
Testing Extensible Language Debuggers
Domenik Pavletic

itemis AG
Stuttgart, Germany

pavletic@itemis.com

Syed Aoun Raza
Stuttgart, Germany

aoun.raza@gmail.com

Kolja Dummann
itemis AG

Stuttgart, Germany
dummann@itemis.com

Kim Haßlbauer
Stuttgart, Germany

kim.hasslbauer@gmail.com

Abstract—Extensible languages allow incremental extensions of
a host language with domain specific abstractions. Debuggers for
such languages must be extensible as well to support debugging of
different language extensions at their corresponding abstraction
level. As such languages evolve over time, it is essential to
constantly verify their debugging behavior. For this purpose, a
General Purpose Language (GPL) can be used, however this
increases the complexity and decreases the readability of tests. To
reduce continuous verification effort, in this paper, we introduce
DeTeL, an extensible Domain-Specific Language (DSL) for testing
extensible language debuggers.

Index Terms—Formal languages, Software debugging, Soft-
ware testing.

I. INTRODUCTION

Software development faces the challenge that GPLs do
not provide the appropriate abstractions for domain-specific
problems. Traditionally there are two approaches to overcome
this issue. One is to use frameworks that provide domain-
specific abstractions expressed with a GPL. This approach has
very limited support for static semantics, e. g., no support for
modifying constraints or type system. The second approach
is to use external DSLs for expressing solutions to domain
problems. This approach has some other drawbacks: these
DSLs are not inherently extensible. Extensible languages solve
these problems. Instead of having a single monolithic DSL, ex-
tensible languages enable modular and incremental extensions
of a host language with domain specific abstractions [1].

To make debugging extensible languages useful to the
language user, it is not enough to debug programs after
extensions have been translated back to the host language
(using an existing debugger for the base language). A debugger
for an extensible language must be extensible as well, to
support debugging of modular language extensions at the same
abstraction level (extension-level). Minimally, this means users
can step through constructs provided by the extension and see
watch expressions (e. g., variables) related to the extensions.

Because language extensions can be based on other ex-
tensions and languages evolve over time, it is essential to
constantly test if debugger behavior matches the expected
behavior. To test debugging behavior, a GPL can be used,
however this raises the same issues discussed above. We
therefore propose in this paper DeTeL (Debugger Testing
Language), an extensible DSL for testing debuggers.

II. MBEDDR

mbeddr [2] is an extensible version of C that can be
extended with modular, domain-specific extensions. It is built

on top of JetBrains Meta Programming System (MPS) [3] and
ships with a set of language extensions dedicated to embedded
software development. mbeddr includes an extensible C99
implementation. Further, it also includes a set of predefined
language extensions on top of C. These extensions include
state machines, components and physical units.

In MPS, language implementations are separated into as-
pects. The major aspects are Structure, Type System,
Constraints, Generator and Editor. However, for build-
ing debugging support, the Editor aspect is irrelevant.

III. LANGUAGE EXTENSION FOR UNIT TESTING

To give an idea of building language and debugger ex-
tensions, we first build MUnit, a language for writing unit
tests, and a corresponding debugger extension. Later, we will
describe how to test this debugger extension with a DSL.

A. Structure

Fig. 1 shows the language structure: AssertStatement is
derived from Statement and can therefore be used where
Statements are expected. It contains an Expression for
the condition. Testcase holds a StatementList that con-
tains the Statements that make up the test. Further, to
have the same scope as Function, Testcase implements
IModuleContent. ExecuteTestExpression contains a list
of TestcaseRef, which refer to Testcases to be executed.

Fig. 1. Language structure

B. Type System and Constraints

AssertStatement requires a constraint and a type system
rule. It restricts the usages only inside Testcases, meaning
an AssertStatement can only be used in a Testcase:

parentNode.ancestor<concept = Testcase, +>.isNotNull

It also restricts the type of its child expr (condition) to
BooleanType, so only valid conditions can be entered:

check(typeof(assertStatement.expr) :<=: <BooleanType()>);

34

ExecuteTestExpression returns the number of failed unit
tests, hence we specify Int32tType as its type (see rule
below). Later, the same type is used in the generator.
check(typeof(executeTestExpression) :==: <Int32tType()>);

C. Generator

The MUnit generator consists of many different transfor-
mation rules, which translate code written with the language
directly to mbeddr C. Listing 1 shows on the left hand side
an example program, written with mbeddr C and MUnit. The
right hand side shows the C program generated from it. While
regular mbeddr C code is not colored, the boxes indicate how
Abstract Syntax Tree (AST) nodes from the left are translated
to C code on the right.

