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ABSTRACT
Random-walk based techniques, such as PageRank, encode the
structure of the graph in the form of a transition matrix of a stochas-
tic process from which significances of the graph nodes can bein-
ferred. Recommendation systems leverage suchnode significance
measures to rank the objects in the database. Context-awarerecom-
mendation techniques complement the data graph with additional
data that provide therecommendation context. However, despite
their wide-spread use in many graph-based knowledge discovery
and recommendation applications, conventional PageRank-based
measures have various shortcomings. As we experimentally show
in this paper, one such shortcoming is that PageRank scores are
tightly coupled with the degrees of the graph nodes, whereasin
many applications the relationship between thesignificanceof the
node and its degree in the underlying network may not be as im-
plied by PageRank-based measures. In fact, as we also show in
the paper, in certain applications, thesignificanceof the node may
be negativelycorrelated with the node degree and in such appli-
cations a naive application of PageRank may return poor results.
To address these challenges, in this paper, we proposedegree de-
coupled PageRank (D2PR)techniques to improve the effectiveness
of PageRank based knowledge discovery and recommendation sys-
tems. These suitably penalize or (if needed) boost the transition
strength based on the degree of a given node to adapt the node sig-
nificances based on the network and application characteristics.

1. INTRODUCTION
In recent years, there has been considerable interest in measuring

thesignificance of a node in a graphandrelatedness between two
nodes in the graph, as if measured accurately, these can be used
for supporting many knowledge discovery, search, and recommen-
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dation tasks [1, 7, 9, 12, 26]. Thesignificanceof a node in a given
graph often needs to reflect the topology of the graph. Measures
like thebetweennessmeasure [27] and thecentrality/cohesion[5],
help quantify howsignificantany node is on a given graph based on
the underlying graph topology. Thebetweennessmeasure [27], for
example, quantifies whether deleting the node would disconnect or
disrupt the graph.Centrality/cohesion[5] measures quantify how
close to a clique the given node and its neighbors are. Otherau-
thority, prestige, and prominencemeasures [1, 5, 6] quantify the
significance of the node through eigen-analysis or random walks,
which help measure how reachable a node is in the graph.

1.1 PageRank as a Measure of Significance
Since enumerating all paths among the graph nodes would re-

quire time exponential in the size of the graph, random-walkbased
techniques encode the structure of the network in the form ofa tran-
sition matrix of a stochastic process from which the node signifi-
cance can be inferred.PageRank [6] is one of the most widely-used
random-walk based methods for measuring node significance and
has been used in a variety of application domains, includingweb
search, biology, and social networks. The basic thesis of PageR-
ank is that a node is important if it is pointed to by other important
nodes – it takes into account the connectivity of nodes in thegraph
by defining the score of the nodevi ∈ V as the amount of time
spent onvi in a sufficiently long random walk on the graph. More
specifically, given a graphG(V,E), the PageRank scores are rep-
resented as~r, where

~r = αTG~r + (1− α)~t

whereTG is a transition matrix corresponding to the graphG, ~t is
a teleportation vector (such that~t[i] = 1

‖V ‖
), andα is the residual

probability (or equivalently,(1 − α) is the so-called teleportation
probability). Unless the graph is weighted, the transitionmatrix,
TG, is constructed such that for a nodev with k (outgoing) neigh-
bors, the transition probability fromv to each of its (outgoing)
neighbors will be1/k. If the graph is weighted, then the transi-
tion probabilities are adjusted in a way to account for the relative
weights of the (outgoing) edges.

1.2 Tight Coupling of PageRank Scores of
Nodes and their Degrees

Let us consider an undirected graphG(V, E). There are two
factors that contribute to the PageRank of a given node,v ∈ V :

• Factor 1: Significance of Neighbors:The more significant
the neighbors of a node are, the higher its likelihood to be
also significant.

• Factor 2: Number of Neighbors (Degree of the Node) :Even
if the neighbors are not all significant, a large number of



Listener Graph Article Graph Movie Graph
Data Set (Friendship (co-author (co-contributor

edges, Last.fm) edges, DBLP) edges, DBLP)
Correlation between
PageRank and Degree

0.988 0.997 0.848

Table 1: Spearman’s rank correlation between the node degree
ranks and the node ranks’ based on PageRank scores for vari-
ous data graphs (see Section 4 for details of the data sets)

neighbors would imply that the node,v, is well-connected
and, thus, likely to be structurally important.

