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ABSTRACT
This paper studies how to enforce differential privacy by using the
randomized response in the data collection scenario. Given a clien-
t’s value, the randomized algorithm executed by the client reports
to the untrusted server a perturbed value. The use of randomized
response in surveys enables easy estimations of accurate popula-
tion statistics while preserving the privacy of the individual respon-
dents. We compare the randomized response with the standard
Laplace mechanism which is based on query-output independent
adding of Laplace noise. Our research starts from the simple case
with one single binary attribute and extends to the general case with
multiple polychotomous attributes. We measure utility preservation
in terms of the mean squared error of the estimate for various cal-
culations including individual value estimate, proportion estimate,
and various derived statistics. We theoretically derive the explic-
it formula of the mean squared error of various derived statistics
based on the randomized response theory and prove the random-
ized response outperforms the Laplace mechanism. We evaluate
our algorithms on YesiWell database including sensitive biomarker
data and social network relationships of patients. Empirical evalu-
ation results show effectiveness of our proposed techniques. Espe-
cially the use of the randomized response for collecting data incurs
fewer utility loss than the output perturbation when the sensitivity
of functions is high.
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1. INTRODUCTION
The problem of protecting individual privacy in the process of

data collection, querying, mining, and release has been researched
extensively. Roughly speaking, there are two scenarios in the data
privacy protection. One is the privacy preserving data publishing
scenario, as in which a trusted server releases datasets of individual
information or answers queries on such datasets. The second one is
the data collection scenario, as in which an untrusted server collects
personal information from individuals.

c⃝2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

Our paper studies how to protect privacy in the data collection
scenario by using randomized response, a surveying technique for
learning statistics on individuals’ sensitive attribute information such
as whether the survey respondent has cheated in an exam. Random-
ized response is purely a client-based privacy solution. It does not
rely upon a trusted third-party server and puts control over data
back to clients. Given a client’s value x, the randomized algorithm
executed by the client reports to the untrusted server a perturbed
value y. The parameters of the randomized algorithm are chosen in
such a way so that to limit the server’s ability to learn with confi-
dence what value x was. For example, the survey respondent can
flip a biased coin, in secret, and answer the truth if it comes up
head, but tell the opposite answer if it comes up tail. Using this
procedure, the respondent retains confidentiality of their true value
due to coin randomness.

In our analysis, we adopt the rigorous differential privacy, which
was introduced by Dwork et al. [6] and has been widely studied in
the data publishing or query answering scenario. Roughly speak-
ing, differential privacy aims to ensure that the output of the algo-
rithm does not significantly depend on any particular individual’s
data and ensures that an adversary should not be able to confidently
infer whether a particular individual is present in a database even
with access to every other entry in the database and an unbounded
computational power. In the data collection scenario, the inference
is in terms of the sensitive value of one individual. In particular,
we study how to derive the optimal distortion matrix used in the
randomized response given a differential privacy threshold.

Differential privacy of each individual value can also be achieved
by using the classic Laplace mechanism [6], which is based on
query-output independent adding of Laplace noise. We study the
relationship between the randomized response and the Laplace mech-
anism and compare their performance in terms of utility preserva-
tion under the same privacy threshold. Our research starts from the
simple case of data collection with one single binary attribute and
extends to the general case with multiple polychotomous attributes.
We evaluate utility preservation in terms of individual value esti-
mate, proportion estimate, and various derived statistics (e.g., en-
tropy and χ2). Existing works on investigating the accuracy-privacy
tradeoff in differential privacy often define the accuracy in terms of
the variance, or magnitude expectation of the noise added to the
query output [8, 14]. For example, the authors [14] studied how to
optimize linear counting queries under differential privacy and de-
fined the error as the mean squared error of query output estimates,
which corresponds to the variance of the noise added to the query
output to preserve differential privacy. In this paper we also mea-
sure the utility in terms of the mean squared error of the estimate
when randomized response is applied. In particular, we theoretical-
ly derive the explicit formula of the mean squared error of various



derived statistics based on the randomized response theory.
We conduct our empirical evaluation on a biomarker dataset and

a physical activity social network extracted from from the Yesi-
Well pilot study about health. We compare the performance of the
randomized response and that of the Laplace mechanism and report
their estimates and standard deviations. One advantage of the use of
the randomized response in the data collection scenario is that the
collected data can be released for as much analysis as needed with-
out worrying further privacy disclosure. This is different from the
output perturbation where each additional analysis consumes fur-
ther privacy budget. Moreover, the use of the randomized response
for collecting data incurs less utility loss than the output perturba-
tion when the sensitivity of functions is high, as demonstrated in
our experiment where we calculate the number of triangles in the
social network while preserving differential privacy.

2. BACKGROUND

2.1 Randomized Response
Suppose there are n individual clients C1, ..., Cn; each client Ci

has some private value xi regarding a sensitive attribute X . An
untrusted server needs to learn certain aggregate (statistical) prop-
erties of the individual’s private data. However the clients are re-
luctant to disclose their personal information xi. To ensure privacy,
each client Ci only sends to the server a perturbed version yi of xi.
The server collects the perturbed information from all individuals
and then recovers the statistical properties by following some re-
construction procedures.