1 int32 main(int32 argc,
2 string[] argv) {

3 return test[forTest] ;

4 }

5 _f;

6 blockexpr_2();

7 }

8 }

9 int32_t bp_2() {

10 i32_t _f = 0;

11

12 testcase forTest {

13 |

14 int32 sum = 0;

15 assert: sum == 0 ;

16 int32[] nums = {1, 2, 3};
17 for(int32 i=0;i<3;i++){
18 sum += nums[i];
19 }

20 assert: sum == 6 ;

21 _f++;

22 }

1 int32_t main(int32_t argc,
2 char *(argv[])) {

3 return blockexpr_2() ;

4 }

5 |

6 int32_t blockexpr_2(void) {

7 int32_t _f = 0;

8 _f += test_forTest();

9 return _f;

10 }

11

12 int32_t test_forTest() {

13 int32_t _f = 0;

14 int32_t sum = 0;

15 if(!(sum == 0)) { _f++; }

16 int32_t[] nums = {1, 2, 3};
17 for(int32_t i=0;i<3;i++){
18 sum += nums[i];
19 }

20 if(!(sum == 6)) { _f++; }

21 return _f;

22 }

Listing 1. Example mbeddr program using the unit test language on the left
and the C code that has been generated from it on the right

IV. MBEDDR DEBUGGER FRAMEWORK

mbeddr comes with a debugger, which allows users to
debug their mbeddr code on the abstraction levels of the used
languages. For that, each language contributes a debugger
extension, which is built with a framework also provided by
mbeddr [4]. Those extensions are always language-specific in
contrast to domain-specific debuggers (e. g., the moldable de-
bugger [5]), which provide application-specific debug actions
and views on the program state. Hence, debugging support is
implemented specifically for the language by lifting the call
stack/program state from the base-level to the extension-level
(see Fig. 2) and stepping/breakpoints vice versa.

Fig. 2. Flow of debug information between base and extension level [4]

The debugger framework can be separated into two different
parts: First, a DSL and a set of interfaces (shown in Fig. 3)

for specifying the debugging semantics of language concepts.
Second, a runtime for executing those specifications and thus
achieving the mapping described in Fig. 2.

In this section, we provide an overview of the specification
part (see Fig. 3) that is required for understanding how
the debugger extension for MUnit is built. While this paper
concentrates on testing debuggers for extensible languages, we
have published another paper [4] describing details about the
debugger framework and its implementation with MPS.

A. Breakpoints

Breakables are concepts (e. g., Statements) on which we
can set breakpoints to suspend the program execution.

B. Watches

WatchProviders are translated to low-level watches
(e. g., Argument) or represent watches on the extension-
level. They are declared inside WatchProviderScopes (e. g.,
StatementList), which is a nestable context.

C. Stepping

Steppables define where program execution must suspend
next, after the user steps over an instance of Steppable (e. g.,
Statement). If a Steppable contains a StepIntoable (e. g.,
FunctionCall), then the Steppable also supports step into.
StepIntoables are concepts that branch execution into a
SteppableComposite (e. g., Function).

All stepping is implemented by setting low-level break-
points and then resuming execution until one of these break-
points is hit (approach is based on [6]). The particular stepping
behavior is realized through stepping-related concepts by
utilizing DebugStrategies.

D. Call Stack

StackFrameContributors are concepts that have callable
semantics on the extension-level or are translated to low-level
callables (e. g., Functions). While the latter do not contribute
any StackFrames to the high level call stack, the former
contribute at least one StackFrame.