In theory, these two factors should complement each other. In prac-
tice, however, the PageRank formulation described above implies
that there is a very tight coupling between the degrees of thenodes
in the graph and their PageRank scores (see Table 1).

1.2.1 Problem I: When a Large Node Degree Does
Not Indicate High Node Significance

In this paper, we highlight (and experimentally show) that,
in many applications, node degree and node significance are in fact
inversely relatedand that the tight-coupling between node degrees
and PageRank scores might be counter-productive in generating ac-
curate recommendations.

EXAMPLE 1. Consider, for example, a recommendation appli-
cation where a movie graph, consisting ofmovie and actor
nodes, is used for generating movie recommendations. In this ap-
plication, the first factor (significance of neighbors) clearly has a
positive contribution: a movie with good actors is likely tobe a
good movie and an actress playing in good movies is likely to be
a good actress. On the other hand, the second factor (number of
neighbors) may in fact be a negative contributor to node signif-
icance: the fact that an actor has played in a large number of
movies may be a sign that he is a non-discriminating (’B movie’)
actor, whereas an actress with relatively fewer movies may be a
more discriminating (’A movie’) actress.

As we see in Section 4, this observation turns out to be true inmany
applications, where (a) acquiring additional edges has a cost that is
correlated with the significance of the neighbor (e.g. the effort one
needs to invest to a high quality movie) and (b) each node has a
limited budget (e.g. total effort an actor/actress can invest in his/her
work).

1.2.2 Problem II: When PageRank Does Not Suffi-
ciently Account for Contributions of Degrees

The mismatch between PageRank and node significance is not
limited to the cases where node degrees are inversely related to the
node significance. As we see in Section 4, there are other scenarios
where PageRank may, in fact, fail to sufficiently account forthe
contribution of the node degrees to their significances.

1.3 PageRank Revisited: De-coupling Node
Significance from Node Degrees

As we discussed above, one key shortcoming of the conventional
PageRank scores is that they are often tightly coupled with the de-
grees of the graph nodes and in many applications the relationship
between thesignificanceof the node and its degree in the underly-
ing network may not be as implied by PageRank-based measure:in
certain applications, thesignificanceof the node may benegatively
correlated with the node degree, whereas in others PageRankmay
not be sufficient in accounting for degree contributions. Naturally,
in such applications a naive application of PageRank in generating
recommendations may return poor results.

To address these challenges, in this paper, we proposedegree de-
coupled PageRank (D2PR)techniques to improve the effectiveness

of PageRank based knowledge discovery and recommendation sys-
tems. These techniques suitably penalize or (if needed) boost1 the
transition strength based on the degree of a given node to adapt the
node significances based on the network and application charac-
teristics. This paper is organized as follows: Next, we discuss the
related literature. In Sections 3, we introduce the proposed degree-
decoupled PageRank techniques. We evaluate the proposed tech-
niques in Section 4 and conclude in Section 5.

2. RELATED WORKS

2.1 Context-Sensitive PageRank
Path-length based definitions of noderelatedness, such as those

proposed by [4,24] help capture the relatedness of a pair of nodes
solely based on the properties of the nodes and edges on theshortest
path between the pair. Random-walk based definitions, such as
hitting distance [10,21] and personalized page rank (PPR) score [1,
9, 16], of node relatedness further take into account the density of
the edges: as in path-length based definitions, random-walkbased
definitions also recognize that a node is more related to another
node if there are short paths between them; however, random walk-
based definitions of relatedness also consider how well the given
pair of nodes are connected.

In [7], authors construct a transition matrix,TS , where edges
leading away from the seed nodes are weighted less than those
edges leading towards the seed nodes. An alternative approach for
contextualizing PageRank scores is to use the PPR techniques [1,9]
discussed in the introduction. One key advantage of this tele-
portation vector modification based approach over modifying the
transition matrix, as in [7], is that the termα can be used to di-
rectly control thedegree of seeding (or personalization)of the PPR
score. [10, 21] rely on a random walk hitting time based approach,
where the hitting time is defined as the expected number of steps a
random walk from the source vertex to the destination vertexwill
take. [17] leveraged these properties of PPR to develop locality-
sensitive algorithms to rank nodes of graphs which are relative to a
given set of seed nodes efficiently.

