
Temporal Social Network: Storage, Indexing and Query
Processing∗

Xiaoying Chen1, Chong Zhang2, Bin Ge3, Weidong Xiao4

∗Science and Technology on Information Systems Engineering Laboratory
National University of Defense Technology, Changsha 410073, China

+Collaborative Innovation Center of Geospatial Technology, China

{1chenxiaoying1991, 2leocheung8286}@yahoo.com
3gebin1978@gmail.com, 4wilsonshaw@vip.sina.com

ABSTRACT
With the increasing of requirements from many aspects, var-
ious queries and analyses arise focusing on social network.
Queries like finding users, friends or social activities satis-
fying a certain period gives temporal insights into retrieval
or statistics, hence augmenting temporal query capability
in such context, temporal social network (TSN), is mean-
ingful. We propose three kinds temporal queries in social
network, aiming to explore temporal dimension in users, re-
lationships and social activities. A storage model is designed
to logically and physically represent TSN, and then we pro-
pose two index structures, TUR-tree and TUA-tree for ac-
celerating query process. Query processing algorithms are
designed for the three queries, and we evaluate our idea on
a dataset which is synthetically generated from real dataset,
and experimental results show that our indexes and query
processing are effective and scalable.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - query processing

General Terms
Algorithms, Measurement, Performance

Keywords
Social Network, Temporal, Storage, Index, Query Process-
ing

1. INTRODUCTION
Online social networks have become more and more popu-

lar, numerous sites such as Facebook, Twitter and LinkedIn

∗This work is supported by NSF of China grant 61303062
and 71331008.

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

allow users to interact and share content using social links.
Based on vast amount of information contained in social
networks, personalized and expressive search features are es-
sential for users, vendors or third-parties based on different
purposes. In various kinds of data, time is a common and
necessary dimension in social networks. For instance, when
a user logins or logouts the community system, there is often
a time stamp recording such action. When two users become
friends, a time stamp also records this event, and similar for
unfriending case. Similarly, when a user posts text, photo,
video, or comments others’ posts, or shares web links, these
social activities are all recorded with time stamps.

When these temporal information is taken into consider-
ation in an ordinary query for social networks, it becomes
interesting to discover that some historical insights are as-
sociated with the results, e.g., find some users who are ac-
tive during a certain period, or find pairs of friends valid
in some year, or find some activities posted at some time.
Such queries add temporal axes for user requirement, which
is able to distinguish old and new, or active and inactive
users, friends or activities. However, such kind of query
functions are not studied well in academic community, nor
developed in industrial platforms.

In this paper, our goal is to explore temporal queries in
social networks associated with time dimension, we call it
temporal social networks (TSN). And we focus on the fol-
lowing three kinds of queries.

(1) Friends of Interesting Activities (FIA) query.
FIA queries aim to find a user’s friends who are involved in
some given social activities. For instance, George wants to
find which friends of him post the texts containing coffee and
pasta during last two weeks. This query would help users to
find interesting events or people along the time axis.

(2) Users of Time Filter (UTF) query. UTF queries
aim to find certain users who are not only active during a
given time interval, i.e., the period of logon status intersects
with the given time interval, but also whose friends take
part in some given interesting activities. For example, a
fashion advertiser plans to look for some users who are active
in recent month, and the user’s friends have taken part in
the social activities containing boot, because the advertiser
wants to persuade the users to buy their products utilizing
influence from the friendships.

(3) Group of Users with Relationship Duration (GU
RD) query. GURD queries aim to find a set of groups,
where the number of users in each group is equal to a given

number, and average intimate degree of it satisfies a given
value (here average intimate degree is measured by average
relationship duration, relationship duration is calculated by
difference between current time and friend-make time), and
all the members of it have taken part in some given activi-
ties. For instance, a pizza restaurant wants to send coupons
to groups of users for promotion, so it aims to find four-
member groups (due to the size of its dining table), and
the average relationship duration in each group is not less
than one year, and all four members have participated in
the activities containing pizza.

Motivated by the important role time may assume in so-
cial query, our goal is to design appropriate storage scheme,
index for typical temporal-social query, which has been mostly
ignored so far, to improve the expressiveness and quality of
social search queries. We first formally describe the problem,
and use a storage model to store TSN data, then we design
two indexing structure to accelerate the query processing.
We implement our indexes and algorithms and empirically
verify our methods are feasible. Our main contributions are
listed as following:

• Three new query patterns are proposed in social net-
work, taking time dimension into consideration.

• A storage model for TSN is presented, including logical
view and physical model.

• Querying processing algorithms are designed, along
with two indexing structures to solved the three query
patterns.

The rest of this paper is organized as follows. Problem
is formally defined in section 2. In section 3, storage model
for TSN is presented. Two indexing structures are described
in section 4, followed by query processing in section 5. In
section 6, we carry out our experiments, and related works
are surveyed in section 7. Finally, section 8 concludes the
paper with directions for future works.

2. PROBLEM DEFINITION
In this paper, we focus on the social network of undirected

graph, however, it is straightforward to extend it to directed
graph. Our model is formally defined as following:

Given an undirected graph G=(V , E), each vertex vi in
V represents a user in the community and is associated with
a time interval [vts, vte), meaning the valid period during
which vi exists (or being logon status) in community, and
[vts, ∗) means vi is still in the community now. Each edge
(vi, vj) in E represents a friend relationship between user
vi and vj , and it is also associated with a time interval [ets,
ete), in which ets means the time when the relationship is
established and ete means the time when the relationship
is removed. Similarly, [ets, ∗) means the relationship still
exists at current.

