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ABSTRACT
Falcon-AO is an automatic tool for aligning ontologies.
There are two matchers integrated in Falcon-AO: one is
a matcher based on linguistic matching for ontologies,
called LMO; the other is a matcher based on graph
matching for ontologies, called GMO. In Falcon-AO,
GMO takes the alignments generated by LMO as exter-
nal input and outputs additional alignments. Reliable
alignments are gained through LMO as well as GMO
according to the concept of reliability. The reliabil-
ity is obtained by observing the linguistic comparability
and structural comparability of the two ontologies be-
ing compared. We have performed Falcon-AO on tests
provided by OAEI 2005 campaign and got some prelim-
inary results. In this paper, we describe the architec-
ture and techniques of Falcon-AO in brief and present
our results in more details. Finally, comments about
test cases and lessons learnt from the campaign will be
presented.

Categories and Subject Descriptors
D.2.12 [Software]: Interoperability; I.2.6 [Artificial
Intelligence]: Knowledge Representation Formalisms
and Methods; I.5.3 [Pattern Recognition]: Cluster-
ing—Similarity measures

General Terms
Experimentation, Measurement

Keywords
Semantic Web, Ontology Alignment, Mapping, Match-
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1. PRESENTATION OF THE SYSTEM

As an infrastructure for semantic web applications, Fal-
con is a vision of our research group. It will provide
enabling technologies for finding, aligning and learning
ontologies, and ultimately for capturing knowledge by
an ontology-driven approach. It is still under develop-
ment in our group. As a component of Falcon, Falcon-
AO is an automatic tool for aligning ontologies. It is
dedicated to aligning web ontologies expressed in OWL
DL [5]. There are two matchers integrated in current
version of Falcon-AO (version 0.3). One is a matcher
based on linguistic matching for ontologies, called LMO,
and the other one is a matcher based on graph matching
for ontologies, called GMO.

1.1 Linguistic Matching for Ontologies
As is known, linguistic matching plays an important
role in matching process. Generally, linguistic similar-
ity between two entities relies on their names, labels,
comments and some other descriptions.

LMO combines two different approaches to gain linguis-
tic similarities: one is based on lexical comparison; the
other is based on statistic analysis.

In lexical comparison, we calculate the edit distance [4]
between names of two entities and use the following
function to capture the string similarity (denoted by
SS ):

SS = 1/e
ed

|s1.len+s2.len−ed| (1)

Where ed denotes the edit distance between s1 and s2 ;
s1.len and s2.len denote the length of the input strings
s1 and s2, respectively.

In statistic analysis, we use the algorithm of VSM [6]
(Vector Space Model) in our implementation. Given a
collection of documents, we denote N the number of
unique terms in the collection. In VSM, we represent
each document as a vector in an N -dimensional space.
The components of the vector are the term weights as-
signed to that document by the term weighting function
for each of the N unique terms. Clearly, most of these
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are going to be 0, since only a few of the N terms actu-
ally appear in any given document. In our scenario, we
construct a virtual document for each of the ontology
entities (classes, properties and instances). The virtual
document of an entity consists of ”bag of terms” ex-
tracted from the entity’s names, labels and comments
as well as the ones from all neighbors of this entity. The
term weighting functions are defined as follows:

TermWeighting = TF ∗ IDF (2)

TF =
t

T
(3)

IDF =
1
2
∗ (1 + log2

D

d
) (4)

In equation (3), t denotes the number of times where
one term occurs in a given document and T denotes the
maximum number of times. In equation (4), D denotes
the number of documents in collection and d denotes
the number of documents where the given term occurs
at least once.

We can gain the cosine similarity between documents
(denoted by DS ) by taking the vectors’ dot product:

DS = N ·N t (5)

It is worthy of note that there are several preparing
steps before calculating term weights, such as splitting
words, stemming and removing stop words.

The two methods described above will both take effect
in ontology matching. In our implementation, we com-
bine them together, and use the following equation to
calculate the final linguistic similarity. Please note that
the parameters in the equation comes from our experi-
ence:

LinguisticSimilarity = 0.8 ∗DS + 0.2 ∗ SS (6)

Currently, we do not use any lexicons in LMO and it is
certain that the use of lexicons may bring some benefits
for matching. We plan to take into account using some
lexicons in later versions.