2.2 Improvements to the PageRank Function
Due to the obvious relationship between ranking and monetary

rewards (e.g. through selling of advertisements on web search ap-
plications), there has been considerable effort in engineering (or
manipulating) graphs in a way to maximize ranking scores of par-
ticular nodes. This is commonly referred to asPageRank optimiza-
tion. One way to achieve this goal is carefully adding or removing
certain links: If, for example, one or more colluding webmasters
can add or remove edges, PageRank scores of target web pages
or domains can be increased [23]. [20] established several bounds
indicating to what extent the rank of the pages of a website can
be changed and the authors derived an optimal referencing strat-
egy to boost PageRank scores. A related, but opposite, problem is
to protect the PageRank scores against negative links (which may
indicate, for example, negative influence or distrust in a social net-
work), artificial manipulation, and spam. [3], for example,focused
on identifying spam pages and link farms and showed that better
PageRank scores can be obtained after filtering spam pages and
links. In [14], authors show that PPR algorithms that do not dif-
ferentiate among the seed nodes may not properly rank nodes and
present robust personalized PageRank (RPR) strategies, which are
insensitive to noise in the set of seed nodes.

1In this context, de-coupleddoes not necessarily implyde-
correlated. In fact, D2PR can boost correlation between node de-
gree and PageRank if that is required by the application.



There are some efforts to change the impact of degrees on the
PageRank computation. [2] proposed a way to boost the power of
low-degree nodes in a network. The impact from nodes which are
important but are not hubs is relatively small compared to other
nodes which are less important with high degrees. To boost the
low-degree important nodes for equal opportunity, the teleportation
vector is modified with being proportional to the degrees of nodes.
[11] boosted the degrees of nodes to reduce the expected cover time
of the entire graph by the biassed random-walk.

3. DEGREE DE-COUPLED PAGERANK
The key difficulty of de-coupling node degrees from the PageR-

ank scores is that the definition of the PageRank, based on random
walk transitions, is inherently dependent on the number of transi-
tions available from one node to the other. As we mentioned above,
the more ways there are to reach into a node, the higher will beits
PageRank score.

3.1 Desideratum
Therefore, to de-couple the PageRank score from node degrees,

we need to modify the transition matrix. In particular, for each node
vi in the graph, we would like to be able to control the transition
process with asingle parameter(p), such that

• if p ≪ −1, transitions from nodevi are∼ 100% towards
the neighbor with the highest degree,

• if p = −1, transition probabilities from nodevi are propor-
tional to the degrees of its neighbors,

• if p = 0, the transition probabilities mirror the standard
PageRank probabilities (assuming undifferentiated neigh-
bors),

• if p = 1, transition probabilities from nodevi are inversely
proportional to the degrees of its neighbors,

• if p ≫ 1, transitions from nodevi are∼ 100% towards the
neighbor with the lowest degree.

In other words, the transition function shouldde-couplethe transi-
tion process from node-degrees andpenalizeor boostthe contribu-
tions of node degrees in the transition process, as needed.

3.2 Degree De-coupling Transition Matrix
In this subsection, we will consider degree de-coupling of the

transition matrix as implied by the above desideratum.

3.2.1 Undirected Unweighted Graphs
Let G = (V, E) be an undirected and unweighted graph. Let

α also be a given residual probability parameter, anddeg(v) be a
function which returns the number of edges on the nodev. We
represent degree de-coupled PageRank (D2PR) scores in the form
of a vector

~d = αTD
~d+ (1− α)~t,

where~t is the teleportation vector, such that~t[i] = 1
‖V ‖

for all i
andTD is a degree de-coupled transition matrix,

TD(j, i) =
deg(vj)

−p

∑
vk∈neighbor(vi)

deg(vk)−p
, (1)

where
• TD(j, i) denotes the degree de-coupled transition probabil-

ity from nodevi to nodevj over an edgeeij = [vi → vj ]
when there exists at least one edge between two nodes,

• neighbor(vi) is the set of all neighbors of the source node,
vi, and

A 

B 

C 

D 

E 

F 

Dest. deg. Transition probability
vj (vj) from A to its neighborsvj

p = 0 2 −2
B 2 0.33 0.18 0.29
C 3 0.33 0.08 0.64
D 1 0.33 0.74 0.07

(a) A sample graph (b) Transition probabilities fromA

Figure 1: In conventional PageRank (p = 0), the transition
probabilities from node vi = A to all its neighbors vj are the
same. In degree de-coupled PageRank (D2PR), the value ofp
can be used to penalize (p > 0) or boost (p < 0) transition
probabilities based on the degree of the destination

Ranks of the graph nodes
node node for different de-coupling weights (p)

id degree −4 −2 0 2 4

53608 883 1 1 69 5549 6793
351 739 2 12 425 1992 1935
. . . . . . . . . . . . . . . . . . . . .