For a given social network graph G, there is also a set A of
activities, in this paper, we use term activity to denote social
event in the social network, e.g., publishing a post, sharing
a link and etc. Each vi in G can connect to an activity ak
in A, which means that vi gets involved in ak, we use term
participation to describe the relationship between user and
activity, e.g., in social network, user may post some texts,
or forward other’s post, or share a link of web page, or com-
ment other’s activity, or add some activity into favorite, in
general, we call these actions as participations. Without loss

generality, each activity can be represented as <aid, Wa>,
where aid is the activity identifier, Wa is a keyword set to
describe the activity. Assuming user vi publishes a post ak
in the Facebook at time tp, and then her/his friend vj com-
ments the post at some time tq, thus the two participating
actions could be formally represented by (vi, ak, tp) and (vj ,
ak, tr), respectively.

Figure 1 illustrates a temporal social network, where users
and activities are plotted as dots and triangles, respectively.
The relationship are divided into two categories: user-to-
user (solid line) and user-to-activity (dashed line). And the
label on edge indicates time interval of relationship or time
stamp when a user participate in an activity. For instance,
user v1 logins community at time vt1 and does not logout
at current, and user v1 and v2 become friends at et1 and
unfriend each other at et3, and v4, v7 and v2 participate in
a2 at t4, t5 and t6, respectively.

v1

v2

v5

v3

v7

v4

(et1, et3)

v6

(et3, *) t1

(et5, *) (et6, *)(et4, *)

v10

a1

v9

(et2, *)

t2

t3

(vt3, vt5)

(vt1, *)

(vt10, *)

(vt2, *)

(vt4, *)

(vt5, *)

(vt9, *)

(vt7, *)

(vt6, vt9)

W1

W2

a2

t4

t5t6

Figure 1: Temporal Social Network Example

3. STORAGE MODEL
Based on the description of temporal social network (TSN),

we give TSN’s storage model, in which two perspectives are
presented: logical view and physical model.

3.1 Logical View
In logical view, users and activities are partitioned hor-

izontally, and social events are partitioned vertically along
the time axis. In the upper half of the logical view, along
the time axis, the actions which a specific user makes are
presented in chronological order. Further, in the lower half,
a list of users which participate in a specific activity also can
be obtained along the time axis. Figure 2 shows an example
of the logical view, along the time axis, user v1 logins so-
cial network at time t1, makes friends with user v2 at time
t2 and participates in activity a1 at time t3. And activity
a1 is participated in by user v1 and v2 at time t3 and t4,
respectively.

timeusers

v1 (v1,t1)(login)

t1

(v1, v2, t2)(be friends)

t2

(v1, a1 ,t3)(post)

t3

v2 (v2, a1, t4)(like)

t4

(v2, v1, t2)(be friends)

v3 (v3, v2, t5)(unfriend)

t5

(v2, v3, t5)(unfriend)

t6

(v3, a2, t6)(share)

activities

a1

a2

(v1, a1 ,t3)(v2, a1, t4)

(v3, a2, t6)

time

Figure 2: Logical View Example

3.2 Physical Model
To efficiently access temporal social network, we design a

physical model for storing TSN. The user and activity in-
formation is separately stored, and users are clustered into
pages on disk, which is similar for activities. In particular,
each user page consists of several items, where each item
represents a user, including user id, name and etc, to look
up quickly, it also contains three pointers, the first one ref-
erences to a list of time intervals, each of which represents
a pair of login and logout time stamps of the user, and the
second one points to a list, each item of which contains the
user’s friend id, besides friend-making time and unfriending
time, and the third one also points to a list, each item of
which contains activity id and corresponding participating
time related to the user.

The model for activity is similar to user’s, i.e., each item
in activity page contains activity id, the link to keywords
and other objects in the activity, and a pointer references to
a list, where each item represents the user participating in it
as well as the time stamp. Additionally, the activity in user
page also points to the corresponding item in activity page.
Note that, the lists in the physical model do not belong to
user page or activity page, they are sequentially stored on
disk. Figure 3 illustrates a physical model example.

<uid2, tf1, *>
users page

activities page

...

<a1, Wa1, obj> ptru_list

<a2, Wa2, obj> ptru_list

<… … ...> ...

<ak, Wak, obj> ptru_list

ptrf_list ptra_list

ptrf_list ptra_list

... ...

ptrf_list ptra_list

<uid3, tf2, tuf2> <uidj, tfj, *>

<a1, ta1>

<uid1, ta1> <uid2, ta4>

uid1

uid2

uidn

<a2, ta2> <a3, ta3>

<tin1, tout1> <tin2, tout2> <tin3, *>

...

ptrt_list

ptrt_list

ptrt_list

Figure 3: Physical Model Example

4. INDEXES
The storage model works for storing temporal social net-

work, when processing queries, the sequential scanning would
be inefficient under large volume. Thus it is essential to de-
velop indexing technique for accelerating query processing.
However, it is difficult to build one almighty index structure
to cover users, relationships and activities with temporal in-
formation. We design 2 structures, one is called Temporal
Users and Relationships tree (TUR-tree), for temporally in-
dexing users and relationships, the other is called Temporal
Users and Activities tree (TUA-tree), for users and their
activities.