We assume every private value xi about an individual belongs to
the same fixed domain VX and each xi is chosen independently at
random from the same fixed probability distribution πX . Note that
this distribution is not private and is unknown to clients. The server
aims to reconstruct the distribution πX or derive some statistical
properties of this distribution. The independence assumption en-
sures that the private information xj of all individuals Cj besides
Ci tells nothing new about Ci’s own private information xi once
the distribution πX is learned.

To protect privacy, each individual Ci hides its own sensitive in-
formation xi by applying a randomization algorithm. A random
instance yi is sent to the untrusted server. The domain of all pos-
sible output of yi is denoted by VY . The server receives yi from
client Ci and tries to learn distribution πX .

2.2 Differential Privacy
Differential privacy ensures that the inclusion or exclusion of one

individual’s record makes no statistical difference on the output.

DEFINITION 1. (Differential Privacy [6]) A randomized func-
tion A gives ϵ-differential privacy if for all datasets D and D′ dif-
fering at most one row, and all S ⊆ Range(A)

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] (1)

The privacy parameter ϵ controls the amount by which the dis-
tributions induced by two neighboring datasets may differ (smaller
values enforce a stronger privacy guarantee). A general method for
computing an approximation to any function f while preserving
ϵ-differential privacy is given in [6]. The mechanism for achiev-
ing differential privacy computes the sum of the true answer and
random noise generated from a Laplace distribution. The magni-
tude of the noise distribution is determined by the sensitivity of the
computation and the privacy parameter specified by the data owner.

DEFINITION 2. (Global Sensitivity [6]) The global sensitivity
of a function f : Dn → Rd,

GSf (D) := max
D,D′s.t.D′∈Γ(D)

||f(D)− f(D′)||1 (2)

THEOREM 1. (Laplace Mechanism [6]) An algorithm A takes
as input a dataset D, and some ϵ > 0, a query Q with computing
function f : Dn → Rd, and outputs

A(D) = f(D) + (Y1, ..., Yd) (3)

where the Yi are drawn i.i.d from Lap(GSf (D)/ϵ). The Algorithm
satisfies ϵ-differential privacy.

3. BINARY ATTRIBUTE
Suppose there are n individuals C1, ..., Cn and each individual

Ci has a private binary value xi ∈ {0, 1} regarding a sensitive bi-
nary attribute X . To ensure privacy, each individual Ci sends to the
untrusted server a modified version yi of xi. Using the randomized
response, the server can collect perturbed data from individuals.

3.1 Randomized Response
A randomized response scheme on a binary attribute X follows

a 2× 2 design matrix (also called distortion matrix):

P =

(
p00 p01
p10 p11

)
(4)

where puv = P [yi = u|xi = v] (u, v ∈ {0, 1}) denotes the
probability that the random output is u when the real attribute value
xi for Ci is v; here puv ∈ (0, 1). In the design matrix, the sum of
probabilities of each column is 1.

In this section, we focus on two types of classic queries in the
data collection scenario.

• Q1: what is the probability of correctly estimating xi of indi-
vidual Ci corresponding to the sensitive binary attribute X?

• Q2: what is the proportion of X = 1 (X = 0)?

For Q1, the original value xi = v(∈ {0, 1}) is outputted as
yi = u(∈ {0, 1}) with probability puv from the design matrix P
in Equation 4. Let x̂i denote the reconstructed variable of xi and
Pr(xi = v → x̂i = v) denote the probability of correctly recon-
structing the individual’s value as v from the perturbed data, given
that the original value xi is v where v ∈ {0, 1}. This reconstruc-
tion probability implies how much information is preserved in the
randomization process.

Pr(xi = v → x̂i = v) =∑
u=0,1

P (yi = u|xi = v)P (x̂i = v|yi = u) (5)

Q2 aims to learn the population distribution based on the col-
lected randomized dataset. We use π0 (π1) to denote the true pro-
portion of value 0 (1) to be estimated in the original population.
The observed proportion of value 0 (1) in the collected dataset is
denoted as λ0(λ1). We denote the unbiased estimator for π0, π1

respectively as π̂0, π̂1.

LEMMA 1. (Chapter 1.2 [3]) Given the design matrix P and
the observed proportion of value b (∈ {0, 1}) in randomized dataset
D̂rr , an unbiased estimator of the fraction of records whose at-
tribute value is b is

π̂b =
pbb − 1

2pbb − 1
+

λb

2pbb − 1
, (6)



where pbb ̸= 0.5 and 0 < pbb < 1. Since the observed number of
records whose attribute value equals b follows binomial distribu-
tion, the variance of π̂b is

var(π̂b) =
π̂b(1− π̂b)

n− 1
+

1

n− 1
[

1

16(pbb − 0.5)2
− 1

4
] (7)

which is the expected error for the estimator π̂b.

3.2 Randomized Response vs. Laplace Mech-
anism

The values in each row u (u ∈ {0, 1}) of the design matrix
denote the probability that the random output is u. For example,
p00 (p01) denotes the distortion probability that the random output
value is 0 when the real individual value is 0 (1). Without loss
of generality, we assume the randomized response still favors the
true value, i.e., p00, p11 > 0.5. Differential privacy requires that
p00/p01 ≤ eϵ. Thus we show how the randomized response will
achieve differential privacy in the following result. In addition, we
also give the form of the design matrix that is expected to achieve
the optimal utility while satisfying the given ϵ-differential privacy.