79538 1 7661 7545 4149 195 182
79917 1 7793 7790 7522 2443 2043

Table 2: Ranks of graph nodes of different degrees on a sam-
ple graph for different de-coupling weights,p: as we see in this
figure, whenp > 0, high degree nodes are pushed down in the
rankings (reducing the correlation between degree and rank),
while when p < 0, they are pulled up (improving the correla-
tion between degree and rank)

• p ∈ R is a degree de-coupling weight.

Intuitively, the numerator term,deg(vj)−p, ensures that the edge
incoming tovj is weighted by its degree: ifp > 0, then its de-
gree negatively impacts (reduces) transition probabilities intovj , if
p < 0 then its degree positively impacts (boosts2) transition prob-
abilities intovj , and if p = 0, we obtain the standard PageRank
formulation without degree de-coupling. In other words, the tran-
sition function satisfies our desideratum of de-coupling the tran-
sition process from node-degrees and penalizing or boosting the
contributions of node degrees on-demand. Note that, since all
transitions from the nodevi are degree de-coupled individually
based on the degrees of their destinations, the denominatorterm,∑

vk∈neighbor(vi)
deg(vk)

−p, ensures that the transition probabil-
ities from nodevi add up to1.0. Note also that when there is no
edge between nodevi andvj , TD(j, i) = 0 and, consequently, the
termTD(j, i) is not affected by the degree de-coupling process.

EXAMPLE 2. Figure 1 shows how the random walk probabili-
ties are differentiated in a degree de-coupled transition matrix on
a sample graph where a nodeA has three neighbors,B (with de-
gree 2), C (with degree3), and D (with degree1). In conven-
tional PageRank, the transition probabilities from nodeA to all its
neighbor nodes are equal to0.33. In degree de-coupled PageRank
(D2PR), however, the value ofp is used for explicitly accounting
for the impact of node degree on the transition probabilities: When
p = 2, the transition probabilities fromA to its neighbors are 0.18,
0.08, and 0.74, which penalizes nodes which have larger degrees,
whereas whenp = −2, D2PR boosts the transition probabilities
to large degree nodes leading to transition probabilities 0.29, 0.64,
and 0.07, respectively. ⋄

This example shows that, in degree de-coupled PageRank
(D2PR), as we also see in Table 2, the value ofp can be used to
penalize (p > 0) or boost (p < 0) transition probabilities based on
the degree of the destination,vj .
2In fact, a similar function was used in [11] to quickly locatenodes
with higher degrees in a given graph.



3.2.2 Directed Unweighted Graphs
The semantics of degree de-coupling is slightly different in di-

rected graphs. In particular, edges incoming tovi often do not re-
quire a particular effort fromvi to establish and hence are often out
of the control ofvi, but indicate a certain degree ofinterestingness,
usefulness, or authority as perceived by others. The same is not
true for edges outgoing fromvi; in particular, a vertex with a large
number of outgoing edges may either indicate a potentialhub or
simply indicate a non-discerning connection maker. The distinction
between these two situations gains importance especially in appli-
cations where establishing a new connection has a non-negligible
cost to the source node and, thus, a large number of outgoing edges
may indicate either (a) a very strong participant to the network or
(b) a very poor participant with a large number of weak linkages.

LetG = (V,E) be a directed graph and for the simplicity of the
discussion, without any loss of generality, let us assume that G is
unweighted. Let us also be given a residual probability parameter,
α and letoutdeg(v) be a function which returns the number of
outgoing edges from the nodev. The degree de-coupled PageRank
(D2PR) scores can be represented in the form of a vector~d, ~d =

αTD
~d + (1 − α)~t, where~t is the teleportation vector, such that

~t[i] = 1
‖V ‖

for all i and

TD(j, i) =
outdeg(vj)

−p

∑
[vi→vk]∈out_edges(vi)

outdeg(vk)−p
,

whereTD(j, i) denotes the degree de-coupled transition proba-
bility from node vi to nodevj over an edgeeij = [vi → vj ],
out_edges(vi) is the set of out-going edges from the source node,
vi, andp ∈ R is a degree de-coupling weight.