4.1 TUR-tree
Considering that both users and relationships are asso-

ciated with time interval, and queries are subject to time
range type, thus, we propose to use MVB-tree[1] to index
users and relationships. Our main contribution is to adapt
temporal users and relationship to MVB-tree.

In MVB-tree, the entry of leaf node is formatted as <key,
ts, te>, where key is the value to index, and [ts, te) is the
valid time interval for key. On the other hand, the entry
of non-leaf node is formatted as <key, ts, te, subnodeid>,
where the function of key is for comparing and routing, and
subnodeid points to the root of subtree.

In our scenario, user id is usually used as key to query, so

we can directly use user id as the key in MVB-tree. However,
relationship is different from user id, and can’t be applied
to MVB-tree straightforward. Hence, we use encoding tech-
nique to generate keys for MVB-tree. In particular, we use
string concatenating to generate keys both for users and re-
lationships. To generate key for a user vi identified by uidi,
we combine 0 and uidi, resulting 0|uidi (| represents concate-
nating operator), as the key in MVB-tree. For relationship
of uidi and uidj , we use 1 as prefix, and concatenate uidi
and uidj , resulting 1|uidi|uidj and 1|uidj |uidi, note that,
for undirected graph, we generate two keys for one relation-
ship. Additionally, for fast looking up relationships when
given a user, links are made among user leaf node entry and
its corresponding relationship leaf nodes.

Figure 4 depicts an example for construction of TUR-tree.
It illustrates the process that three users joins social network
and then make friends. Assuming that the length of user id
is three, and it is only composed of 0-9 and a-z (this assump-
tion is also used in the rest of the paper). In particular, three
users with identifiers 001, 002 and 003 joins the network at
time 1, 2 and 4, respectively, and 001 and 002 make friends
at time 3, and 002 make friends with 003 at time 5. In this
example, we set the capacity of a node is 3, and Figure 4(a)
presents the result structure of TUR-tree after 001 and 002
join the network, i.e., there is only one node, namely node
A. After 001 and 002 make friends, two entries represent-
ing the relationship are inserted into node A, which causes
overflow of A, and according to the split rule of MVB-tree, a
version split should be carried out, i.e., copying the current
version of entries in node A, and combining them with the
new entries to form a new node, if it is overflow, key split
is carried out, after that for building links between user leaf
node entry and its relation leaf nodes, entry <0|001, 1, *>
points to the node containing <1|001|002, 3, *>, and simi-
lar for other user leaf node entries, thus the above sequential
operations generate a structure in Figure 4(b). In node B,
the two entries are copied from node A, while for node A,
root R1’s first entry refers to it with time interval [1, 3).
At time 4, user 003 joins the network, resulting insertion to
node B, and Figure 4(c) describes the structure. At time
5, user 002 make friends with 003, two new entries are in-
serted, similar to the process in Figure 4(b), this causes node
C overflow, and such overflow propagates to root R1, similar
to leaf node split, R1 is split into R1 and R2, and Figure 4
shows the result.

4.2 TUA-tree
The temporal information associated with activities is dif-

ferent from that with users and relationships, i.e., when user
participates an activity, the temporal type is time stamp not
interval, hence it is not necessary to use MVB-tree. Another
fact is for querying activities, activity identifiers are not usu-
ally used as searching keys, but user ids, time predicates and
keywords. Thus, TUA-tree is designed to cover user id, time
and keywords, in fact it is a hybrid structure of B+-tree and
Bloom Filter[6]. We give the detail structure of TUA-tree
as following.

TUA-tree is a B+-tree-like structure, the entry of leaf node
is formatted as <key, ptr>, where ptr points to an activity,
and key is concatenation of user id and time associated with
the activity. Node split, merge and redistribution operations
are carried out according to key. The internal node structure
is similar to that of B+-tree, i.e., entries are distinguished

0|001
 [1, 3)

A

1|001|002
 [3, *)

C

0|001
 [1, *)

0|002
 [2, *)

0|003
 [4, *)

1|002|003
 [5, *)

1|003|002
 [5, *)

0|001
 [3, *)

B

1|001|002
 [5, *)

1|002|001
 [5, *)

1|001|002
 [5, *)

D

1|002|003
 [5, *)

E

0|001
 [5, *)

B

0|001
 [1, *)

0|002
 [2, *)

1|001|002
 [3, *)

1|002|001
 [3, *)

0|001
 [3, *)

0|002
 [3, *)

A A B C

0|001
 [1, 3)

A

1|001|002
 [3, *)

C

0|001
 [3, *)

B

0|001
 [1, *)

0|002
 [2, *)

1|001|002
 [3, *)

1|002|001
 [3, *)

0|001
 [3, *)

0|002
 [3, *)

A B C

0|003
 [4, *)

0|001
 [1, 3)

A

1|001|002
 [3, 5)

C

0|001
 [3, 5)

B

0|001
 [1, *)

0|002
 [2, *)

1|001|002
 [3, *)

1|002|001
 [3, *)

0|001
 [3, *)

0|002
 [3, *)

A B C D E

R1 R1 R1 R2

(a) (b) (c) (d)

Figure 4: An Example of TUR-tree

by router and pointer, and the number of pointer entries is
larger than that of router entries by one, different from B+-
tree, pointer entry also contains Bloom Filter of all keywords
in the referred subtree.