Fig. 3. Meta-model used for specifying the debugging semantics of language
concepts [4]. Colors indicate the different debugging aspects

V. DEBUGGER EXTENSION FOR THE MUNIT LANGUAGE

This section describes the implementation of a debugger ex-
tension for the MUnit language. This extension is defined with
the mbeddr debugger specification DSL and the abstractions
of the debugging meta-model shown in Fig. 3.

35

A. Breakpoints
To enable breakpoints on AssertStatements, an imple-

mentation of the Breakable interface is required. Assert-
Statement is derived from Statement that already imple-
ments this interface, thus breakpoints are already supported.

B. Watches
Since ExecuteTestExpression’s stack frame is not

shown in the high-level call stack, none of its watches are
mapped. In contrast, stack frames for Testcases are visible
thus we need to consider its watches. In case of Testcase,
the LocalVariableDeclaration _f has no corresponding
representation on the extension-level, and is therefore not
shown (specified in listing below).

The mbeddr debugger framework uses a pessimistic ap-
proach for lifting watches: those that should not be shown in
the UI are marked as hidden. Otherwise, the debugger shows
the low-level watch (in this case the C local variable _f) with
its respective value.
hide local variable with identifier "_f";

C. Stepping
AssertStatement is a Statement, which already provides

step over behavior. However, to be able to step into the
condition we overwrite Statement’s step into behavior:
break on nodes to step-into: this.expr;

break on nodes searches in condition for instances of
StepIntoable and contributes their step into strategies.
ExecuteTestExpression implements StepIntoable to

allow step into the referenced Testcases. A minimal imple-
mentation puts a breakpoint in each Testcase:
foreach testRef in this.tests {

break on node: testRef.test.body.statements.first;
}

D. Call Stack
Testcase and ExecuteTestExpression are translated to

base-level callables and therefore implement StackFrame-
Contributor. They contribute StackFrames, each is linked
to a base-level stack frame and states whether it is visible in
the extension-level call stack or not.

The implementation of ExecuteTestExpression links the
low-level stack frame to the respective instance (see listing be-
low). Further, it hides the frame from the high-level call stack,
since ExecuteTestExpression has no callable semantics.
contribute frame mapping for frames.select(name=getName());

Similarly the mapping for Testcase also requires linking
the low-level stack frame to the respective instance. However,
it declares to show the stack frame in the high-level call stack:
String frameName = "test_" + this.name;
contribute frame mapping for frames.select(name=frameName);

Further, we provide the name of the actual Testcase, which
is represented in the call stack view: Consider Listing 1, where
we would show the name forTest instead of test_forTest.

VI. REQUIREMENTS

The debugger testing DSL must allow us to verify at
least four aspects: call stack, program state, breakpoints and
stepping. To cover these requirements in DeTeL we delineate
in this section requirements. While we consider some of those
requirements as required (R), others are either context (CS)
or mbeddr specific (MS).

A. Required

R1 Debug state validation: Changes in generators can
modify names of generated procedures or variables and this
way, e. g., invalidate program state lifting in the debugger. For
being able to identify those problems, we need a mechanism to
validate the call stack, and for each of its frames the program
state and the location where execution is suspended. For the
call stack, a specification of expected stack frames with their
respective names is required. In terms of program state, we
need to verify the names of watches and their respective
values, which can either be simple or complex. Further, a
location specifies where program execution is expected to
suspend and tests can be written for a specific platform.

R2 Debug control: Similarly as in R1, generator changes
also affect the stepping behavior. Consider changing the
FunctionCall generator to inline the body of called functions
instead of calling them. This change would require modifica-
tions in the implementation of step into as well. For being
able to identify those problems, we need the ability to execute
stepping commands (in, over and out) and specify locations
where to break.

R3 Language integration: The DSL must integrate with
language extensions. This integration is required for specifying
in programs under test locations where to break (see R2) and
for validating where program execution is suspended (see R1).

B. Context Specific

CS1 Reusability: For writing debugger tests in an efficient
way, we expect from DeTeL the ability to provide reuse: (1)
test data, (2) validation rules and (3) the structure of tests. The
first covers the ability to have one mbeddr program as test data
for multiple test cases. The second refers to single definition
and multiple usage of validation rules among different test
cases. Finally, the third refers to extending test cases and
having the possibility to specialize them.