1.2 Graph Matching for Ontologies
Another important component in Falcon-AO is GMO,
which is based on a graph matching approach for ontolo-
gies. It uses directed bipartite graphs to represent on-
tologies and measures the structural similarity between
graphs by a new measurement. Details of the approach
are described in another paper [3] also presented in the

K-Cap 2005 Workshop on Integrating Ontologies 1.

The main idea of GMO is as follows. Similarity of two
entities from two ontologies comes from the accumula-
tion of similarities of involved statements (triples) tak-
ing the two entities as the same role (subject, predicate,
object) in the triples, while the similarity of two state-
ments comes from the accumulation of similarities of
involved entities of the same role in the two statements
being compared.

Usually, GMO takes a set of matched entity pairs, which
are typically found previously by other approaches, as
external mapping input in the matching process, and
outputs additional matched entity pairs by comparing
the structural similarity.

Our previous experiments showed that GMO were irre-
placeable when there was little gain from lexical com-
parison. In addition, GMO can be integrated with other
matchers. While using GMO approach to align ontolo-
gies, there should be another component to evaluate
reliability of alignments generated by GMO.

1.3 Linguistic vs. Structural Comparability
Given two ontologies to be aligned, GMO always tries
to find all the possible matched entity pairs. However,
how to evaluate the reliability of these matched entity
pairs is still a problem. As mentioned above, another
component is needed to select more reliable matched
entity pairs by using other information. In Falcon-AO,
we use a simple approach to observe the reliability of
matched entity pairs output by GMO, and select more
reliable matched entity pairs to the users. The approach
is based on the measure of linguistic comparability (LC )
and structural comparability (SC ) of two ontologies to
be aligned.

Given two ontologies O1, O2 to be aligned, the linguistic
comparability (LC) of O1 and O2 is defined as follows:

LC =
M√

NO1 ∗NO2

(7)

Where M denotes the number of entity pairs with sim-
ilarity larger than c and c is an experience value; NO1

and NO2 represent the number of named entities in O1

and O2, respectively.

The structural comparability is determined through com-
paring the occurrences of built-in properties used in
the two ontologies to be aligned. The built-in prop-
erties are RDF [2], RDFS [1] and OWL [5] built-in vo-
cabularies used as properties in triples (e.g. rdf:type,
rdfs:subClassOf and owl:onProperty).
1http://km.aifb.uni-karlsruhe.de/ws/intont2005
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We use VSM method to observe the structural compa-
rability. The vectors V1, V2 represent the frequency of
built-in properties used in O1 and O2 and the element
vij denotes the number of occurrence of built-in prop-
erty pj in Oi. The structural comparability of O1 and
O2 is the cosine similarity [7] of V1 and V2:

SC =
V1 · V2

‖V1‖ ‖V2‖

=

∑n
j=1 v1j ∗ v2j√∑n

j=1 v1j ∗ v1j

√∑n
j=1 v2j ∗ v2j

(8)

1.4 Implementation
LMO and GMO are integrated in Falcon-AO. Align-
ments output by Falcon-AO come from the integration
of alignments generated by LMO and GMO. The archi-
tecture of Falcon-AO is shown in Figure. 1.

Ontology

Ontology

Parser

External
Mapping

Existing
Mapping LMO

GMO

Output Alignments

Alignment  Integration

Figure 1: System Architecture

Due to heterogeneous ways in expressing semantics and
the inference capability brought from ontology languages,
two ontologies being matched may need to be coordi-
nated by removing some redundant axioms from it or
adding some inferred axioms. So coordination actions
should be taken before using GMO approach. We have
integrated several coordination rules in Falcon-AO. Our
Parser component based on Jena 2 has the functionality
of coordinating ontology models.