EXAMPLE 3. Figure 2 (a) in Section 4 provides an example il-
lustrating the correlations between the degree de-coupledPageR-
ank (D2PR) scores and external evidence for different values ofp
for some application: here, the higher the correlation, thebetter re-
sulting ranking reflects the application semantics. As we see in this
example, which we will investigate in greater detail in Section 4,
the optimal de-coupling weight is not alwaysp = 0 as implied by
the conventional PageRank measure. In this particular case, for
example, the correlation between D2PR and external evidence of
significance is maximized when the de-coupling weight,p, is equal
to 0.5, implying that in this application a moderate degree of pe-
nalization based on the node degrees is needed to align PageRank
scores and application semantics. ⋄

3.2.3 Weighted Graphs
Once again, the semantics of degree de-coupling need to be re-

considered for weighted graphs. LetG = (V,E,w) be a directed,
weighted graph, wherew(e) is a function which returns the weight
of the edge associated with edgee. It is important to note that, in
such a graph, the weight of an edge can 1) indicate the strength
of the connection between two nodes (thus positively contributing
to the significance of the destination node); and at the same time
and 2) contribute to the degree of a node as a multiplier (thusposi-
tively or negatively contributing to the node significance depending
on the degree-sensitivity of the application). In other words, given
an edgeeij = [vi → vj ], from nodevi to nodevj , the transition
probability fromvi to vj can be written as

T(j, i) = βTconn_strength(j, i) + (1− β)TD(j, i),

where

Tconn_strength(j, i) =
w(vi → vj)∑

[vi→vh]∈out_edges(vi)
w(vi → vh)

,

accounts for the connection strength (as in the conventional PageR-
ank) whereasTD is a degree de-coupled transition matrix,

TD(j, i) =
Θ(vj)

−p

∑
[vi→vk]∈out_edges(vi)

Θ(vk)−p
,

such that,TD(j, i) denotes the degree de-coupled transition prob-
ability from nodevi to nodevj over an edgeeij = [vi → vj ],
p ∈ R is a degree de-coupling weight, and

Θ(v) =
∑

[v→vh]∈out_edges(v)

w(v → vh).

Note that, above,β controls whether accounting for the connec-
tion strength or degree de-coupling is more critical in a given appli-
cation. In Section 4, we will study the impact of degree de-coupling
in weighted graphs for different scenarios.

4. CASE STUDIES
In this section, we present case studies assessing the effective-

ness of the degree de-coupling process and the relationshipbetween
the degree de-coupling weightp and recommendation accuracy for
different data graphs.

4.1 Setup
For all experiments, the degree de-coupling weight,p, is varied

between -4 and 4 with increments of0.5. The residual probability,
α, is varied between 0.5 and 0.9, with default value chosen as 0.85.
We also varied theβ parameter, which controls whether accounting
for the connection strength or degree de-coupling is more critical
in a given application, between 0.0 and 1.0, with the defaultvalue
set to 0 (indicating full decoupling).

4.1.1 Datasets
Four real data sets are used for the experiments. Each data set

is used to create two distinct data graphs and correspondingratings
data. Table 3 provides further details about the various graphs cre-
ated using these four data sets. These recommendation tasksbased
on these data graphs are detailed below:

• For theIMDB [15] data set, we created (a) amovie-moviegraph,
where movie nodes are connected by an edge if they share common
contributors, such as actors, directors, writers, composers, editors,
cosmetic designers, and producers and (b) anactor-actor graph
based on whether two actors played in the same movie.Appli-
cations: For this data set, we consider applications where movies
are rated by the users: thus, we merged the IMDB data with the
MovieLens 10M [22] data (based on movie names) to identify user
ratings (between 1 and 5) for the movies in the graph. We con-
sider the (a)average user ratingas the significance of the movies
in the movie-movie graph and (b)average user rating of the movies
played inas the significance of the actors in the actor-actor graph.

• For theDBLP [26] data set, we constructed (a) anarticle-article
graph where scientific articles were connected to each otherif they
shared a co-author and (b) anauthor-authorgraph based on co-
authorship.Applications: (a) In the article-article graph, thenum-
ber of citationsto an article is used to indicate its significance. Sim-
ilarly, (b) in the author-author graph,average number of citations
to an author’s papers is used as his/her significance.