Figure 5 illustrates a process of TUA-tree construction,
and the capacity of tree node is set to 2. First, user 001
participates in activity a1 at time 1, then 002 get involved
in a1 at time 2, resulting a leaf node showed in Figure 5(a).
Then user 003 publishes activity a2 at time 3, which causes
overflow, and node split operation follows, resulting a new
root linking two leaf nodes, we can see from Figure 5(b), the
left pointer entry in the root node contains Bloom Filters
BF1 which is calculated from the keywords from a1, simi-
larly, BF2 is calculated from the keywords from a2. After
that, user 001 participates a2 at time 4 (Figure 5(c)), and
user 004 posts activity a3 at time 5 (Figure 5(d)). At last,
user 005 and 001 participates in a4 at time 6 and 7, respec-
tively, resulting the root node split and tree level increased,
and BF6 contains keywords from a1, a2 and a4, while BF7

contains keywords from a1, a2, a3 and a4.

5. QUERY PROCESSING
In this section, we present algorithms for processing FIA

query, UTF query and GURD query.

5.1 FIA Query
Given a user vq, a keyword set Wq, and a time interval [ts,

te], a FIA query (vq, Wq, ts, te) aims to find a set of pairs
{<vk, lak>}, in each of which vk is vq’s friend valid during
the period [ts, te], lak is a list of activities participated in
by vk during [ts, te], and each activity in lak overlaps Wq

(i.e., the intersection of activity’s keyword set and Wq is not
null).

For processing a FIA query (vq, Wq, ts, te), an ideal ap-
proach is using join algorithm to search TUR-tree and TUA
tree simultaneously, however such concept can not be real-
ized by our structures, due to combination of user’s and his
friend’s id representing relationship key in the index. We
propose a two-phase processing algorithm, i.e., first TUR-
tree is traversed to retrieve friends of vq satisfying the tem-
poral predicate, then these friends as well as (Wq, ts, te) are
used as query input to TUA-tree to look up final results.

In particular, for the first phase, a MVB-tree range query
([1|vq|000, 1|vq|zzz], [ts, te]) is generated, and submitted to
TUR-tree to retrieve vq’s friends, set F , valid between ts
and te. The first phase is a straightforward invocation of
MVB-tree’s searching method.

In the second phase, a query which consists of F and (Wq,
ts, te) is submitted to TUA-tree to retrieve final results.
Note that, in such query, F is a set containing users, if TUA-
tree is traversed at one time for each element in F , it would
be costly. Hence, we propose a batch search algorithm for
query F with (Wq, ts, te) in TUA-tree. Initially, the root
of TUA-tree is loaded into memory, including router entries
(re) and pointer entries (pe), formatted as root=<pe0, re1,
pe1, re2. pe2, ..., ren, pen>. For batch comparison, we
generate an interval intvl=[fmin|ts, fmax|te], where fmin

and fmax are minimum and maximum user id in F , respec-
tively. After that, for each pei, if intvl intersects with (rei,
rei+1] (note that, for the first pe, pe0, the interval should
be (−∞, re1], and (ren, +∞) for the last one, for simplic-
ity, we omit the judgment in the algorithm presentation)
as well as Bloom Filter in pei intersects with Wq, the child
node referenced by pei is inspected by query (Fsub, Wq, ts,
te), where Fsub is the intersection of F and the users set in
[rei−1, rei+1]. When leaf node of TUA-tree is reached, each
entry is examined whether it satisfy current query predicate,
and the results are fetched into list.

Algorithm 1 presents the second phase of FIA query. Tree
root is loaded in line 1, and then from line 3 to line 19, func-
tion FIA2nd-P () recursively traverses the tree, with con-
tinuously dividing F into subset. If the parameter node is
an internal node (line 4), variable intvl is generated (line 5).
From line 6 to 11, each pointer entry of the node is inspected
to detect whether its child node satisfy the predicate, if it
does, only the users who are contained by the interval [rei,
rei+1] are preserved to descend the subtree (line 8 and 9).
Otherwise, i.e., node is a leaf (line 12), each entry of the leaf
is inspected (line 13 and 14), and the result is added into
Rlist (line 15).

FIA query 2nd-P processing example. We use Fig-
ure 5 (e) as a running example, and assuming query is (001,
002, a2.Wa2 , 3, 5) and the keyword sets of each pair ac-
tivities are not overlapped. First, root node <pe0, 001|7,
pe1> is loaded, then for pe0, [001|3, 002|5]∩(−∞, 001|7]6=φ
and BF6 contains keywords in a2, hence the subtree refer-
enced by pe0 is traversed, then similarly for pe1, the subtree
of which is also traversed. Then node A and B is loaded,
the similar processing is carried out until descending the
leaf node entries <001|1, Ptra1>, <001|4, Ptra2>, <002|2,
Ptra1>, <003|3, Ptra2>, and then by function compare(),
<001|4, Ptra2> is the result.