As is known, given external mapping as input, GMO
can find additional mapping. The external mapping is
made of two parts: one is the existing mapping pre-
assigned by the system; the other comes from another
matcher. The existing mapping is the mapping be-
tween built-in vocabularies of web ontology languages,
2http://jena.sourceforge.net/

datatypes, data literals and URIs used in both ontolo-
gies. And in Falcon-AO we take the alignments gen-
erated by LMO as the other part of external mapping.
Entities involved in the alignments generated by LMO
are set to be external entities and GMO will just output
mapping between internal entities.

When the alignments generated by LMO and GMO are
obtained, Falcon-AO will integrate these alignments by
observing the linguistic comparability and structural
comparability, following the rules below:

1. We take that linguistic similarity is somewhat more
reliable than structural similarity, and that the
alignments generated by LMO are always accepted
by Falcon-AO.

2. When the linguistic comparability is high and the
structural comparability is low, only alignments
generated by GMO with high similarity are reli-
able and accepted by Falcon-AO.

3. If the linguistic comparability is low, all of the
alignments generated by GMO are accepted by
Falcon-AO. In this case, there is no enough infor-
mation to measure these alignments and we can
only assume that they are reliable.

Falcon-AO is implemented in Java. The implemented
process can be outlined as follows:

1. Input two ontologies and parse them.

2. Run LMO and obtain matched entity pairs.

3. Calculate linguistic comparability and structural
comparability.

4. In the case that linguistic comparability is below
a very low threshold (e.g. 0.01) and the structural
comparability of them is also low, we take that
these ontologies are quite different and Falcon-AO
exits with no alignment.

5. Set external entities of the ontologies according to
the matched entity pairs generated by LMO.

6. Input matched entity pairs generated by LMO into
GMO and form external mapping for GMO. In the
current version of Falcon-AO, all the individuals
of ontologies are specified as external entities and
their similarities are computed by LMO.

7. Run GMO and obtain matched entity pairs.

8. Integrate the alignments generated by LMO and
GMO following the rules described above.

9. Exit with alignments as output.
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1.5 Adaptations Made for the Contest
For anatomy test, FMA 3 ontology and OpenGALEN 4

ontology are not OWL DL. In order to make effec-
tive use of descriptions of entities, we have manually
found some annotation properties and inputted them
into LMO. With the help of these annotation proper-
ties, Falcon-AO can find about 500 more matched en-
tity pairs in addition to other 2000 matched entity pairs
found by a simple version of LMO.

2. RESULTS
In this section we will present the results of alignment
experiments on OAEI 2005 campaign. All the align-
ments output by Falcon-AO are based on the same pa-
rameters.

2.1 Systematic Benchmark Test
We divide all the benchmark tests 5 into five groups:
test 101-104, test 201-210, test 221-247, test 248-266
and test 301-304. We will report the results of align-
ment experiments on these five groups in correspon-
dence. The full results on all tests are listed in section
6.3.

2.1.1 Test 101–104
In tests 101, 103 and 104, the source ontologies contain
classes and properties with exactly the same names as
those in the reference ontologies. LMO can easily get all
the matched entity pairs, and GMO takes little effect.

In test 102, the linguistic comparability of the two on-
tologies is nearly zero and the structural comparability
is low as well. So it could be concluded that the two
ontologies to be aligned are quite different. Falcon-AO
exits with no alignment.

The average performance on test 101-104 is shown be-
low:

Precision Recall F-Measure Time
Average 1.0 1.0 1.0 5s

2.1.2 Test 201–210
We find that each pair of ontologies of these ten tests has
high structural comparability, which means that each
pair of the ontologies to be aligned is quite similar in
structure. Our previous experiments showed that GMO
performed well on these tests even without any addi-
tional external mapping input. In most tests, LMO just
finds a small part of all the matched entity pairs, the
rest are generated by GMO. Since GMO runs slower
than LMO, it takes Falcon-AO more time to find all
matched entity pairs.
3http://sig.biostr.washington.edu/projects/fm/
4http://www.opengalen.org/
5http://oaei.inrialpes.fr/2005/benchmarks/

For test 201, where each of the local name of class
and property is replaced by a random one, LMO can
still find some matched classes and properties due to
the sameness of their labels or comments. With these
matched entity pairs as feed, GMO performs well.