RESULT 1. For a given differential privacy parameter ϵ, the
randomized response scheme following the design matrix P in E-
quation 4 satisfies ϵ-differential privacy if max{ p00

p01
, p11
p10

} ≤ eϵ.
In order to maximize p00 + p11 while satisfying ϵ-differential

privacy, the design matrix should have the following pattern,

Prr =

(
eϵ

1+eϵ
1

1+eϵ
1

1+eϵ
eϵ

1+eϵ

)
(8)

PROOF. Assume p00
p01

= p, p11
p10

= q. In order to satisfy ϵ-
differential privacy, we have 1 < p ≤ eϵ and 1 < q ≤ eϵ. In
this case, the distortion matrix will have the general form:

Prr =

(
p(q−1)
pq−1

q−1
pq−1

p−1
pq−1

(p−1)q
pq−1

)
We denote

func(p, q) = Prr(1, 1) +Prr(2, 2) =
p(q − 1)

pq − 1
+

(p− 1)q

pq − 1
.

Since ∂func
∂p

= (q−1)2

(pq−1)2
> 0 and ∂func

∂q
= (p−1)2

(pq−1)2
> 0 when

p, q ∈ (1, eϵ], thus func will achieve its maximum value if and
only if p = q = eϵ. In this way, we get the form in Equation 8.

Similarly, individual Ci can achieve differential privacy by using
the Laplace mechanism. The Laplace mechanism first adds a ran-
dom noise generated from the Laplace distribution with parameter
1
ϵ

(with a given ϵ and the global sensitivity of 1) to the true answer
xi. Since the output should be a binary value, we postprocess the
perturbed result by outputting 0 if the perturbed value is less than c
and outputting 1 otherwise, shown in Equation 9.

yi =

{
0; if xi + Lap(1/ϵ) < c

1; if xi + Lap(1/ϵ) ≥ c
(9)

The probability of yi = 0 is Fxi,1/ϵ(c) and the probability of
yi = 1 is 1 − Fxi,1/ϵ(c) where Fµ,b = 1

2
+ 1

2
sgn(x − µ)(1 −

e(−
|x−µ|

b
)) denotes the cumulative distribution function of Laplace

distribution Lap(µ, b) with the location parameter µ and the scale
parameter b (and with the mean µ and variance 2b2). Thus we can
map the Laplace mechanism to the randomized response with the
design matrix as

Plm =

(
F0,1/ϵ(c) F1,1/ϵ(c)

1− F0,1/ϵ(c) 1− F1,1/ϵ(c)

)
(10)

For a given ϵ, the perturbed result of Laplace mechanism sat-
isfies differential privacy because the postprocessing process does
not consume any privacy budget. Thus we have the following result
indicating the Laplace mechanism with the postprocessing satisfies
ϵ-differential privacy. We also show that the best postprocessing
strategy is to set c = 0.5 for Equation 9.

RESULT 2. For a given differential privacy parameter ϵ, the
Laplace mechanism based scheme with the postprocessing strategy
following Equation 9 satisfies ϵ-differential privacy.

The corresponding design matrix should have the following for-
m,

Plm =

(
1− 1

2
e−

ϵ
2 1

2
e−

ϵ
2

1
2
e−

ϵ
2 1− 1

2
e−

ϵ
2

)
, (11)

in order to maximize p00 + p11 while satisfying ϵ-differential pri-
vacy.

PROOF. With the assumption that we need to preserve the real
value with probability greater than 0.5, c in Equation 9 is in the
range [0,1]. We have

Plm =

(
1− 1

2
e−cϵ 1

2
e−(1−c)ϵ

1
2
e−cϵ 1− 1

2
e−(1−c)ϵ

)
.

We denote

func(c) = Plm(1, 1)+Plm(2, 2) = 1− 1

2
e−cϵ+1− 1

2
e−(1−c)ϵ,

where c ∈ [0, 1]. Since

∂func

∂c
=

ϵ

2
(e−cϵ − e−(1−c)ϵ),

we have

∂func

∂c

{
> 0, when c ∈ [0, 0.5)

< 0, when c ∈ (0.5, 1].

Thus the maximum value for func(c) is achieved when c = 0.5.

3.3 Utility Comparison
In this paper we measure the utility in terms of the mean squared

error of the estimate for xi given a randomized mechanism A.

ERRORA(x̂i) = E[(x̂i − xi)
2] (12)

Note that by replacing P (yi = u|xi = v) in Equation 5 with
values in Prr of the randomized response and those in Plm of the
Laplace mechanism, we can calculate the estimates x̂ respectively.
We can then compare the utility of the randomized response with
that of the Laplace mechanism based on Equation 12.

Intuitively, under the same privacy standard, the mechanism with
larger diagonal elements in the corresponding design matrix tends
to achieve better utility. The diagonal elements in Equation 8 are
larger than those in Equation 11. Based on such intuition, we can
prove that the randomized response actually can achieve better u-
tility than the classic Laplace mechanism in the scenario of binary
data collection.