CS2 Extensibility: Languages should provide support for
contributing new validation rules thus achieving extensibility.
Those new rules can be used for testing further debugger
functionality not covered by DeTeL (e. g., mbeddr’s upcoming
support for multi-level debugging [7]) or for writing tests more
efficiently.

CS3 Automated test execution: For fast feedback about
newly introduced debugger bugs, we require the ability to
integrate our tests into an automatic execution environment
(e. g., an IDE or a build server).

36

C. Mbeddr Specific

MS1 Exchangeable debugger backends: mbeddr targets
the embedded domain where platform vendors require differ-
ent compilers and debuggers. Hence, we require the ability
to run our tests against different debugger backends and on
different platforms.

VII. DEBUGGER TESTING DSL

DeTeL is open-source and is shipped as part of mbeddr [8].
It is integrated in MPS and interacts with the mbeddr debugger
API. DeTeL is currently tightly coupled to mbeddr, however
it could interact with a generic debugger API and could be
implemented independent of MPS. This section describes the
structure of DeTeL and the implementation of requirements
discussed in Section VI. The language syntax is not docu-
mented, but can easily be derived by looking at its editor
definitions in MPS.

A. DebuggerTest

Fig. 4 shows the structure of DebuggerTest, which is
a module that contains IDebuggerTestContents, currently
implemented by DebuggerTestcase and CallStack (de-
scribed later). This interface facilitates extensibility inside
DebuggerTest (CS2). Further, DebuggerTest refers to a
Binary, which is a concept from mbeddr representing the
compiled mbeddr program under test (R3), the imports of
IDebuggerTestContents from other DebuggerTests (CS1)
and an IDebuggerBackend that specifies the debugger back-
end (CS2, MS1). The later is implemented by GdbBackend
and allows this way to run debugger tests with the GNU
Debugger (GDB) [9].

Fig. 4. Structure of DebuggerTest

MPS already contains the language mps.lang.test for
writing type system and editor tests. This allows (1) automatic
execution of tests on the command-line and (2) visualization of
test results in a table view inside MPS. All of that functionality
is built for future implementations of ITestcase - an interface
from mps.lang.test. By implementing this interface in
DebuggerTest (our container for DebuggerTestcases), we
benefit from available features (CS3).

B. CallStack

CallStack implements IDebuggerTestContent (see
Fig. 5) and contains IStackFrames (CS2, R1), which has two
implementations: StackFrame and StackFrameExtension.

An extending CallStack inherits all StackFrames from the
extended CallStack in the form of StackFrameExtensions,
with the possibility of specializing inherited properties (CS1),
and can declare additional StackFrames.

Fig. 5. Structure of CallStack

IStackFrame has three parts, each with two different
implementations: a name (IName), a location where program
execution should suspend (ILocation) and visible watches
(IWatches).
IName implementations: SpecificName verifies the spec-

ified name matches the actual and AnyName ignores it com-
pletely. ILocation implementations: AnyLocation that does
not perform any validation and ProgramMarkerRef that refers
via ProgramMarker to a specific location in a program under
test (R3). These markers just annotate nodes in the AST and
have no influence on code generation. IWatch implementa-
tions: AnyWatches performs no validations and WatchList
contains a list of Watches, each specifies a name/value
(IValue) pair. The value can be either PrimitiveValue
(e. g., numbers) or ComplexValue (e. g., arrays).

C. DebuggerTestcase

Fig. 6 shows the structure of DebuggerTestcase:
it can extend other DebuggerTestcases (CS1), has a
name, and can be abstract. Further it contains the
following parts: SuspendConfig, SteppingConfig and
ValidationConfig. Concrete DebuggerTestcases require
a SuspendConfig and a ValidationConfig (can be inher-
ited), while an abstract DebuggerTestcase requires none
of these.

Fig. 6. Structure of DebuggerTestcase

SuspendConfig contains a ProgramMarkerRef that points
to the first program location where execution suspends (R2).
SteppingConfig is optional and contains a list of IStep-

pingCommands (CS2) that are executed after suspending on

37

location (R2). This interface is implemented by StepInto,
StepOver, and StepOut (each performs the respective com-
mand n times).
ValidationConfig contains a list of IValidations

(CS2, R1), implemented by CallStack, CallStackRef and
OnPlatform. CallStackRef refers to a CallStack that can-
not be modified. Finally, OnPlatform specifies a Platform
(Mac, Unix or Windows) and contains validations, which are
only executed on the specific platform (R1).

