group) to do all
the work.

Examples of good practices included:

– Division of a team into sub-teams with sub-team leaders, and separation of
team roles into researchers and developers (teams 8, 11).

– Test-driven development (teams 8, 9).
– Metamodel refactoring, to integrate different versions of program metamod-

els for Java, C# and C++ into a single program metamodel.

Conclusions that can be drawn from this coursework are that an excessively
complex task is a bad choice as a first project in MBD, and that students should
instead be given the opportunity to build their expertise using less challenging
applications. A small percentage of students seem to have a natural aptitude
for modelling, others can be trained in modelling skills, and some students seem
unable to learn these. Only four teams managed to master the development
approach, others either reverted to manual coding or produced incomplete solu-
tions. The total effort expended by successful MBD teams was not in excess of
that expended by the successful manual coding team, which suggests that the
students on the successful MBD teams were able to attain effective knowledge
of MBD.

4 Coursework 2014-15: Electronic health records (EHR)
analysis and migration

This project was the OSD assessed coursework for 2014. It was intended to
be somewhat easier than the 2013 coursework. Approximately 140 second year
undergraduate students participated, divided into 14 teams of 9 or 10 members.

There were three top level use cases: (1) to analyse a dataset of GP pa-
tient data conforming to the EHR model of Figure 2 for cases of missing names,
address, etc, feature values; (2) to display information on referrals and consul-
tations in date-sorted order; (3) to integrate the GP patient data with hospital
patient data conforming to the EHR model of Figure 3 to produce an integrated
dataset conforming to a third EHR model (gpmm3). Unlike the 2013 course-
work, the initial tasks were intended as relatively simple problems which would
help students to gain understanding of the process and tools before proceeding
to more challenging tasks. In addition, the coursework only involved working at
the domain model (EHR) and instance model (data) level, instead of at all three
modelling levels including the metamodel level.

Table 2 summarises the use cases and their subtasks.

4.1 Outcomes

Of the 14 teams, 13 successfully applied the tools and an agile methodology to
produce a working solution. Table 3 shows the outcome of the coursework.

Typically the teams divided into subteams, with each subteam given a par-
ticular task to develop, so that a degree of parallel development could occur,
taking advantage of the independence of the three use cases. Most groups had
a defined leader role (this had been advised in the coursework description), and
the lack of a leader generally resulted in a poor outcome (as in teams 1, 4, 9, 12,
14).

The key technical difficulties encountered by most teams were:

Fig. 2. GP patient EHR model gpmm1

Fig. 3. Hospital patient EHR model gpmm2

Use case Subtasks EHR models

1. Analyse data 1a. Detect missing data gpmm1
in GP dataset
1b. Detect duplicate patient records gpmm1

2. View data 2a. Display consultations of each gpmm1
GP patient, in date order
2b. Display referrals of each gpmm1
GP patient, in date order

3. Integrate data Combine gpmm1, gpmm2 data gpmm1, gpmm2
into gpmm3 gpmm3

Table 2. Use cases for EHR analysis/migration application

Teams Mark range Result

8, 11 90+ Comprehensive solution and testing,
used lead developers and
small team modelling

2, 3, 5, 6, 80+ High quality solution, used at least
7, 10, 13 one of lead developer/small team practices

1, 4, 9 70-80 Some errors/incompleteness,
poorly-organised teams

12 50-60 Failed to complete some tasks.
Group split into 2.

14 Below 40 Failed all tasks, group
failed to organise.

Table 3. Coursework 2 results

– Lack of prior experience in using UML.
– The unfamiliar style of UML-RSDS compared to tools such as Visual Studio,

Net Beans and other IDEs.
– Conceptual difficulty with the idea of MBD.
– Inadequate user documentation for the tools – in particular students strug-

gled to understand how the tools were supposed to be used, and the connec-
tion between the specifications written in the tool and the code produced.

As with the first coursework, only a small subset of students expressed enthusi-
asm for the development approach. The subset of students who were unable to
understand the approach was smaller (perhaps 10%) than for the first course-
work.

Organisational problems included:

– Team management and communication problems due to the size of the teams
and variation in skill levels and commitment within a team.

– Disputes within a team over the approach to take – in the worst case the
team split into two.

The problems were generally of a less severe nature than for the previous course-
work, and in 12 of 14 cases the student teams overcame these problems. Two
teams (12 and 14) had specific management problems, resulting in failure in the
case of team 14.

Particular issues can be seen in the following quotes from the team reports:

“Also a better understanding of UML-RSDS right from the beginning
would have been a real plus in solving the tasks” (Team 7)

“One of the main issues we faced was having to compromise with the
limited documentation ... We overcame this issue by thoroughly going
through the given documentation, trying and testing many different im-
plementations to solve the tasks. Through trial and error we began to

familiarise ourselves with using the feature-rich UML-RSDS software, ul-
timately becoming comfortable with using the software in development.”
(Team 3)

“As with all software there was a learning curve involved in its use, and
once we had progressed along this curve and gained some familiarity we
found that the software was much easier to use, and every increase in
our fluency with the software empowered us to produce higher quality
solutions with increasing ease.” (Team 8)

“We found however, that becoming more familiar with UML-RSDS was
more of a priority in order to be able to solve further tasks, as it is quite
different to anything we had used before.” (Team 10)

“Many group members did not know UML and had to learn it.” (Team
12)

The teams were almost unanimous in identifying that they should have com-
mitted more time at the start of the project to understand the tools and the
MBD approach. This is a case where the agile principle of starting development
as soon as possible needs to be tempered by the need for adequate understanding
of a new tool and development technique.

