
Why and Where Do We Need
Model Execution? (Keynote)

Francis Bordeleau
Ericsson Canada, Town of Mount Royal, Canada

francis.bordeleau@ericsson.com

Index Terms—MBE, model execution

I. EXTENDED ABSTRACT

Model execution is a technique used to validate/test/verify
an application, or system, at the model level before an
implementation is developed. It has the potential to bring
major benefits in many different development contexts and
thus strongly contribute to the broader adoption of Model
Based Engineering (MBE). Key potential benefits include
reduced development time, cost, and risks, and improved
overall system quality by enabling execution earlier and more
often in the development process. However, not all models can
be executed. Model execution requires the use of a modeling
language that is based on a precise execution semantics,
including behavior specification, and the existence of an
execution platform to enable execution of models developed
using this language.

Model execution has proven to be very successful in
many application domains (aerospace, automotive, industrial
automation) to simulate and validate functional behavior with
tools like MathWorks Simulink. However, the goals and re-
quirements for model execution are quite different depending
on the modeling context. Here, we use software design and
system engineering to illustrate some of the main differences
between different modeling contexts. Similar analysis can
also be done for other contexts like requirements modeling,
information modeling, functional modeling, business process
modeling, network architecture modeling, and enterprise ar-
chitecture modeling.

In the context of software design, where modeling is used
to design and visualize applications/systems at an abstract
level (i.e. at a level of abstraction higher than programming
languages), model execution is viewed as a technique that
can be used to execute models early in the development
process to validate/test/verify an application/system before a
detailed design is developed. This allows making abstraction
of the specifics of programming languages and deployment
platforms, and focus on the design of a platform independent
model (PIM) that can later be implemented using different
programming languages and deployed on specific platforms
to satisfy the needs of different business cases. Model trans-
formation and code generation techniques can then be used
to transform the PIM into an implementation. The use of
such approach allows increasing portability and enables perfor-
mance optimization by improving model transformations, code

generators, and allocation strategies, instead of by directly
modifying the design or implementation.

However, while the development of PIM can provide key
benefits in many different contexts, it also imposes important
requirements/constraints on modeling tools and their users.
One of the main requirements is the need to provide/use
an action language, instead of a programming language, to
specify the behavior of the components. Many users consider
this a main obstacle, as it requires learning a new language
and associated integrated development environment (IDE).
Moreover, tooling for existing action languages do not provide
the level of maturity and functionality that users are used
to with popular programming language IDEs, in particular
regarding aspects like runtime monitoring and tracing & debug
capabilities. Also, while this type of MBE workflow has been
a core part of the MBE vision since its inception, very few
modeling tools today provide an action language to support
model execution. There are several reasons for this, which
relate to both technical and business aspects, but these are
beyond the scope of this presentation.

Another approach to support model execution consists in
integrating modeling techniques and programming languages
in a single development environment. In many development
contexts, the price to pay for the development of a PIM is
perceived to be too expensive for the benefits it provides.
For example, in cases where an application is developed
for a single programming language, and no business case
exists for the development of the application using a different
programming language, there is no clear benefit in investing
time and effort to develop a PIM. In such context, what
users really need is a better integration between the modeling
techniques and programming language IDEs to improve the
inner design loop and allow for a faster and more agile
development process.

In the context of system engineering, where the end goal is
not to generate code but rather to develop systems that result
from the interaction of a set of heterogeneous components,
which can each be implemented/realized using different types
of technology, not only software, it is quite different. In this
case, modeling is used to design, communicate, and validate
the system to people of different background at different stages
of the development process, and model execution is used
to validate/test/verify the system before it is implemented.
In order to be able to execute the model, the behavior of
the different components needs to be specified. Since people

1



involved in system engineering are from different background,
and typically not software engineers, it is much easier and
natural to introduce a higher-level action language than a
programming language, which is usually more complex to
learn. So, in this context, the use of an action language doesn’t
constitute a main issue.

As illustrated by these two different contexts, software
design and system engineering, the needs and requirements for
model execution are quite different depending on the modeling
context. The background and culture of the people involved
in the modeling process, which significantly differs between
different application domains, also have a strong influence
on the type of tooling solution that needs to be developed.
Therefore, in order to provide proper modeling tools to support
model execution, it is essential to clearly understand the role
model execution plays in the overall development process and
the type of language and functionality that need to be provided.

The goal of this keynote presentation is to provide an
industrial perspective on model execution. We discuss different
modeling contexts (information modeling, system modeling,
network architecture modeling, and software design) and
application domains (telecommunication, Software Defined
Radios, cyber-physical systems), and discuss their needs (or
not) and requirements regarding model execution. We also
discuss what is needed, both from a technical and business
perspective, to have first-class support for model execution in
modeling tools.

II. BIOGRAPHY

Francis Bordeleau is Product
Manager in the Software De-
velopment group at Ericsson.
His main areas of responsibil-
ities include model-based en-
gineering and modeling tools.
In this role, he is responsible
for defining product specifica-
tions and roadmaps, developing
business cases, managing budget,
managing open source initiatives,

and collaborating with other companies, researchers, and
academia.

Francis has over 20 years of experience in MBE and
software engineering; researching, working, consulting, and
collaborating with numerous companies worldwide. Prior to
joining Ericsson in May 2013, Francis was the Founder and
CEO of Zeligsoft, a provider of domain specific Model Based
Engineering (MBE) tooling solutions for distributed real-time
embedded systems. He was also Director of Tooling Business
for PrismTech. Prior to found Zeligsoft, he was an Assistant
Professor at the School of Computer Science at Carleton
University.

Francis holds a B.Sc. in Mathematics from the University of
Montreal, a Bachelor of Computer Science from the University
of Quebec (UQO), and a Master in Computer Science and
Ph.D. in Electrical Engineering from Carleton University.

2