VIII. WRITING DEBUGGER TESTS

In this section, we describe an application scenario where
we apply DeTeL to test the debugger extension of MUnit.

Before writing debugger tests, we first take the program
using MUnit from Listing 1 and annotate it in Listing 2
with ProgramMarkers. Those markers are later used by
DebuggerTestcases for specification and verification of code
locations where program execution should suspend.

1 int32 main(int32 argc, string[] argv) {
2 [return test[forTest];] onReturnInMain
3 }
4 int32 add(int32 a, int32 b) {
5 [return a+b;] inAdd
6 }
7 testcase forTest {
8 [int32 sum = 0;] onSumDeclaration
9 [assert: sum == 0;] firstAssert

10 [int32[] nums = {1, 2, 3};] onArrayDecl
11 for(int32_t i=0;i<3;i++) { sum += nums[i]; }
12 [assert: sum == 6;] secondAssert
13 }

Listing 2. Annotated program

Next, in the Listing 3 a stub of DebuggerTest UnitTesting
is created that will later contain all DebuggerTestcases
described in this section. UnitTesting tests against the Binary
UnitTestingBinary, which is compiled from Listing 2. Addi-
tionally, it instructs the debugger runtime to execute tests with
the GdbBackend.

1 DebuggerTest UnitTesting tests binary: UnitTestingBinary {
2 uses debugger: gdb
3 }

Listing 3. DebuggerTest stub

A. Step Into ExecuteTestExpression

For testing step into on instances of Execute-
TestExpression, in the Listing 4, we create a CallStack
that specifies the stack organization after performing step
into on onReturnInMain. To reuse information and minimize
redundancy in subsequent DebuggerTestcases, two separate
CallStacks are created: First, csInMainFunction contains
a single StackFrame that expects (1) program execution
to suspend at onReturnInMain and (2) two Watches (argc
and argv). Second, csInTestcase extends csInMainFunction
by adding an additional StackFrame forTest on top of
the StackFrameExtension main (colored in gray). This
StackFrame specifies two Watches (sum and nums) and no
specific location (AnyLocation).

1 call stack csInMainFunction {
2 0:main
3 location: onReturnInMain
4 watches: {argc, argv}
5 }
6

7 call stack csInTestcase extends csInMainFunction {
8 1:forTest
9 location: <any>

10 watches: {sum, nums}
11 0:main
12 }

Listing 4. CallStack declarations

Listing 5 contains the DebuggerTestcase stepIntoTest-
case, which uses the CallStack csInTestcase to verify step
into for instances of ExecuteTestExpression. As a first
step, program execution is suspended at onReturnInMain, next,
a single StepInto is performed before the actual call stack
is validated against a custom CallStack derived from csIn-
Testcase. This custom declaration specializes the StackFrame
forTest i. e., program execution is expected to suspend at
onSumDeclaration.

1 testcase stepIntoTestcase {
2 suspend at:
3 onReturnInMain
4 then perform:
5 step into 1 times
6 finally validate:
7 call stack csOnSumDeclInTestcase extends csInTestcase {
8 1:forTest
9 overwrite location: onSumDeclaration

10 watches: {sum,nums}
11 0:main
12 }
13 }

Listing 5. Step into ExecuteTestExpression

B. Step into/over AssertStatement

After verifying step into for ExecuteTestExpression in
the previous section, we now test step into and over for
AssertStatement. Both stepping commands have the same
result when performed at firstAssert, hence common test
behavior is extracted into the abstract DebuggerTestcase
stepOnAssert as shown in Listing 6: (1) program execution
suspends at firstAssert, (2) a custom CallStack verifies
program execution suspended in forTest on onArrayDecl and
(3) the Watch num holds the PrimitiveValue zero.