THEOREM 2. Given ϵ, for the randomized response scheme with
Prr and the Laplace mechanism based on Plm, we have
ERRORrr(x̂i) ≤ ERRORlm(x̂i).



PROOF. We have (x̂i − xi)
2 = 0 with probability Pr(xi =

v → x̂i = v) in Equation 5; and (x̂i − xi)
2 = 1 with probability

1− Pr(xi = v → x̂i = v). So

ERRORA(x̂i)

= 0× Pr(xi = v → x̂i = v) + 1× (1− Pr(xi = v → x̂i = v))

= 1− Pr(xi = v → x̂i = v).

Without loss of generality, assume v = 1, we denote the prior
probability of xi = 1 as π1. According to Bayes’s theorem, we
have

ERRORA(x̂i) = 1−(
p211π1

p11π1 + p10(1− π1)
+

p201π1

p01π1 + p00(1− π1)
).

For ERRORlm(x̂i), we have plm11 = plm00 = 1− 1
2
e−0.5ϵ. For ERRORrr(x̂i),

we have prr11 = prr00 = eϵ

eϵ+1
. Now we are to prove: for π1 ∈ [0, 1],

func(π1) = ERRORlm(x̂i)− ERRORrr(x̂i) ≥ 0.

For a given ϵ > 0, since func(π1) is continual and it has only two
roots for the parameter range π1 ∈ [0, 1]. Respectively they are
π1 = 0 and π1 = 1. It indicates that all π1 ∈ (0, 1), the output
of func(π1) has the same sign. Thus, we only need to prove for
one specific π1, say π1 = 0.5, that func(π1) > 0. Then the same
result holds for all π1 ∈ (0, 1).
In this case, we have

ERRORA(x̂i) = 1− (p211 + (1− p211)).

Since prr11 > plm11 > 0.5 for all ϵ > 0, we have func(0.5) > 0.
Thus for all π1 ∈ (0, 1) we have func(π1) > 0. The same idea
can be applied for the situation of v = 0. So for π1 ∈ [0, 1], we
have ERRORrr(x̂i) ≤ ERRORlm(x̂i).

Using either the randomized response or the Laplace mechanism
based approach, the server can collect private data from individual-
s. Both collected datasets satisfy ϵ-differential privacy (rather than
nϵ-differential privacy) according to the independence assumption.
Formally, D̂rr denotes the dataset generated by the randomized re-
sponse following the design matrix Prr as in Equation 8. Similar-
ly, D̂lm denotes the dataset generated by the Laplace mechanism.
We define the expected error of the estimator π̂b as its variance,
ERRORA(π̂b) = var(π̂b).

THEOREM 3. Given ϵ, for the randomized response scheme with
Prr and the Laplace mechanism based on Plm, we have
ERRORrr(π̂b) ≤ ERRORlm(π̂b).

PROOF. From Equation 7, we see comparing the utility of es-
timation from D̂rr and D̂lm relies only on pbb in the distortion
matrix P. For the Laplace mechanism, we have plm00 = plm11 = 1−
1
2
e−

ϵ
2 ; For the randomized response, we have prr11 = prr00 = eϵ

eϵ+1
.

Since prr11 > plm11 > 0.5 for all ϵ > 0, we have ERRORrr(π̂b) ≤
ERRORlm(π̂b), according to Equation 7.

4. POLYCHOTOMOUS ATTRIBUTE
In the previous section, we compared the Laplace mechanism

and the randomized response approach in collecting information
about one private binary attribute. In this section, we extend to a
sensitive polychotomous attribute with t(t ≥ 2) mutually exclusive
and exhaustive classes. Due to space limits, we skip all proofs of
results in this section. Refer to [19] for proof details.

4.1 Randomized Response

The corresponding unknown proportions to be estimated are de-
noted as π1, ..., πt. The randomization device is such that an indi-
vidual belonging to the vth category(v = 1, ..., t) reports a random
value u (u = 1, ..., t) with probability puv and Σt

u=1puv = 1 for
all v = 1, ..., t.

The matrix P = {puv} is called the design matrix, where the
sum of each column in P is 1.

P =



p11 p12 ... p1v ... p1t
p21 p22 ... p2v ... p2t

...
...

...
...

...
...

pu1 pu2 ... puv ... put
...

...
...

...
...

...
pt1 pt2 ... ptv ... ptt


(13)

Similarly we have two types of classic queries in the data collec-
tion scenario.

• Q1: what is the probability of correctly estimating xi of in-
dividual Ci corresponding to the sensitive attribute X?

• Q2: what is the proportion of X = 1, · · · , t?

Let Pr(xi = v → x̂i = v) denote the probability of correctly
reconstructing the individual’s value as v from the perturbed data,
given that the original value xi is v where v ∈ {1, · · · , t}. This
reconstruction probability implies how much information is pre-
served in the randomization process.