Factors which seemed particularly important in overcoming problems with
UML-RSDS and MBD were:

– The use of ‘lead developers’: a few team members who take the lead in mas-
tering the tool/MBD concepts and who then train their colleagues. This
spreads knowledge faster and more effectively than all team individuals try-
ing to learn the material independently. Teams that used this approach had
a low training time of 1 week, and achieved an average technical score of
8.66 out of 10, versus 7.18 for other teams. This difference is statistically
significant at the 4% level (removing team 14 from the data).

– Pair-based or small team modelling, with subteams of 2 to 4 people working
around one machine. This seems to help to identify errors in modelling which
individual developers may make, and additionally, if there is a lead developer
in each sub-team, to propagate tool and MBD expertise. Teams using this
approach achieved an average technical score of 8.25, compared to 7.2 for
other teams. This difference is however not statistically significant if team
14 is excluded.

Teams using both approaches achieved an average technical score of 9, compared
to those using just one (8.2) or none (6.9).

Another good practice was the use of model refactoring to improve an initial
solution with too complex or too finely-divided use cases into a solution with
more appropriate use cases.

The impact of poor team management and the lack of a defined process
seems more significant for the outcome of a team, compared to technical prob-
lems. The Pearson correlation coefficient of the management/process mark of

the project teams with their overall mark is 0.91, suggesting a strong positive
relation between team management quality and overall project quality. Groups
with a well-defined process and team organisation were able to overcome tech-
nical problems more effectively than those with poor management. Groups 3, 5,
7, 11 and 13 are the instances of the first category, and these groups achieved
an average of 8.4/10 in the technical score, whilst groups 1, 4, 9, 12 and 14 are
the instances of the second category, and these groups achieved an average of
5.8/10 in the technical score.

The outcomes of this coursework were better than for the first coursework:
the average mark was 79% in coursework 2, compared to 67.5% for coursework
1. This appears to be due to three main factors: (i) a simpler project involving
reduced domain research and technical requirements compared to coursework
1; (ii) improvements to the UML-RSDS tools; (iii) stronger advice to follow an
agile development approach; (iv) simpler initial tasks leading on to more complex
tasks.

5 Lessons learnt

The courseworks were similar in their assessment procedures and measures, and
the educational standard of the students was similar. The scale of the coursework
problems, and the level of support were very similar. Thus we consider that their
results can be meaningfully compared. Table 4 compares the courseworks with
regards to scope and outcomes.

Aspect Coursework 2013-14 Coursework 2014-15

Scope of Text-to-model, Model analysis,
Problem model migration, migration,

model-to-text integration

Main organisational Some team members Lack of team
difficulties unable to leadership; internal

participate team disputes

Main technical Unable to Time taken
difficulties understand problem to learn

or use tools UML-RSDS

Successful Sub-teams; TDD; Lead developers;
Practices Metamodel refactoring Small team

modelling

Average mark 67.5% 79%
Table 4. Comparison of courseworks

The results of these two courseworks have identified a number of obstacles
in the teaching of practical MBD techniques:

– Students need to gain knowledge in several different technical areas in order
to complete the courseworks: domain-specific knowledge about the particular

problem; knowledge of the meaning of OCL constraints as specifications of
transformations; tool expertise in UML-RSDS. The conceptual challenge of
working with multiple languages at different levels of abstraction (UML,
metamodels of source and target languages, instance models) was a barrier
for some students.

– Students need to organise themselves effectively in teams, and to work suc-
cessfully with people who they may not know, and who have a wide range
of skill levels and abilities. Conflicts between team members need to be re-
solved.

On the other hand, these aspects make the coursework a realistic exercise
in industrial software practice: where developers are often expected to acquire
expertise in multiple new areas and tools, and must be able to work effectively
with others.

Deficiencies with the UML-RSDS tools were a significant hinderance to stu-
dents: the lack of a syntax-aware editor, and the lack of feedback on syntax or
type errors. Other MBD technologies were considered as alternatives to UML-
RSDS, specifically Eclipse and iUML. However these were rejected because their
complexity was higher than for UML-RSDS, which only requires the use of sim-
ple file-system organisation skills and the use of a single tool and single tool
interface and modelling language in order to carry out all MBD stages.

One positive outcome of the courseworks was that many students gained
stronger knowledge and understanding of UML class diagrams and OCL con-
straints through the practical use of these notations on a significant problem.
The quote above from team 12 shows that despite having been taught theoret-
ical material in UML, some students felt that they did not know the language
when they started the coursework. Students also gained deeper knowledge of
agile approaches by putting into practice agile development techniques.