5.2 UTF Query
Given a keyword set Wq, and a time interval [ts, te], a

001|1
Ptr-a1

(a)

002|2
 Ptr-a1

003|3
 Ptr-a2

002|2

004|5
 Ptr-a3

005|6
 Ptr-a4

BF1 BF2

001|7
 Ptr-a4

001|1
Ptr-a1

001|4
Ptr-a2

002|2
 Ptr-a1

(b)

002|2
 Ptr-a1

003|3
 Ptr-a2

001|4BF1 BF1

001|1
Ptr-a1

(c)

001|4
Ptr-a2

002|2
 Ptr-a1

003|3
 Ptr-a2

001|4BF1 BF1

001|1
Ptr-a1

003|3 BF3

(d)

004|5
 Ptr-a3

001|4
Ptr-a2

002|2
 Ptr-a1

003|3
 Ptr-a2

001|4BF1 BF1

001|1
Ptr-a1

003|3 BF4

(e)

001|7BF6 BF7

001|7BF5

A B

Figure 5: An Example of TUA-tree

Algorithm 1 FIA Query 2nd-P Processing

Input: q=(F , Wq, ts, te)
Output: Rlist
1: root=<pe0, re1, pe1, re2, pe2, ..., ren, pen>
2: node=root
3: FIA2nd-P (node, F , Wq, ts, te)
4: if node is non-leaf then
5: intvl=generateIntvl(F , ts, te)
6: for each pei ∈ node do
7: if ((rei, rei+1] ∩ intvl 6=φ) ∧ (pei.BF .test(Wq)

==true) then
8: Fsub=calcIntersection(F , rei, rei+1)
9: FIA2nd-P (pei.childNode, Fsub, Wq, ts, te)

10: end if
11: end for
12: else
13: for each entryi ∈ node do
14: if entryi.compare(F , Wq, ts, te)==true then
15: Rlist←entryi
16: end if
17: end for
18: end if
19: return Rlist

UTF query (Wq, ts, te) aims to find a set of pairs {<vk,
FAk>}, in each of which vk is the user existing in the social
network during [ts, te], and FAk is a set {<vkj , lakj>} similar

to the results of FIA query, i.e., vkj is vk’s friend, and lakj
is a list of activities participated in by vkj during [ts, te] as
well as satisfying overlapping Wq.

The aim of previous query, FIA query, is to find a list
of friends of the given user, while for UTF query, the aim
is different, which is to find a set of users active during a
given time period, whose friends take part in some certain
activities. The processing for UTF query is a little similar
to that of FIA query, i.e., there are also two phases, first is
using TUR-tree, then TUA-tree is traversed.

In the first phase, a query formatted as ([0|000, 0|zzz], [ts,
te]) is submitted to TUR-tree, using range query algorithm
of MVB-tree, a set of leaf node entries which contain the
satisfied users are retrieved, then following the links to leaf
node of the corresponding relationships, a set of friends are
fetched, specifically, for each result user vi, a list friends Fi

of vi is formed.
In the second phase, a query formatted as (

⋃
i(Fi), Wq,

ts, te) is submitted to TUA-tree, similar to 2nd-P in FIA
query, batch query is executed and a set F2nd of friends and
corresponding activities are found. At this point, for each vi
found in the first phase, we check whether his friend list Fi

fetched in the first phase intersects with the friend set F2nd

in the second phase, i.e., Finti=Fi ∩ F2nd, if Finti is not null,
then vi and Finti as well as the corresponding activities are
collected as results.
Algorithm 2 UTF Query Processing

Input: q=(Wq, ts, te)
Output: Rlist
1: LE=TURRangeQuery([0|min, 0|max], [ts, te])
2: {<vi, Fi>}=fetchRelations(LE)
3: F2nd=2nd-P (

⋃
i(Fi), Wq, ts, te)

4: for each Fi do
5: Finti=Fi ∩ F2nd

6: if Finti 6=φ then
7: Rlist←<vi, Finti>
8: end if
9: end for

10: return Rlist

Algorithm 2 presents the processing of UTF query. In
line 1, function TURRangeQuery retrieves the users who
are active between ts and te, and then through links, the
corresponding friends are fetched in line 2. Next, similar to
the second phase in FIA, in line 3, set

⋃
i(Fi) is refined by

condition (Wq, ts, te) using function 2nd-P . From line 4
to the end, for each Fi, intersection examination is made to
refine and then collect the results.

UTF query example. We use Figure 4 (d) and 5 (e) as
a running example, and assuming query input is (a1.Wa1 ,
1, 2). In the first phase, through the TUR-tree, we find leaf
node <0|001, 1, *, Ptr001>, <0|002, 2, *, Ptr002> satisfying
time condition [1, 2]. Then using Ptr001, the set of friends
F001={002} of user 001 is found, similarly, F002={001, 003}
is returned. At the second phase, firstly a total friends set
{001, 002, 003} is formed, then using algorithm 2 with input
({001, 002, 003}, a1.Wa1 , 1, 2), F2nd={001, 002} is returned.
Then because F001∩F2nd 6=φ and F002∩F2nd 6=φ, the result is
{<001, {<002, a1>}>, <002, {<001, a1>}>}.

5.3 GURD Query
Given a number m, a time length (duration) td, and a

keyword set Wq, a GURD query (m, td, Wq) aims to find
groups of users, in each group of which users form a con-
nected graph, and the number of users is m, and average
relationship duration (ARD) is not less than td, and for
each user in the group, at least one activity participated in
overlaps Wq. Here, ARD is defined as following: assuming
the number of users in a group is n, and let d(i, j) be the
relationship duration between user vi and vj in the group
(current time minus relationship establishing time, note that

this query implies all the connections in a group are valid
at current), if there is no relationship between vi and vj ,
d(i, j)=0, then

ARD =

∑n
i 6=j d(i, j)

n(n− 1)
(1)

Note that, in equation (1), for vi and vj , both d(i, j) and
d(j, i) are taken into consideration.