Pr(xi = v → x̂i = v) =

t∑
u=1

P (yi = u|xi = v)P (x̂i = v|yi = u)
(14)

The probability λu of the (randomized) response u is given by

λu = Σt
v=1puvπv (u = 1, ..., t) (15)

Defining λ= (λ1, ..., λt)
′ , πππ = (π1, ..., πt)

′, we obtain in ma-
trix notation

λ = Pπ (16)

LEMMA 2. (Chapter 3.3 [3]) With a simple random sample
with replacement of size n, let λ̂ be the vector of sample propor-
tions corresponding to λ. Then assuming the nonsingularity of the
design matrix P, an unbiased estimator of π emerges as

π̂ = P−1λ̂. (17)

An unbiased estimator of the dispersion matrix is given by

disp(π̂) = (n− 1)−1P−1(λ̂δ − λ̂λ̂′)P′−1
, (18)

where λ̂δ is a diagonal matrix with the same diagonal elements as
those of λ̂

4.2 Randomized Response vs. Laplace Mech-
anism

Similar as the binary case, the values in each row u (u ∈ {1, 2, ..., t}
of the design matrix denote the probability that the random output
is u. Differential privacy requires that the maximum value differ-
ence in each row is bounded by eϵ. Thus we have the following
result.

RESULT 3. The randomized response is ϵ-differentially private
if ϵ ≥ lnmaxu=1..t

maxv=1..t puv
minv=1..t puv

.



In order to maximize the sum of the diagonal elements,the design
matrix for randomized response Prr = {puv} should be in the
following form,

puv =

{
eϵ

t−1+eϵ
; if u = v

1
t−1+eϵ

; if u ̸= v
(19)

In other words, in the optimal form of the design matrix, all di-
agonal entries are set as eϵ

t−1+eϵ
and all off-diagonal entries are set

as 1
t−1+eϵ

. We can also achieve differential privacy by adding
Laplace noise. The global sensitivity is t − 1. So the Laplace
noise is generated from the distribution Lap( t−1

ϵ
). Because the

perturbed outputs are numerical, we postprocess to map them to an
index value from 1 to t as shown in Equation 20.

yi =



1; if xi + Lap((t− 1)/λ) ∈ (−∞, c1]

2; if xi + Lap((t− 1)/λ) ∈ (c1, c2]

...

u; if xi + Lap((t− 1)/λ) ∈ (cu−1, cu]

...

t; if xi + Lap((t− 1)/λ) ∈ (ct−1,∞)

(20)

where cu is in the range [u, u+ 1].
Note that in this scenario, the strategy of perturbation by Laplace

mechanism is also a special case of the randomized response strat-
egy. We give the form of the corresponding design matrix in Equa-
tion 21. The following result shows such Laplace mechanism with
postprocessing satisfies ϵ-differential privacy. We also give the best
postprocessing strategy with the corresponding design matrix.

RESULT 4. The Laplace mechanism of adding random noise
from distribution Lap( t−1

ϵ
), with postprocessing strategy follow-

ing Equation 20 is ϵ- differentially private.
In order to maximize the sum of the diagonal elements in the cor-

responding design matrix for Laplace mechanism, Plm, we have
cu = u + 0.5 for u ∈ {1, 2, ..t − 1} in Equation 20. The corre-
sponding design matrix Plm = {puv} has the following form,

puv =


Fv, ϵ

t−1
(1.5); if u = 1

1− Fv, ϵ
t−1

(t− 0.5); if u = t

Fv, ϵ
t−1

(u+ 0.5)− Fv, ϵ
t−1

(u− 0.5); otherwise
(21)

where Fv, ϵ
t−1

is the cumulative distribution function of Laplace
distribution with mean value of v (v ∈ {1, 2, ..., t}), variance of
2λ2 and λ = (t− 1)/ϵ.

4.3 Utility Comparison
Intuitively, the utility depends on the diagonal elements in the

design matrix. The Laplace mechanism based approach degrades
the utility by favoring the values near the correct value. The sum
of diagonal elements in Plm is actually smaller than that in Prr

(for details see the proof of Theorem 4). In consistence with the
binary case, the randomized response achieves better utility than
the classic Laplace mechanism in data collection scenario.

THEOREM 4. Given ϵ, for the randomized response scheme with
Prr and the Laplace mechanism based on Plm, we have ERRORrr(x̂i) ≤
ERRORlm(x̂i).

Similarly as the binary case, we define the expected error of the
estimator π̂v for the proportion of category v (v ∈ {1, 2, ..., t})
as its variance, the diagonal element in the unbiased estimate of

dispersion matrix disp(π̂) following the randomized mechanism
A. We have ERRORA(π̂v) = disp(π̂)vv where v ∈ {1, 2, ..., t}.

However, it is intractable to directly prove that the randomized
response strategy following the design matrix in Equation 19 could
achieve lower expected error of the estimator π̂v than the Laplace
mechanism based approach following Equation 21 does. Intuitive-
ly we can see that the Laplace mechanism based approach will de-
grade the utility by favoring the values near the correct value. As
shown in the proof of Theorem 4, the sum of the diagonal elements
in Plm is smaller than that in Prr , which indicates that the estima-
tion based on the randomized response mechanism following Prr

is expected to achieve smaller error than that based on the Laplace
mechanism following Plm.

5. ACCURACY ANALYSIS OF RANDOM-
IZED DATASET

5.1 Multiple Attributes
To be consistent with notations, we denote the set of variables by

X = {X1, · · · ,Xs}. Note that, for ease of presentation, we use
the terms “attribute” and “variable” interchangeably. Each variable
Xu has du mutually exclusive and exhaustive categories. We use
iu = 1, · · · , du to denote the index of its categories. For each data
record, we apply the randomized response model independently on
each sensitive variable Xu using different settings of distortion.