Recommendations that can be made based on our experience are:

1. Introduce software engineering and UML concepts in first year courses, so
that students have more background in the ideas before starting the course.
Previously, a software engineering course had been included in the first year
of the CS programme, however by 2013 it had been discontinued because
it was felt that students need to work on large projects before they can
understand the motivation for software engineering. We consider instead
that SE and modelling principles should be taught alongside programming,
otherwise there is the tendency for students to become fixed in the “only
code matters” mindset and to regard courses such as OSD as irrelevant.

2. Include more material in OSD on metamodelling and different modelling
levels, to clarify these issues before the coursework.

3. Provide stronger guidance on team working and management: emphasise the
need for collaboration, communication and coordination. Some teams split
apart because of their inability to reach agreement on the approach/solution
to be adopted. In some cases (for Coursework 2 particularly) the more highly-
skilled developers attempted to solve the coursework by themselves and ex-
cluded other team members from involvement.

The skill levels and aptitudes of team members should be taken into account,
so that individuals who cannot learn modelling nonetheless have useful tasks
to perform, such as testing, research, or writing the report.

4. Formalise the concept of lead developers, and provide specific MBD and
UML-RSDS training to two or three self-selected members from each group,
in the first week of the project, so that they can perform this role in their
teams.

5. Recommend small team modelling to the groups.
6. Improve motivation by choosing a more interesting problem or domain.

We will put the last five recommendations into practice for the 2015-16 course-
work and evaluate any effect these changes have on the coursework outcomes. In
addition, the UML-RSDS tools will be improved with a help facility and better
documentation.

6 Related work

Surveys of the industrial use of MBD [2, 5–7] have identified several obstacles to
the adoption of an MBD approach:

1. Lack of process models for MBD.
2. The need for developer proficiency in complex MBD tools.
3. The need to re-organise development teams to include new roles, such as

domain experts and modelling experts.
4. The need to adopt a changed software development lifecycle.
5. Immature and non-interoperable tools.

The same problems were also encountered in our projects, and were compounded
by the inexperience of the students compared to professional developers. By
recommending that the teams adopt an agile process such as Scrum, we aimed
to reduce the first and fourth obstacles. The use of lead developers helps to
reduce the second obstacle.

A fundamental problem which remains with MBD is that it appears that
only a minority of developers have the ability to work at the modelling level.
Thus, in practice, a development team would include an MBD team working as
part of a larger conventional team, and there is the need for seamless integration
of MBD-produced code and manually-produced code.

The study of [1] considers the use of MBD tools in an educational setting.
Their example coursework also involves a complete MBD life-cycle from ab-
stract models to executable implementations. The coursework is substantially
more complex than ours, and is a term-length (16 weeks) project on an elec-
tive advanced-level module with a small cohort (24 students). About half of the
students were already working in the software industry. Teams were between
four and five students. Eclipse EMF was used in the project, and the students
found this difficult to use, encountering similar problems regarding documenta-
tion, tool process and error reporting that we found with students trying to use

UML-RSDS in our course. Team management problems are not considered in [1].
The feedback from the coursework was generally positive, with students identi-
fying that the project made them more aware of the importance of modelling.
Our own courseworks were in a more challenging environment, of a compulsory
second year course, with a much larger cohort of students, and with larger teams,
carried out in a shorter period. Therefore, team management, motivation and
training issues are more evident in our projects, and we consider that these is-
sues need to be addressed both for educational projects and for industrial use of
MBD, along with the more obvious problems of poor quality tool support and
conceptual understanding difficulties.

7 Conclusions

We have analysed the process and outcomes of two assessed problems in the
practical application of MBD and agile development, involving a total of over
250 students. From these we have identified lessons learnt and guidelines for the
future practical teaching of agile MBD. We have also compared our experiences
with other published analyses of MBD projects.

References

1. P. Clarke, Y. Wu, A. Allen, T. King, Experiences of teaching model-driven engi-
neering in a software design course, Computer Science Education, vol. 21, issue 4,
2011.

2. J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Emperical assessment
of MDE in industry, ICSE 11, ACM, 2011.

3. K. Lano, The UML-RSDS manual, http://www.dcs.kcl.ac.uk/staff/kcl/umlrsds.pdf,
2015.

4. M. B. Nakicenovic, An Agile Driven Architecture Modernization to a Model-Driven
Development Solution, International Journal on Advances in Software, vol 5, nos.
3, 4, 2012, pp. 308–322.

5. B. Selic, What will it take? A view on adoption of model-based methods in practice,
Software systems modeling, 11: 513–526, 2012.

6. S. Stavru, I. Krasteva, S. Ilieva, Challenges of model-driven modernization: an agile
perspective, MODELSWARD 2013, pp. 219–230.

7. J. Whittle, J. Hutchinson, M. Roucefield, The state of practice in Model-driven
Engineering, IEEE Software, May/June 2014, pp. 79–85.