The aim of GURD query is to find groups of users, which
is totally different from the previous two queries. In this
query processing, TUA-tree is mainly used to accelerate the
process, this is because calculating user group is costly using
TUR-tree. The basic work flow is first using TUA-tree to
find a set Uc of users who participate in the activities con-
strained by Wq, then we propose a group forming algorithm
to construct satisfied groups iteratively. The goal of the al-
gorithm is to terminate the iteration as early as possible.

In particular, Wq is submitted to TUA-tree, at this time,
only Bloom Filter is used to route the query descending the
candidate subtree, resulting Uc, each user of which satis-
fies the activity condition. Next is our group forming al-
gorithm. We first calculate relationship duration between
each pair of users in Uc if they are friends, such step could
be accomplished by searching TUR-tree or directly look-
ing up the storage model. Then we sort the relationship
duration of each pair of friends in Uc in descending order,
resulting RD= {<(vi, vj), d

k
i,j> | vi, vj∈Uc ∧ vi and vj

are friends ∧ 1≤ k ≤|RD|}, where dki,j is the relationship
duration between vi and vj , and is the kth one in descend-
ing order of |RD| durations. Next, top element is con-
stantly removed from RD, and we compare the following two

variables: Rumk=
∑k+((m−1)m/2)

n=k dni,j and Rmrs=td×m(m−
1)/2, if Rumk≥Rmrs, it implies possibility for finding groups
satisfying the ARD requirement, and then vi and vj are used
to find their friends from the rest users of RD, and for each
possible connected graph containing vi and vj with vertex
amount being m, ARD is calculated and only the group with
ARD ≥ td is collected into result list. Otherwise, i.e., Rumk

< Rmrs, which means it is impossible for this edge to find
other connected vertices to form an m member group whose
ARD is not less than td, hence, the rest elements in RD are
discarded, and iteration is terminated.

Algorithm 3 GURD Query Processing

Input: q=(m, td, Wq)
Output: Rlist
1: Uc=searchTUAtree(Wq)
2: FD=sortFD(Uc)
3: while FD 6= φ do
4: FD =FD \ {<(vi, vj), d

k
i,j>}

5: if Rumk < Rmrs then
6: break
7: else
8: Gi,j,m=constructGroups(vi, vj , FD, m)
9: for each g ∈ Gi,j,m do

10: if g.ARD ≥ td then
11: Rlist←g
12: end if
13: end for
14: end if
15: end while

Algorithm 3 presents GURD query processing. In line 1,
Wq is searched in TUA-tree to find qualified users, which

are organized as friend pairs sorted by their relationship du-
ration (line 2). From line 3, top element in FD is con-
stantly removed (line 4) and Rumk is calculated, if Rumk

< Rmrs, iteration is terminated (line 6), otherwise, function
constructGroups finds a setGi,j,m of connected graphs, each
of which contains m users including vi and vj (line 8), and
each group in Gi,j,m is inspected (line 9) and the one with
ARD ≥ td is added into Rlist (line 10 and 11).

Group forming example for GURD query. We use
Figure 6 as a running example. Assuming Uc={v1, v2, ..., v10},
m=3 and td=5, hence Rmrs=15. After sorting, FD={<(v9,
v10), 9>, ... ,<(v5, v8), 1>}. In iteration 1, <(v9, v10), 9> is
removed from FD, due to Rum1=9+8+7=24 > Rmrs, func-
tion constructGroups is invoked, resulting G9,10,3={(v5, v9,
v10)}, and ARD of (v5, v9, v10) is (3+9)/3<5, so the group
is discarded. Similarly, in iteration 2, due to Rum2=22 >
Rmrs, so G1,5,3={(v1, v2, v5), (v1, v3, v5), (v1, v5, v8), (v1,
v5, v10)}, and at this time Rlist={(v1, v2, v5)}. At iteration
5, due to Rum5=14 < Rmrs, the iteration is terminated and
final result Rlist={(v1, v2, v5)} is returned.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate our three queries

on a hybrid dataset, where hybrid means that, we down-
load a real dataset describing YouTube social network from
KONECT1, however, this dataset only contains edges and
their time stamps (friend-making time), hence, base on this
dataset, we synthetically generate user login and logout time,
activities and participation time. In particular, for each
user, 0 to 10 login and logout pairs are randomly gener-
ated, and edges are randomly picked up to be assigned an
unfriending time stamp (this is because there are already
friend-making time stamps in the original dataset). Then
we generate 5 million activities containing different keyword
sets, and we assign users to activities in a Zipf distribution,
and randomly assign them participating time stamps. Table
1 describes our dataset, the first column means the amount
of the items with temporal dimension, the second column
means the amount without temporal dimension.

Table 1: Dataset Description

number of records cardinalty
users 12.78 million 3.32 million
relationships 14.33 million 5.45 million
activities 30.23 million 5 million

We implement TUR-tree and TUA-tree as well as query
processing algorithms in Java. To make comparison, we use
non-index query processing as a baseline, i.e., for the three
kinds queries, the storage model is directly accessed and se-
quential scans are carried out. And then we use our two
indexes to process the three queries according to the ap-
proaches in section 5. We vary the query parameters and
at each testing point, 10 queries are issued to collect the
average results. The experiments are conducted on a DELL
server with Intel(R) Xeon(R) 2.40GHz processor, 8GB mem-
ory and 500GB disk. Table 2 describes the query parame-
ters.