• For theLast.fm [18], we constructed (a) alistener-listenergraph,
where the nodes are Last.FM listeners and undirected edges reflect
friendship information among these listeners. We also constructed
(b) anartist-artist graph based on shared listeners.Applications:
(a) In the listener-listener graph, we considered thetotal listening



Data Graph # of # of Average Standard deviation of Median standard deviation of
nodes edge node degree node degrees neighbors’ node degrees

IMDB movie-movie 191,602 4,465,272 23.30 51.86 2.89
actor-actor 32,208 2,493,574 77.42 67.15 114.41

DBLP article-article 8,808 951,798 108.06 171.25 309.92
author-author 47,252 310,250 6.57 8.89 6.39

Last.fm listener-listener 1,892 25,434 13.44 17.31 22.37
artist-artist 17,626 2,640,150 149.79 299.66 998.53

Epinions commenter-commenter 6,703 2,395,176 425.05 438.97 609.39
product-product 13,384 2,355,460 175.99 224.12 202.78

Table 3: Data sets and data graphs

activity of a given listener as his/her significance. (b) In the artist-
artist graph, thenumber of times an artist has been listenedis con-
sidered as his/her significance.

• For the Epinions [25]: We constructed (a) acommenter-
commentergraph based on the products on which two individuals
both commented and (b) aproduct-productgraph based on shared
commenters.Applications: (a) For the nodes on the commenter-
commenter graph, thenumber of truststhe commenter received
from others is used as his/her commenter significance. (b) For
each product in the product-product graph, itsaverage rating by
the commentersis used as its node significance.

4.2 Measures
In this section, our goal is to observe the impact of differ-

ent D2PR degree de-coupling weights on the relationship between
D2PR rankings and application specific significance measures for
the above data sets3. We also aim to verify whether de-coupling
weights can also be used to improve recommendation accuracies.

In order to measure the relationship between the degree de-
coupled PageRank (D2PR) scores and the application-specific node
significance, we used Spearman’s rank correlation,

∑

i(xi − x̄)(yi − ȳ)
√

∑

i(xi − x̄)2
∑

i(yi − ȳ)2
,

which measures the agreement between the D2PR ranks of the
nodes in the graph and their application-specific significances.
Here,x are rankings by D2PR andy are significances for an ap-
plication andx̄ andȳ are averages of two values.

4.3 Impact of De-Coupling in Different Appli-
cations (Unweighted Graphs)

In this subsection, we present results that aim to assess D2PR un-
der the settings described above. For these experiments, the resid-
ual probability,α, and the parameter,β, are set to the default val-
ues, 0.85 and 0, respectively. In these experiments, we consider
only unweighted graphs (we will study the weighted graphs and
the impact of parameterβ later in Section 4.5).

Figures 2 through 4 include charts showing the Spearman’s cor-
relations between the D2PR ranks and application specific node
significances for different values ofp and for different data graphs.
These figures clearly illustrate that different data graphsrequire dif-
ferent degrees of de-coupling4 to best match the application specific
node significance criterion.

4.3.1 Application Group A: When Degree Penaliza-
tion Helps

The actor-actor (based on common movies) andcommenter-
commenter(based on common products) graphs have highest cor-
relation atp = 0.5, with the correlations dropping significantly
3In this paper, we are not proposing a new PageRank computation
mechanism. Because of this (and since the focus is not improving
scalability of PR), we do not report execution times and compare
our results with other PageRank computation mechanisms.
4Degree penalization or degree-based boosting

when the degrees are over-penalized (i.e., whenp ≫ 0.5). The
Epinionsproduct-productgraph (based on common commenters,
Figure 2(c)) also provides the highest correlations withp > 0, but
behaves somewhat differently from the other two cases: the corre-
lations stabilize and do not deteriorate significantly whendegrees
are over-penalized, indicating that the need for degree penalization
is especially critical in this case: this is due to the fact that, the
larger the number of comments a product has, the more likely it
is that the comments are negative (Figure 5). In fact, we see that,
among the three graphs, this is the only graph where the traditional
PageRank (withp = 0) leads tonegative correlationsbetween
node ranks and node significances.

These results indicate that actors who have had many co-actors,
commenters who commented on products also commented by
many others, or products which received comments from individ-
uals who also commented on many other products are not good
candidates for transition during random walk. This aligns with
our expectation that, in applications where each new movie role or
comment requires additional effort, high degree may indicate lower
per-movie or per-comment effort and, hence, lower significance.