Formally, let πi1,··· ,is denote the true proportion corresponding
to the categorical combination of s variables (X1i1 ,· · · , Xsis) in
the original data, where iu = 1, · · · , du (u = 1, · · · , s), and X1i1

denotes the i1th category of attribute X1. Let π be a vector with
elements πi1,··· ,is arranged in a fixed order. The combination vec-
tor corresponds to a fixed order of cell entries in the contingency
table formed by these s variables. Similarly, we denote λi1,··· ,is as
the expected proportion in the randomized data.

For the case of s multi-variables, we denote λµ1,··· ,µs as the
expected probability of getting a response (X1µ1 , · · · , Xsµs) and
λ the vector with elements λµ1,··· ,µs arranged in a fixed order.
For example, given a dataset with two variables, Gender with do-
main values {male, female} and Race with domain values {black,
white,asian}, we have d1 = 2 and d2 = 3. The vector π = (π11,
π12, π13,π21, π22, π23)

′
corresponds to a fixed order of cell entries

πij in the 2 × 3 contingency table. π12 denotes the proportion of
records with male and white.

Let P = P1 × · · · × Ps, we can obtain

λ = Pπ = (P1 × · · · × Ps)π (22)

where × stands for the Kronecker product 1.
The original database D is changed to Drr after randomization.

An unbiased estimate of π based on one given realization Drr fol-
lows as

π̂ = P−1λ̂ = (P−1
1 × · · · × P−1

s )λ̂ (23)

where λ̂ is the vector of proportions calculated from Drr corre-
sponding to λ and P−1

u denotes the inverse of the matrix Pu.

5.2 Variance of Derived Measure
Many measures (including entropy, mutual information, Pearson

Correlation, G2-likelihood) can be expressed as one derived ran-
dom variable (or function) from the observed variable π. Similarly,

1Kronecker product is an operation on two matrices, an m-by-n
matrix A and a p-by-q matrix B, resulting in the mp-by-nq block
matrix



its estimate from the randomized data can be considered as anoth-
er derived random variable from the input variable π̂. One natural
question is how to calculate the variance of those estimates. In the
following, we introduce the use of the delta method [11] to derive
the variance of variours measures.

Let Z be a random variable derived from the observed random
variables Xi (i = 1, · · · , k): Z = g(X1, X2, ..., Xk). According
to the delta method, a Taylor approximation of the variance of a
function with multiple variables can be expanded as

var{g(X1, X2, ..., Xk)} =

k∑
i=1

{g′i(θ)}2var(Xi)

+

k∑∑
i̸=j=1

g′i(θ)g
′
j(θ)cov(Xi, Xj) + o(n−r)

(24)

where θi is the mean of xi, g′i(θ) is the ∂g(X1,X2,...,Xk)
∂Xi

evaluated
at θ1, θ2, · · · , θk.

We use the entropy function as an example. The entropy function
from information theory is defined as follows:

H(X) = −
∑

j∈Range(X)

πj log2πj (25)

We can estimate the entropy of the discrete random variable X
with possible values {1, 2, .., t} in the original dataset using the
estimator of the distribution π and the estimator of the dispersion
matrix disp(π) calculated following Equations 17 and 18.

RESULT 5. The variance of the estimated entropy can be com-
puted following Equation 24 where i, j ∈ {1, 2, ..., t}, k = t,
Xi = π̂i , ∂g(X1,X2,...,Xk)

∂Xi
= log2π̂i +

1
ln2

and var(Xi) =

disp(π̂)(i, i), covi ̸=j(Xi,Xj) = disp(π̂)(i, j).

Different from the entropy which involves only one variable,
some measures such as chi-square statistics involve multiple vari-
ables.

χ̂2 = n
∑
i

∑
j

{πij − πi+π+j}2

πi+π+j
(26)

It is easy to see χ̂2 can be considered as one derived variable from
the observed elements π̂X1···Xs and the marginal totals of the con-
tingency table. Following the same delta method, we can derive its
variance.

6. EMPIRICAL EVALUATION

6.1 YesiWell Data
We conduct our empirical evaluation using the real dataset col-

lected from the YesiWell pilot study. The study was conducted in
2010-2011 as the collaboration among several health laboratories
and universities to help people maintain active lifestyles and lose
weight. Data gained from this study includes information of vari-
ous domains such as biomarker, biometrics, social activities.

We conduct experiments on a chosen table which contains 248
individuals’ biomarker information. In particular, we focus on t-
wo sensitive attributes: LDL cholesterol (LDL) with six domain
levels and Total cholesterol (TC) with three domain levels. Under
each differential privacy threshold ϵ, we compare the performance
of the randomized response (with the corresponding derived design
matrix Prr) and that of the Laplace mechanism (with the corre-
sponding derived design matrix Plm) from the utility preservation
perspective. We focus on proportion estimates of categories based

on LDL levels, the derived entropy of LDL, and the χ2 statistics
of LDL and TC. For each statistics, we report their estimate val-
ues and derive standard deviations for two strategies: randomized
response and Laplacian mechanism.