6.1 FIA Query
In this experiment, first, we vary user’s degree, and Fig-

ure 7(a) shows the results. Response time increases with

1http://konect.uni-koblenz.de/networks/youtube-u-growth

v1

v2

v5

v3

v7

v4

6

v6

5

2
77

v8

v98

v10

1

3 93

<v9,v10> 9

<v1,v5> 8

<v2,v4> 7

<v6,v7> 7

<v1,v2> 6

<v1,v3> 5

<v2,v5> 3

<v5,v10> 3

<v4,v6> 2

<v5,v8> 1

Rum=24 > Rmrs

Rlist={}

v1

v2

v5

v3

v7

v4

6

v6

5

2
77

v8

8

v10

1

33

<v1,v5> 8

<v2,v4> 7

<v6,v7> 7

<v1,v2> 6

<v1,v3> 5

<v2,v5> 3

<v5,v10> 3

<v4,v6> 2

<v5,v8> 1
Rum=22 > Rmrs

Rlist={(v1,v2,v5)}

v1

v2

v5

v3

v7

v4

6

v6

5

2
77

v8

v10

1

33

<v2,v4> 7

<v6,v7> 7

<v1,v2> 6

<v1,v3> 5

<v2,v5> 3

<v5,v10> 3

<v4,v6> 2

<v5,v8> 1
Rum=20 > Rmrs

Rlist={(v1,v2,v5)}

v1

v2

v5

v3

v7

v4

6

v6

5

2
7

v8

v10

4
1

33

<v6,v7> 7

<v1,v2> 6

<v1,v3> 5

<v2,v5> 3

<v5,v10> 3

<v4,v6> 2

<v5,v8> 1Rum=18 > Rmrs

Rlist={(v1,v2,v5)}

v1

v5

v3

v4

6

v6

5

2

v8

v10

4
1

33

<v1,v2> 6

<v1,v3> 5

<v2,v5> 3

<v5,v10> 3

<v4,v6> 2

<v5,v8> 1
Rum=14 < Rmrs

Rlist={(v1,v2,v5)}

v2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Figure 6: Group Forming Example in GURD Query

Table 2: Parameters in Experiment

queries parameters domain default

FIA

vq ’s degree 10 - 100 15

Wq ’s cardinality 1 - 5 3

length[ts,te]/temporal extent 0.1% - 3% 1%

UTF
Wq ’s cardinality 1 - 5 3

length[ts,te]/temporal extent 0.1%-3% 1%

GURD

m 3 - 9 5

td 1 - 5 3

Wq ’s cardinality 1 - 5 3

degree for both non-index and index approaches. This is
because a user with a large degree (meaning he has lots
of friends) would involve a wide search in TUR-tree and
then in TUA-tree. However, we can see the performance of
non-index degenerates quickly, while our two indexes accel-
erate the processing apparently, above 50% order of mag-
nitude. Specifically, response time for non-index increases
linearly, while it is logarithmic for the index one, due to
the fact TUR-tree adapts MVB-tree’s architecture which is
asymptotic to the performance of B-tree, and TUA-tree is
similar to B-tree. Next, Figure 7(b) shows the results on
varying the number of querying keywords, we can see the
larger the number of keywords is, the more responding time
it takes, due to more comparisons would happen when se-
quential scanning on disk or traversing TUA-tree. At this
time, we can see the change of response time is slower than
that in Figure 7(a), this can be explained that the keywords
have less impact than user’s degree to query performance.
Figure 7(c) presents the results on varying time selectivity
(length[ts,te]/temporal extent), still we can see our indexes
accelerate processing logarithmically and have a good scal-
ability.

6.2 UTF Query
Next, similar to FIA query experiment, we vary number of

keywords and time selectivity for testing UTF query perfor-
mance. From Figure 8, we can see processing time of UTF
query is larger than that of FIA query, this is because there
is no given user in UTF query, which causes a large cardi-
nality query for searching storage model or TUR-tree, more
items would be compared. However, we can see TUR-tree
and TUA-tree greatly accelerate query processing.

6.3 GURD Query
In the following, we vary the number m of group members,

Figure 9(a) shows that response time increases with m on
both methods, this is because a larger m involves more com-
binations to be examined, however, we can see TUA-tree and
group forming algorithm is effective for the premium perfor-
mance they show. Then we vary the number of keywords,
and results are similar to that of previous two queries (see
Figure 9(b)). Figure 9(c) shows the results when increasing

2 0 4 0 6 0 8 0 1 0 0
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

De
lay

(m
s)

U s e r ' s D e g r e e

 n o n - i n d e x
 i n d e x

(a) Effect of degree

1 2 3 4 5

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

De
lay

(m
s)

n u m b e r o f k e y w o r d s

 n o n - i n d e x
 i n d e x

(b) Effect of keywords

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

De
lay

(m
s)

t i m e s e l e c t i v i t y (%)

 n o n - i n d e x
 i n d e x

(c) Effect of selectivity

Figure 7: Results of FIA Queries

1 2 3 4 5

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

De
lay

(m
s)

n u m b e r o f k e y w o r d s

 n o n - i n d e x
 i n d e x

(a) Effect of keywords

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0
0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

De
lay

(m
s)

t i m e s e l e c t i v i t y (%)

 n o n - i n d e x
 i n d e x

(b) Effect of selectivity

Figure 8: Results of UTF Queries

td, we can see at this time, response time decreases as td in-
creases, this is due to our group forming algorithm, a larger
td will terminates the iterations earlier.