1 abstract testcase stepOnAssert {
2 suspend at:
3 firstAssert
4 finally validate:
5 call stack csOnArrayDeclInTestcase extends csInTestcase {
6 1:forTest
7 overwrite location: onArrayDecl
8 overwrite watches: {sum=0,nums}
9 0:main

10 }
11 }

Listing 6. Abstract DebuggerTestcase

The DebuggerTestcase stepIntoAssert extending
stepOnAssert performs a StepInto command and stepOver-
Assert performs a StepOver:

38

1 testcase stepIntoAssert extends stepOnAssert {
2 then perform:
3 step into 1 times
4 }
5 testcase stepOverAssert extends stepOnAssert {
6 then perform:
7 step over 1 times
8 }

Listing 7. Extending DebuggerTestcases

C. Step on last Statement in Testcase

The last testing scenario verifies that stepping on the last
Statement (secondAssert) inside a Testcase suspends exe-
cution on the ExecuteTestExpression (onReturnInMain).
Again, we create an abstract DebuggerTestcase steppin-
gOnLastStmnt that suspends execution on secondAssert and
verifies that the actual call stack has the same structure as
CallStack csInMainFunction:

1 abstract testcase steppingOnLastStmnt {
2 suspend at:
3 secondAssert
4 finally validate:
5 call stack csInMainFunction
6 }

Listing 8. Assumptions after suspending program execution in main

Next, separate DebuggerTestcases are created, each for
step over, into and out, which extend steppingOnLastStmnt
and specify only the respective ISteppingCommand:

1 testcase stepOverLastStmnt extends steppingOnLastStmnt {
2 then perform:
3 step over 1 times
4 }
5

6 testcase stepIntoLastStmnt extends steppingOnLastStmnt {
7 then perform:
8 step into 1 times
9 }

10

11 testcase stepOutFromLastStmnt extends steppingOnLastStmnt {
12 then perform:
13 step out 1 times
14 }

Listing 9. Test stepping commands on last Statement in Testcase

In each DebuggerTestcase from the listing above exe-
cution suspends on the same Statement (OnReturnInMain),
although different stepping commands are performed. Remem-
ber, since secondAssert does not contain any children of type
StepIntoable (e. g., FunctionCall), performing a step into
on the Statement has the same effect as a step over.

IX. EXECUTING DEBUGGER TESTS

Our test cases from the previous section are generated
to plain Java code and can be executed in MPS with an
action from the context menu. This functionality is ob-
tained by implementing ITestcase in DebuggerTest (see
Section VII-A). By executing this action, test results are
visualized in a table view, provided by MPS: for each
DebuggerTestcase, the result (success or fail) is indicated
with a colored bubble and a text field shows the process output.

As indicated by a green bubble on the left side of Fig. 7, all
of our previously written DebuggerTestcases pass. We show

in the next section how language evolution will invalidate the
debugger definition and this way cause all of our tests to fail.

Fig. 7. Successful execution of DebuggerTestcases in MPS

X. LANGUAGE EVOLUTION

The previous sections have shown how to build a language
extension for mbeddr in MPS, define a debugger for this
extension and use DeTeL to test its debugging behavior. This
section demonstrates how DeTeL is used to identify invalid
definitions in debugger extensions after evolving the language.

A. Evolving MUnit

In this section we modify the MUnit generator to demon-
strate how this affects the debugger. Currently, the generator
reduces a Testcase to a Function: its name is prefixed with
test_, followed by the Testcase name (see Listing 1). We
now change this generator, so the Function name is prefixed
with testcase_, instead of test_. The listing below shows how
our example program from Listing 1 is now generated to C.

int32_t main(int32_t argc,
char *(argv[])) {

return blockexpr_2() ;

}

|

int32_t blockexpr_2(void) {

int32_t _f = 0;

_f += testcase_forTest();

return _f;

}

int32_t testcase_forTest() {

int32_t _f = 0;

int32_t sum = 0;

if(!(sum == 0)) { _f++; }

int32_t[] nums = {1, 2, 3};
for(int32_t i=0;i<3;i++){

sum += nums[i];
}

if(!(sum == 6)) { _f++; }

return _f;

}

Listing 10. C code that has been generated with the modified Testcase
generator for the example program from Listing 1

Because of our generator modification, Testcases are
now generated to Functions with a different identifier as
before. However, we have not updated the debugger extension,
therefore, the call stack construction for all Testcases fails
and this way all of our DebuggerTests fail as well (see
Fig. 8). Although those debugger tests fail, they are still valid,
since they are written on the abstraction level of the languages,
not the generator. The next section shows how we update the
debugger extension to solve the call stack construction.