We also conduct experiments on the YesiWell physical activi-
ty social network which contains 185 users and 684 interactions.
Each interaction, represented as an edge between two user nodes,
is considered sensitive in our context. We study how to enforce
edge differential privacy in our social network, i.e., the inclusion or
exclusion of a link between two individuals from the graph makes
no statistical difference to the results found. We focus on two clas-
sic graph features: the degree sequence D = {di} where each
entry represents the degree of node i, and the number of triangle
sequence N∆ = {N∆(i)} where each entry represents the number
of triangles involving node i. We compare the performance of the
randomized response and that of the Laplace mechanism and report
their estimates and standard deviations for the above two graph s-
tatistics.

In addition to our above study in the data collection scenario,
we also compare our randomized response with two mechanism-
s, Laplacian mechanism and smooth sensitivity, in the data query
answering scenario where the trusted server keeps all unperturbed
values and returns differential privacy preserving query answers.

6.2 Proportion Estimate
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Figure 1: Estimation of the distribution of each LDL level when
ϵ = 5

Figure 1 shows the estimation result for each of six LDL levels
when ϵ = 5. For each level, the green bar represents the original
proportion value, the red bar shows the estimated proportion value
from the randomized response, and the blue bar shows the estimat-
ed proportion value from the Laplace mechanism. For each esti-
mate, we also report its standard deviation. We can easily observe
that the randomized response achieves better utility preservation
for each level (with more accurate estimate and smaller standard
deviation) than the Laplace mechanism.

Figure 2 shows the estimation results in terms of the average
mean squared error of proportion estimates of the six different lev-
els between the randomized response and the Laplace mechanism
given varying ϵ values. We can easily observe the averaged esti-
mation error of the randomized response is two-three orders lower
than that of the Laplace mechanism and the randomized response
shows more superiority than the Laplace mechanism when ϵ is s-
mall.

6.3 Derived Measures
We calculate the estimates of the entropy of the LDL. Figure 3

shows the estimation results of the calculated entropy values from
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Figure 2: Average mean squared error for estimation of the
distribution of the six different LDL levels vs. varying ϵ

two approaches with varying ϵ. We can see that the red line (cor-
responding to the randomized response) is more close to the green
line (corresponding to the real entropy value) than the blue line
(corresponding to the Laplace mechanism). The bar values (corre-
sponding to their standard deviation values) also clearly show the
superiority of the randomize response.
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Figure 3: Estimation of the entropy of LDL vs. varying ϵ

We calculate the estimates of the chi-square statistics between
the LDL and TC. Figure 4 shows the estimation results of the χ2

statistics from two approaches with varying ϵ. We can see that
the red line (corresponding to the randomized response) general-
ly lies more close to the green line (corresponding to the real en-
tropy value) than the blue line (corresponding to the Laplace mech-
anism) with varying ϵ values. The randomized response also has
much smaller standard deviation values than the Laplace mecha-
nism, which also indicates better utility preservation.
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Figure 4: Estimation of χ2 between LDL and TC vs. varying ϵ

6.4 Graph Statistics
The graph of the YesiWell social network contains 185 nodes

and 684 edges. In the data collection scenario, the untrusted server
collects the link relationship information from users. The link re-
lationship between two users is sensitive and should be protected.
The collected social network data with n users and m relationships
can be represented as an adjacency matrix An×n with 2m non-zero
entries where Aij = 1 denotes the presence of an relationship be-
tween user i and user j, and Aij = 0 otherwise. In our setting, for
Aij , the client Ci applies the randomized response (or the Laplace
mechanism) to send the server a randomized output Yij ∈ 0, 1. Af-
ter collecting all randomized relationships, the server then applies
the reconstruction process and generates one instance of the social
network with 2m non-zero entries (denoted as Â). The generated
graph instance satisfies ϵ differential privacy and can be released for
any analysis. In this experiment, we conduct performance compar-
ison between the randomized response and the Laplace mechanism
using two graph features, the degree sequence D = {di} and the
number of triangle sequence N∆ = {N∆(i)}. Figure 5 and Figure
6 show comparison results in terms of the degree sequence and the
number of triangle sequence respectively.
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Figure 5: Average entrywise error of the degree sequence vs.
varying ϵ

Figure 5 shows the average entrywise error of the degree se-
quence calculated from different approaches with varying ϵ. In
the figure, we denote the Laplace mechanism as LM and the ran-
domized response as RR, each of which uses its randomized graph
topology respectively. We also report the comparison with the out-
put perturbation method, LM-global, which adds the Laplace noise
directly to the query output. Note that LM-global is used in the data
query answering scenario where the server is assumed to have all
the true unperturbed data. However, any differential privacy preser-
vation query consumes a separate privacy budget. On the contrary,
the randomized data collected from LM and RR can be released
for any analysis with the same privacy threshold. We can observe
in Figure 5 that the randomized response achieves better utility p-
reservation than the Laplace method in the data collection scenario
and the LM-global incurs less estimation error than both RR and
LM (due to its small global sensitivity value GSD = 2).