7. RELATED WORK
In recent years, plenty of works have focused on efficient

methods for managing and querying social networks. One
branch of works on social networks focus on efficient algo-
rithms and data structures for searching users and friends of
interest. However, these studies focus on evolution of graphs
and topological characteristics of social network, ignoring
examining how the social network links are being used by
users to interact. Hence, some researchers propose activity
network, a network that is based on the actual interaction
between users rather than mere social network, and argue
that this is more suitable to social network-based applica-
tions. B. Viswanath et al. study the activity network from

3 4 5 6 7 8 9
0

8 0 0 0

1 6 0 0 0

2 4 0 0 0

3 2 0 0 0

4 0 0 0 0

De

lay
(m

s)

m

 n o n - i n d e x
 i n d e x

(a) Effect of m

1 2 3 4 5

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

De
lay

(m
s)

n u m b e r o f k e y w o r d s

 n o n - i n d e x
 i n d e x

(b) Effect of keywords

1 2 3 4 5
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

De
lay

(m
s)

d u r a t i o n

 n o n - i n d e x
 i n d e x

(c) Effect of td

Figure 9: Results of GURD Queries

Facebook New Orleans network[9], and observe that the ac-
tivity network is rapidly changing over time, but many of
the global structural properties remain relatively constant.

P. Holme et al. [3] present the emergent field of tempo-
ral networks, and discuss methods for analyzing topological
and temporal structure, and models for elucidating their re-
lations to the behaviors of dynamical systems. However,
they only discuss some models proposed for temporal so-
cial networks and epidemiological contact networks without
query processing method.

In [5], the authors present a model for capturing graph
evolution through time based on snapshots and deltas, and
introduce a general two-phase query plan based on snapshot
reconstruction to evaluate any historical query. However,
this work dose not provide efficient techniques and index
structures for various types of queries.

U. Khurana et al.[4] build a graph data management sys-
tem that focuses on optimizing snapshot retrieval queries
over historical traces, and on supporting rich temporal anal-
ysis of large networks. Another storage approach was pro-
posed in [7], namely, the historical evolving graph sequence
(EGS). Various snapshots and deltas are explicitly stored,
with temporally close snapshots being clustered together.
Nevertheless, if the query asks for a single time point or a
time interval (i.e., not the whole history), this approach will
be ineffective.

In [8], a storage model maintains the current graph and
deltas to previous time snapshots; as a result, the first step
of evaluating a historical query is to reconstruct the corre-
sponding snapshot or snapshots that relate to the query’s
temporal predicate. However such a reconstruction phase
is costly, and this is an issue also in other related works[5,
4]. Chronos[2] is a storage and execution engine designed
and optimized specifically for running in-memory iterative
graph computation on temporal graphs, which takes further
in locality, parallelism, and incremental computation.

However, in work[5, 4, 7, 2], the activity network is not
considered. The work[8] defines two kinds of entities in
graph: users and objects. In our paper, we combine user
social network and activity network, which consists of two

kinds of entities: users and activities, and various temporal
social queries can be satisfied.

8. CONCLUSIONS
In this paper, we argue that time axis in social network

is an important and useful tool to give insight into retrieval
or statistics, and augmenting temporal query capability in
such context is meaningful. We propose three kinds queries,
namely FIA, UTF and GURD query, and model the tem-
poral social network (TSN) with users, relationship and ac-
tivity as well as corresponding temporal labels. A storage
model is designed to logically and physically represent TSN,
and then we propose two index structures, TUR-tree and
TUA-tree for accelerating query process. We propose algo-
rithms of query processing for the three queries, and evaluate
our idea on a dataset which is synthetically generated from
real dataset, and experiment results show that our indexes
and query processing are effective and scalable. In the fu-
ture, we plan to extend this work to geo-location application,
and solve spatio-temporal queries in social networks.

9. ACKNOWLEDGMENTS
This work is supported by NSF of China grant 61303062

and 71331008. We would like to thank Prof. Dai and Dr.
Hu for helping with the proof.

10. REFERENCES
[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P. Widmayer. An asymptotically optimal multiversion
b-tree. The VLDB Journal, 5(4):264–275, Dec. 1996.

[2] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, W. Chen, and E. Chen. Chronos: A
graph engine for temporal graph analysis. In
Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 1:1–1:14, New
York, NY, USA, 2014. ACM.

[3] P. Holme and J. Saramäki. Temporal networks. Physics
Reports, 519(3):97 – 125, 2012. Temporal Networks.

[4] U. Khurana and A. Deshpande. Efficient snapshot
retrieval over historical graph data. In Data
Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 997–1008, April 2013.

[5] G. Koloniari, D. Souravlias, and E. Pitoura. On graph
deltas for historical queries. CoRR, abs/1302.5549,
2013.

[6] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz.
Analysis of the clustering properties of the hilbert
space-filling curve. Knowledge and Data Engineering,
IEEE Transactions on, 13(1):124–141, Jan 2001.

[7] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On
querying historical evolving graph sequences. PVLDB,
4(11):726–737, 2011.

[8] K. Stefanidis and G. Koloniari. Enabling social search
in time through graphs. In Proceedings of the 5th
International Workshop on Web-scale Knowledge
Representation Retrieval & Reasoning, Web-KR ’14,
pages 59–62, New York, NY, USA, 2014. ACM.

[9] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi. On the evolution of user interaction in
facebook. In Proceedings of the 2Nd ACM Workshop on
Online Social Networks, WOSN ’09, pages 37–42, New
York, NY, USA, 2009. ACM.