Fig. 8. Failing DebuggerTestcases after modifying the generator

39

B. Updating the Debugger Extension

The MUnit debugger extension tries to lift for each
Testcase a stack frame whose name is prefixed with test_,
followed by the name of the respective Testcase (see
Section V-D). However, due to our generator modification,
this frame is not present and therefore the whole call stack
construction fails with an error. To solve this problem, we
update the name used for matching the stack frame name:
String frameName = "testcase_" + this.name;
contribute frame mapping for frames.select(name=frameName);

Other aspects, such as stepping, breakpoints or watches are
not affected by the generator modification and hence do not
need to be changed. Therefore, after fixing the call stack lifting
for Testcase our debugger tests pass again.

XI. RELATED WORK

Wu et al. describe a unit testing framework for DSLs [10]
with focus on testing the semantics of the language. However,
from our perspective, it is necessary to have testing DSLs for
all aspects of the language definition, e. g., editor (concrete
syntax), type system, scoping, transformation rules, and finally
the debugger.1 mbeddr contains tests for the editor, type
system, scoping and transformation rules, our work contributes
the language for testing the debugger aspect.

The Low Level Virtual Machine (LLVM) project [11] comes
with a C debugger named Low Level Debugger (LLDB). Test
cases for this debugger are written in Python and the unit test
framework of Python. While those tests verify the command
line interface and the scripting Application Programming In-
terface (API) of the debugger, they also test other functionality,
such as using the help menu or changing the debugger settings.
Further, some of the LLDB tests verify the debugging behavior
on different platforms, such as Darwin or Linux. In contrast,
we only concentrate on testing the debugging behavior, but
also support writing tests for specific platforms. Our approach
for testing the debugging behavior is derived from the LLDB
project: write a program in the source-language (mbeddr),
compile it to an executable and debug it through test cases,
which verify the debugging behavior.

The GDB debugger takes a similar approach as the LLDB:
tests cover different aspects of the debugger functionality and
are written in a scripting language [9]. Contrarily, to our
approach of testing debugging for one extensible language, the
GDB project tests debugging behavior for all of its supported
languages, such as C, C++, Java, Ada etc. Further, those tests
run on different platforms and target configurations. Our work
supports writing tests against different platforms, but does not
allow users to change the target configuration via the DSL.

XII. SUMMARY AND FUTURE WORK

The mbeddr extensible language comes with an extensible
debugger. To test this debugger, we have introduced in this
paper a generic and extensible testing DSL. The language is
implemented in MPS with focus on mbeddr, but the underlying

1Specific language workbenches might require testing of additional aspects

approach is applicable for testing any imperative language
debugger. Further, we have shown in this paper (1) the
implementation of a language extension, (2) how debugging
support is build for it and (3) how the debugger is tested with
use of our DSL. The language is designed for extensibility,
so others can contribute their own context-specific validation
rules. In addition, we concentrated on reuse, so test data, test
structures and validation rules can be shared among tests.

In the future, we plan to investigate ways for integrating
the debugger specification DSL with the DSL for testing the
debugger extension. From this integration we expect to (1)
gain advances in validating debugger test cases and (2) the
possibility to automatically generate test cases from formal
debugger specifications (based on work from [12], [13] and
[14]). In addition, we will continue researching on languages
for testing non-functional aspects, such as testing the perfor-
mance of stepping commands and lifting of program state.

REFERENCES

[1] M. Voelter, “Language and IDE Development, Modularization and Com-
position with MPS,” in Generative and Transformational Techniques in
Software Engineering, ser. Lecture Notes in Computer Science, 2011.

[2] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “Mbeddr: An extensible
c-based programming language and ide for embedded systems,” in
Proceedings of the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, ser. SPLASH ’12. New York,
NY, USA: ACM, 2012, pp. 121–140.