In test 202, names of classes and properties are dis-
turbed and their comments are suppressed. LMO can
only find little mapping. Meanwhile, Falcon-AO still
performs not bad by running GMO. In this test, we find
that it is hard to distinguish many properties purely by
the structure of the ontology, since they have the same
domains and ranges, and never used in other part of the
ontologies. Falcon-AO failed to find correct mapping of
these properties, which makes the result not so well as
test 201.

In test 203, LMO is able to find all the matched en-
tity pairs. Therefore, it just takes Falcon-AO several
seconds to find all alignments.

For tests 204 and 208 with naming conventions, both
the linguistic comparability and structural comparabil-
ity are high. The outputs of the integration of LMO
and GMO are well.

For the synonym tests 205 and 209, due to the fact that
no thesaurus is used in our tool, LMO performs not
so well. There are some errors in the outputs of LMO.
With these errors feed to GMO, GMO failed to perform
well. As a result, the outputs of Falcon-AO may be
weaker than the outputs of using GMO independently.

In tests 206, 207 and 210, ontologies to be aligned are
expressed in different languages. Falcon-AO does not
have a specific matcher that uses a dictionary for word
translation. However, because of their high structural
comparability, GMO in Falcon-AO performs not bad on
these tests.

The average performance on test 201-210 is described
below:

Precision Recall F-Measure Time
Average 0.96 0.95 0.95 63s

2.1.3 Test 221–247
In these tests, the linguistic comparability of each pair
of ontologies to be aligned is very high. Most of the
alignments are found by LMO and GMO takes little
effect. So, it only takes Falcon-AO a few seconds to
align them.

As is shown below, the average performance on these
tests are perfect.
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Precision Recall F-Measure Time
Average 0.99 1.0 0.99 4s

2.1.4 Test 248–266
These fifteen tests are the most difficult ones in all
benchmark tests, since both their linguistic compara-
bility and structural comparability are low. In the case
that the linguistic comparability between two given on-
tologies is very low, Falcon-AO would not call any match-
ers. However, in these tests, there are still some individ-
uals with the same names, which increase the linguistic
comparability. So Falcon-AO will still run GMO inte-
grated with LMO.

Since the ontology pairs to be aligned are quite different
both in linguistics and in structure, our outputs are not
good (with average F-Measure 0.63). Indeed, in some
cases, it is really hard to determine the exact mapping.
For these tests, the time for aligning relies on the size
of two ontologies.

Precision Recall F-Measure Time
Average 0.71 0.60 0.63 60s

2.1.5 Real Ontologies Test 301–304
In these tests, each pair of ontologies has high linguistic
comparability but low structural comparability. This
indicates that the outputs of Falcon-AO mainly come
from the outputs of LMO. Alignments with high simi-
larity generated by GMO matcher are also reliable and
these matched entity pairs should also be output by
Falcon-AO. The average performance on these four tests
is presented below:

Precision Recall F-Measure Time
Average 0.93 0.81 0.86 20s

2.2 Blind Tests
Blind tests consist of two groups: directory test 6 and
anatomy test 7, and they are all real world cases.

Directory
We have got the alignment results on directory test by
using the same set of parameters as the ones for bench-
mark test.

Anatomy
Falcon-AO detects that the FMA ontology and Open-
GALEN ontology in anatomy test are so large that our
GMO could not process them. Therefore, our alignment
result of anatomy test comes only from a simple version
of LMO.
6http://oaei.inrialpes.fr/2005/directory/
7http://oaei.inrialpes.fr/2005/anatomy/

3. GENERAL COMMENTS
In this section, we will summarize some features of Falcon-
AO and the improvement in our future work, some com-
ments about test cases will also be presented.

3.1 Comments on the Results
Our Falcon-AO performs well on benchmark tests 101-
104, 201-210 and 221-247, and the results of test 301-304
are moderate, but on test 248-266, Falcon-AO doesn’t
perform so well. According to the results on these
test cases, we can see the strengths and weaknesses of
Falcon-AO:

Strengths
According to the experimental results, Falcon-AO per-
forms well when the structures of the ontologies to be
aligned are similar to each other or there is much lexi-
cal similarity between the two ontologies. Particularly,
Falcon-AO performs well when the two ontologies have
very little lexical similarity but high structural compa-
rability.