Figure 6 shows the average entrywise error of the number of tri-
angle sequence calculated from different approaches with varying
ϵ. Note that the global sensitivity of N∆ is 3(n − 2). We de-
note the approach of directly adding the Laplace noise based on
the global sensitivity as LM-global. We denote the approach of
adding the Laplace noise based on the smooth sensitivity [16] as
LM-smooth. As above, we denote the Laplace mechanism in our
data collection scenario as LM and the randomized response as R-
R. We can observe that the average entrywise error of RR and LM
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Figure 6: Average entrywise error of the number of triangle
sequence vs. varying ϵ; LM-global (LM-smooth) denotes the
global sensitivity based Laplace (the smooth sensitivity based)
mechanism.

is lower than that either of LM-global or LM-smooth, indicating
the local differential privacy preserving data collection could be a
better choice than output perturbation for queries or analysis with
very large sensitive values. It is unsurprise that RR achieves the
best utility preservation.

7. RELATED WORK
Randomized response techniques have been extensively investi-

gated in statistics (e.g., see a book [3]). Previous work on privacy
preservation using the randomized response model mainly focused
on evaluating the trade-off between privacy preservation and utility
loss of the reconstructed data (e.g., [1, 18]). Some research stud-
ied the problem of determining the optimal distortion parameters
to achieve good performance (e.g., [9]). The authors in [7] first
presented the notation of privacy breaches based on amplification
where it provides guarantee limits on privacy breaches without any
knowledge of the distribution of original data.

Differential privacy research has been significantly studied from
the theoretical perspective, e.g., [4, 12], and the application per-
spective, e.g., [15, 20]. The mechanisms of achieving differential
privacy mainly include the classic approach of adding Laplacian
noise [6], the exponential mechanism based on the smooth sensi-
tivity [15], and the functional perturbation approach [4]. Most of
the above works focused on the data publishing scenario.

Local differential privacy was formally proposed in [5, 10] as
a strong measure of privacy under the data collection scenario,
where individual clients are willing to share their data but are con-
cerned about revealing sensitive information. The authors studied
the problem of utility maximization under local differential privacy
and developed a family of extremal mechanisms called the staircase
mechanisms and showed that two simple staircase mechanisms (the
binary and randomized response mechanisms) are optimal in the
high and low privacy regimes. In [10], the author mainly studies
the tradeoff between local privacy and utility in hypothesis testing.
In [5], the authors studied the tradeoff between privacy guarantees
and the utility of mean estimation in location.

8. FUTURE WORK
In this paper, we measure the utility preservation in terms of the

variance. Several theoretical works on the privacy mechanism de-
sign (e.g., [5]) proposed the use of a general utility-maximization
framework under differential privacy where the utility function can
be a general function depending on the noise added to the query

output. We will explore the use of the general function to measure
the utility.

Acknowledgments
The authors would like to thank anonymous reviewers for their
valuable comments and suggestions. This work was supported in
part by U.S. National Science Foundation (DGE-1523115 and IIS-
1502273) and U.S. National Institute of Health (1R01GM103309).

9. REFERENCES
[1] S. Agrawal and J. R. Haritsa. A framework for high-accuracy

privacy-preserving mining. In ICDE, pages 193–204, 2005.
[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry,

and K. Talwar. Privacy, accuracy, and consistency too: a
holistic solution to contingency table release. In PODS,
pages 273–282. ACM, 2007.

[3] A. Chaudhuri and R. Mukerjee. Randomized response:
Theory and techniques. Marcel Dekker New York, 1988.

[4] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic
regression. In NIPS, pages 289–296. Citeseer, 2008.

[5] J. Duchi, M. Jordan, and M. Wainwright. Local privacy and
statistical minimax rates. In FOCS, pages 429–438, Oct
2013.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
Theory of Cryptography, pages 265–284, 2006.

[7] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. In PODS, pages
211–222. ACM, 2003.

[8] M. Hardt and K. Talwar. On the geometry of differential
privacy. In STOC, pages 705–714, 2010, ACM.

[9] Z. Huang and W. Du. Optrr: Optimizing randomized
response schemes for privacy-preserving data mining. In
ICDE, pages 705–714, 2008.

[10] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms
for local differential privacy. CoRR, 2014.

[11] M. G. Kendall and A. Stuart. The advanced theory of
statistics, vol. 2: Hafner. New York, page 133, 1969.

[12] D. Kifer and A. Machanavajjhala. No free lunch in data
privacy. In SIGMOD, pages 193–204, 2011.

[13] J. Lee and C. Clifton. Differential identifiability. In KDD,
pages 1041–1049, 2012.

[14] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing linear counting queries under differential privacy.
In PODS, pages 123–134, ACM.

[15] F. McSherry and I. Mironov. Differentially Private
Recommender Systems. In KDD. ACM, 2009.

[16] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In STOC,
pages 75–84. ACM, 2007.

[17] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship
privacy: Output perturbation for queries with joins. In
PODS, pages 107–116. ACM, 2009.

[18] S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in
association rule mining. In VLDB, 2002.

[19] Y. Wang, X. Wu, and D. Hu. Using Randomized Response
for Differential Privacy Preserving Data Collection. In
Technical Report, DPL-2014-003, University of Arkansas,
2014.

[20] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. In ICDE, pages 225–236. IEEE, 2010.