[3] JetBrains, “Meta Programming System,” 2015. [Online]. Available:
http://www.jetbrains.com/mps

[4] D. Pavletic, M. Voelter, S. A. Raza, B. Kolb, and T. Kehrer, “Extensible
debugger framework for extensible languages,” in Reliable Software
Technologies - Ada-Europe 2015 - 20th Ada-Europe International Con-
ference on Reliable Software Technologies, Madrid Spain, June 22-26,
2015, Proceedings, ser. Lecture Notes in Computer Science, J. A. de la
Puente and T. Vardanega, Eds., vol. 9111. Springer, 2015, pp. 33–49.

[5] A. Chis, T. Gîrba, and O. Nierstrasz, “The moldable debugger: A
framework for developing domain-specific debuggers,” in Software Lan-
guage Engineering - 7th International Conference, SLE 2014, Västerås,
Sweden, September 15-16, 2014. Proceedings, 2014, pp. 102–121.

[6] H. Wu, “Grammar-driven Generation of Domain-specific Language Test-
ing Tools,” in 20th Annual ACM Special Interest Group on Programming
Languages (SIGPLAN) Conference on Object-oriented Programming,
Systems, Languages, and Applications. San Diego, CA, USA: ACM,
2005, pp. 210–211.

[7] D. Pavletic and S. A. Raza, “Multi-Level Debugging for Extensible
Languages,” Softwaretechnik-Trends, vol. 35, no. 1, 2015.

[8] B. Kolb, M. Voelter, D. Ratiu, D. Pavletic, Z. Molotnikov, K. Dummann,
N. Stotz, S. Lisson, S. Eberle, T. Szabo, A. Shatalin, K. Miyamoto,
and S. Kaufmann, “mbeddr.core - An extensible C,” https://github.com/
mbeddr/mbeddr.core, GitHub repository, 2015.

[9] Free Software Foundation, “The GNU Project Debugger,” 2015.
[Online]. Available: https://www.gnu.org/software/gdb/

[10] H. Wu, J. G. Gray, and M. Mernik, “Unit testing for domain-specific
languages,” in Domain-Specific Languages, IFIP TC 2 Working Confer-
ence, DSL 2009, Oxford, UK, July 15-17, 2009, Proceedings, ser. Lecture
Notes in Computer Science, W. M. Taha, Ed., vol. 5658. Springer, 2009,
pp. 125–147.

[11] LLVM Compiler Infrastructure, “The LLDB Debugger,” 2015. [Online].
Available: http://lldb.llvm.org

[12] H. Wu and J. Gray, “Automated generation of testing tools for domain-
specific languages.” in ASE, D. F. Redmiles, T. Ellman, and A. Zisman,
Eds. ACM, 2005, pp. 436–439.

[13] P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray, and
H. Wu, “Automatic generation of language-based tools using the LISA
system,” Software, IEE Proceedings -, vol. 152, no. 2, pp. 54–69, 2005.

[14] H. Wu, J. Gray, and M. Mernik, “Grammar-driven generation of
domain-specific language debuggers.” Software: Practice and Experi-
ence, vol. 38, no. 10, pp. 1073–1103, 2008.

40

http://www.jetbrains.com/mps
https://github.com/mbeddr/mbeddr.core
https://github.com/mbeddr/mbeddr.core
https://www.gnu.org/software/gdb/
http://lldb.llvm.org

	Introduction
	mbeddr
	Language Extension for Unit Testing
	Structure
	Type System and Constraints
	Generator

	mbeddr Debugger Framework
	Breakpoints
	Watches
	Stepping
	Call Stack

	Debugger Extension for the MUnit Language
	Breakpoints
	Watches
	Stepping
	Call Stack

	Requirements
	Required
	Context Specific
	Mbeddr Specific

	Debugger Testing DSL
	DebuggerTest
	CallStack
	DebuggerTestcase

	Writing Debugger Tests
	Step Into ExecuteTestExpression
	Step into/over AssertStatement
	Step on last Statement in Testcase

	Executing Debugger Tests
	Language Evolution
	Evolving MUnit
	Updating the Debugger Extension

	Related Work
	Summary and Future Work
	References