Weaknesses
When there is little common vocabulary between the
ontologies and in the meanwhile the structures of the
ontologies are quite different, Falcon-AO can hardly
find the exact mapping. Furthermore, GMO could not
process very large ontologies, which means that while
aligning very large ontologies, Falcon-AO cannot use
their structural information.

3.2 Improvement of Falcon-AO
From the experiments we have learnt some lessons and
plan to make improvements in the later versions. The
following three improvements should be taken into ac-
count.

1. While expressing the same thing, people may use
synonyms and even different languages. Therefore,
it is necessary to use lexicons to match ontologies.

2. The current version of Falcon-AO did not support
many-to-many mapping. The functionality of find-
ing many-to-many mapping will be included in the
later version of Falcon-AO.

3. Currently, the measure of linguistic comparability
and structural comparability of ontologies are still
simple and an improvement will be considered.

3.3 Comments on the Test Cases
The proposed test cases covered a large portion of dis-
crepancies occurring of ontologies while aligning ontolo-
gies. Doing experiments on these test cases is help-
ful to improving the alignment algorithm and system.
However, there are few tests on real world ontologies in
benchmark tests.

89



4. CONCLUSION
While aligning real ontologies, linguistic matching plays
an important role in matching process. Therefore, we
integrate our GMO with LMO in Falcon-AO. From the
experiments, we found that, Falcon-AO performed well
on most of benchmark tests. It is also worthy of note
that most of benchmark tests came from artificially al-
tered ontologies, and more real world ontologies are ex-
pected to be included in benchmark tests.
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6. RAW RESULTS
Information about our project can be found at
http://xobjects.seu.edu.cn/project/falcon/falcon.html, and our
tool is available now.

6.1 Link to the System and Parameters File
Falcon-AO can be found at
http://xobjects.seu.edu.cn/project/falcon/download.html.

6.2 Link to the Set of Provided Alignments
Results presented in this paper are available at
http://xobjects.seu.edu.cn/project/falcon/results/falcon.zip.

6.3 Matrix of Results
Runtime Environment: Tests were run on a PC run-
ning Windows XP with an Intel Pentium 4 2.4 GHz
processor and 512M memory.

90



No. Precision Recall Time
101 1.0 1.0 4s
102 NaN NaN 6s
103 1.0 1.0 4s
104 1.0 1.0 4s
201 0.98 0.98 105s
202 0.87 0.87 140s
203 1.0 1.0 4s
204 1.0 1.0 22s
205 0.88 0.87 55s
206 1.0 0.99 51s
207 1.0 0.99 51s
208 1.0 1.0 34s
209 0.86 0.86 102s
210 0.97 0.96 68s
221 1.0 1.0 4s
222 1.0 1.0 4s
223 1.0 1.0 4s
224 1.0 1.0 4s
225 1.0 1.0 4s
228 1.0 1.0 3s
230 0.94 1.0 4s
231 1.0 1.0 4s
232 1.0 1.0 4s
233 1.0 1.0 3s
236 1.0 1.0 3s
237 1.0 1.0 4s
238 0.99 0.99 4s
239 0.97 1.0 3s
240 0.97 1.0 4s
241 1.0 1.0 3s
246 0.97 1.0 3s
247 0.94 0.97 3s
248 0.84 0.82 100s
249 0.86 0.86 114s
250 0.77 0.70 7s
251 0.69 0.69 166s
252 0.67 0.67 119s
253 0.86 0.85 80s
254 1.0 0.27 4s
257 0.70 0.64 4s
258 0.70 0.70 162s
259 0.68 0.68 113s
260 0.52 0.48 7s
261 0.50 0.48 8s
262 0.89 0.24 4s
265 0.48 0.45 7s
266 0.50 0.48 8s
301 0.96 0.80 18s
302 0.97 0.67 3s
303 0.80 0.82 39s
304 0.97 0.96 18s
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