4.3.2 Application Group B: When Conventional
PageRank is Ideal

Figure 3 shows that, formovie-movie(based on common actors)
and author-author(based on common articles) graphs, the peak
correlation is atp = 0 indicating that the conventional PageRank
which gives positive weight to node degree, is appropriate.

This perhaps indicates that movies with a lot of actors tend to
be big-budget products and that authors with a large number of co-
authors tend to be experts with whom others want to collaborate.
Note that, in these applications, additional boosting, with p < 0,
negatively affects the correlation, indicating that the relationship
between node degree and significance is not very strong (Figure 5).
The quick change whenp < 0 is because, as we see in Table 3,
median standard deviations of neighbors’ degrees are low; i.e., de-
grees of neighbors of a node are comparable: there is no dominant
contributor toTD(j, i) in Equation 1 (Section 3) and, thus, the
transition probabilities are sensitive to changes inp, whenp < 0.

4.3.3 Application Group C: When Degree Boosting
Helps

Figure 4 shows that there are scenarios where additional boost-
ing based node degrees provides some benefits. Thearticle-article
(based on common authors),listener-listener(based on common
artists), andartist-artist (based on common listeners) graphs reach
their peaks aroundp ∼ −1, indicating that these also benefit from
large node degrees though improvements overp = 0 are slight.

A significant difference between applications in Group B and
Group C is that, forp < 0, the correlation curve is more or less
stable. This is because, as we see in Table 3, in these graphs median
standard deviations of neighbors’ degrees are high: in other words,
for each node, there is a dominant neighbor with a high degreeand
this neighbor has the highest contribution toTD(j, i); thus, the
rankings are not very sensitive top, whenp < 0.
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Figure 2: Application Group A: p > 0 is optimal (i.e., node degrees need to be penalized)
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Figure 3: Application Group B: p = 0 is optimal
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Figure 4: Application Group C: p < 0 is optimal (i.e., node degrees need to be boosted)
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Figure 5: Correlations between node degrees and applica-
tion specific significances for different data graphs (each color
group is a distinct pattern in Figures 2 through 4).

4.3.4 Summary: Correlations between Node De-
grees and Application Specific Significances

The experiments reported above show that degree de-coupling
is important as different applications, even on the same data set,
may associate different semantics to node degrees and the conven-
tional PageRank scores are too tightly coupled with node degrees
to be effective in all scenarios. Figure 5, which plots correlations
between node degrees and application specific significancesfor dif-
ferent data graphs, re-confirms that the ideal value of thep is related
to the usefulness of the node degree in capturing the application
specific definition of node significance.

4.4 Relationship betweenα and p

In Figures 6 through 8, we investigate the relationship between
the valueα and the degree de-coupling parameterp for different
application types. Here we use the default value,0, for the param-
eterβ and present the results for unweighted graphs (the results for

the weighted graphs are similar).
First thing to notice in these figures is that the grouping of the

applications (into those where, respectively,p > 0, p = 0, orp < 0
is useful) is preserved when different values ofα are considered.

Figure 6 studies the impact of the value ofα in application group
A, where degree penalization helps (p > 0). As we see here,
for the IMDB actor-actor(Figure 6(a)) and Epinionscommenter-
commenter(Figure 6(b)) graphs, having a lower value ofα (i.e.,
lower probability of forward movement during the random walk)
provides the highest possible correlations between D2PR ranks and
node significance (with the optimal value ofp being∼ 0.5 inde-
pendent of the value ofα). This indicates that in these graphs,
it is not necessary to traverse far during the random walk. Inter-
estingly, though, when degrees are over-penalized (i.e.,p ≫ 0),
smaller values ofα start leading to worse correlations, indicating
that (while not being optimal) severe penalization of node degrees
helps make random traversals more useful than random jumps.As
we have already observed in Figure 2(c), the Epinionsproduct-
productgraph (Figure 6(c)) behaves somewhat differently from the
other two cases where degree penalization (p > 0) leads to larger
correlations: in this case, unlike the other two graphs, thehighest
possible correlations between D2PR ranks and node significance
are obtained for large values ofα, indicating that this application
benefits from longer random walks (though the differences among
the correlations for differentα values are very small).

Figure 7 shows that the pattern is different forapplication group
B, where conventional PageRank is ideal (p = 0): in this case, hav-
ing a larger value ofα (i.e., larger probability of forward movement
during the random walk) provides the highest correlations between
ranks and significance. Interestingly, in these applications, when
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Figure 6: Relationship betweenp andα, for application group A, where p > 0 is optimal (i.e., degrees need to be penalized)
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Figure 7: Relationship betweenp andα, for application group B, where p = 0 is optimal
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Figure 8: Relationship betweenp andα, for application group C, where p < 0 is optimal (i.e., node degrees need to be boosted)

p ≪ 0 or p ≫ 0, higher probabilities of random walk traversal
(i.e., largerα) stop being beneficial and lower values ofα lead to
larger correlations. This re-confirms that, for these applications,
p ∼ 0 leverages the random walk traversal the best.

As we see in Figure 8, inapplication group C, where degree
boosting helps (p < 0), it is also the case that larger values ofα
(i.e., larger probabilities of forward transitions duringthe random
walk) provides the highest correlations between node ranksand sig-
nificance. On the other hand, in these applications,p ∼ 0.5 serves
as a balance point where the value ofα stops being relevant; in
fact, forp > 0.5 the higher values ofα stops being beneficial and
lower values ofα lead to larger correlations. This re-confirms that
smaller values ofp (which provides degree boosting) help leverage
the random walk traversal the best.

4.5 Relationship between β and p in
Weighted Graphs

Finally, in Figures 9 through 11, we investigate the relation-
ship between the valueβ (which controls whether accounting for
the connection strength or degree de-coupling is more critical in a
given application) and the degree de-coupling parameterp for dif-
ferent application types. Here we use the default value,0.85, for
the parameterα and present the results for weighted graphs:

Figure 9 depicts the impact of the value of the parameterβ in ap-
plication group A, where degree penalization helps (p > 0). As we
see here, for all three weighted graphs, performing degree penal-
ization (i.e.,β < 1.0) provides better rank-significance correlation
than relying solely on the connection strength (i.e.,β = 1.0). Note
that the value ofβ impacts the optimal value of degree penalization
parameterp: the more weight is given to connection strength (i.e.,

the greaterβ is), the larger is the optimal value ofp.
Figure 10 shows that, forapplications in group B, wherep ∼ 0

is ideal, when the connection strength is given significantly more
weight than degree de-coupling (i.e.,β ∼ 0), we observe high rank-
significance correlations. Interestingly however, for themovie-
moviegraph (where the edge weights denote common actors) the
highest correlations are obtained not withp = 0, but withp = 0.5
andβ = 0.75, indicating that degree penalization is actually ben-
eficial in this case: movies that share large numbers of actors with
other movies are likely to beB-movies, which are not good candi-
dates for transitions during the random walk.

Figure 11 shows that inapplication group C, where degree boost-
ing (p < 0) helps, giving more weight to connection strength (i.e.,
β ∼ 1.0) is a good, but not necessarily the best strategy. In fact,
in these graphs, the highest overall correlations are obtained with
β = 0 or β = 0.25, indicating that degree de-coupling is bene-
ficial also in these cases. Interestingly, (unlike the case with the
unweightedlistener-listenergraph, where the best correlation was
obtained whenp < 0) for the weighted version of thelistener-
listenergraph (where edge weights denote the number of shared
friends), whenβ = 0 through0.5, p = 0 provides the highest
correlation and whenβ = 0.75, p = 0.5 provides the highest cor-
relation – these indicate that listeners who have large numbers of
shared friends with others are good candidates for random walk.

Note that a key observation from the above results is that the
conventional PageRank, based on connection strength (i.e., β =
1.0), is not always the best strategy for the applications considered.

5. CONCLUSIONS
In this paper, we noted that in many applications the relation-
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Figure 9: Relationship betweenp and β, for application group A, where p > 0 is optimal (i.e., node degrees need to be penalized)
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Figure 10: Relationship betweenp and β, for application group B, where p = 0 is optimal
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Figure 11: Relationship betweenp and β, for application group C, where p < 0 is optimal (i.e., node degrees need to be boosted)

ship between thesignificanceof the node and its degree in the un-
derlying network may not be as strong (or as weak) as implied
by PageRank-based measures. We proposeddegree de-coupled
PageRank (D2PR)to improve the effectiveness of PageRank based
knowledge discovery and recommendation tasks. Evaluations on
different data graphs and recommendation tasks have confirmed
that degree de-coupling would be an effective way to match ap-
plication specific node significances and improve recommendation
accuracies using PageRank based approaches.
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