
An Autonomic Computing System based on a Rule-based Policy Engine and
Artificial Immune Systems

Rahmira Rufus, William Nick, Joseph Shelton and Albert Esterline
Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411

{rsrufus, wmnick, jashelt1}@aggies.ncat.edu, esterlin@ncat.edu

Abstract
Autonomic computing systems arose from the notion that
complex computing systems should have properties like those
of the autonomic nervous system, which coordinates bodily
functions and allows attention to be directed to more pressing
needs. An autonomic system allows the system administra-
tor to specify high-level policies, which the system maintains
without administrator assistance. Policy enforcement can be
done with a rule based system such as Jess (a java expert sys-
tem shell). An autonomic system must be able to monitor
itself, and this is often a limiting factor. We are developing
an automatic system that has a policy engine and uses Arti-
ficial Immune Systems (AISs) to sense its environment and
to monitor its components and performance. AISs emulate
the natural immune system to defend the body against exter-
nal malicious entities. The proposed system monitors itself
without human intervention and thus addresses the problem
of systems complexity.

Introduction
With more systems and devices networked together, more
system administrators are required to monitor and maintain
these networks, and maintenance becomes costly and time
consuming. Yet it may not be clear how a complex sys-
tem may manage itself in the absence of a human. We
here report on an autonomic system we are developing for
a network-connected computer system that self-manages by
using mechanisms similar to the autonomic nervous sys-
tem of the body to achieve the so-called self-CHOP prop-
erties: self-configuring, self-healing, self-optimizing, and
self-protecting. A rule-based policy enforcement engine is
used (like the body’s hypothalamus) to regulate the auto-
nomic system, and the system has artificial immune systems
(AIS) that mimic the functions of the sensory and motor sub-
systems.

The remaining sections of this paper are organized as fol-
lows. The next section provides background on autonomic
computing, AISs, and rule-based systems. We then discuss
the motivation for implementing an AIS. There follows a
section that presents the architecture of our autonomic sys-
tem. This is followed by the AIS sensoring agent section,
where we describe how the AIS aids the autonomic system
with its self-CHOP capabilities via anomaly detection. The
context monitor is then described, followed by a section de-
scribing how the self-CHOP properties are realized by our

system. The final section presents the conclusion and future
work.

Background
Autonomic Computing
IBM, in a 2001 manifesto, compared complex computing
systems to the human body, which has an autonomic nervous
system that removes the tasks of consciously coordinating
bodily functions (Huebscher and McCann 2008). Complex
computing systems should have autonomic properties that
independently take care of tasks of regular maintenance and
optimization tasks, thus reducing the workload on the sys-
tem administrator.

IBM also articulated the four self-CHOP properties. Self-
configuration is defined as components and systems being
configured as per high-level policies (Kephart and Chess
2003). When a component is introduced into a system, it is
incorporated seamlessly, and the rest of the system adapts to
the presence of the new component. With self-optimization,
components and systems continually seek to improve their
performance and efficiency. Self-healing is defined as a
system automatically detecting, diagnosing, and repairing
problems in software and hardware. Finally, self-protection
is defined as a system being able to automatically defend
against malicious attacks or cascading failures. Kephart et
al. (Kephart and Walsh 2004) came up with three types of
policies for autonomic computing: 1) action policies, 2) goal
policies, and 3) utility function policies. Action policies
specify what actions should be taken based on the current
state of the system. A goal policy specifies either a desired
state or a set of criteria for a desired state. Utility function
policies are objective functions that provide a utility value
for each possible state.

Artificial Immune Systems
The natural immune system is a defense mechanism that can
learn about foreign entities that enter the body and respond
to them by creating defensive antibodies. This concept has
been artificially simulated for intrusion detection, resulting
in an approach known as an artificial immune system (AIS)
(Hofmeyr and Forrest 2000). Similar to the biological im-
mune system, the goal of an AIS is to distinguish between
self and non-self entities. The natural immune system that

Rahmira Rufus et al. MAICS 2016 pp. 105–108

105



this system imitates depicts self as a cell that is innate or
safe for the body while non-self is not. One can associate
this mapping with detecting or sensing what is as opposed
to what is not; this mapping is also known as a detector.

AISs have also been applied to the problems of fault di-
agnostics, fraud detection and detecting viruses (DasGupta
1993). There are a few methods for using an AIS. One is the
negative selection algorithm (Forrest et al. 1994).This tech-
nique randomly generates a set of detectors that are trained
to match any non-self entities for any system and not match
any self entities. More specifically, the detectors are first ap-
plied on a set of self entities and the ones that detect the self
entities are discarded. The idea is that, if a detector does
not match self, it has a better chance of detecting non-self,
which would be any anomaly in the system. The surviving
detectors can then be applied on non-self to observe how
much of the set can be detected.

Rule-Based Systems
The classical application of rule-based systems is in expert
systems, which typically use a human experts knowledge for
solving real world problems (Abraham 2005). This expert
knowledge is often expressed in the terms of rules. These
rules and data constitute a rule-based expert systems. Such
systems have played a role in modern artificial intelligence
and other applications such as fault monitoring. The Pon-
der rule-based policy language (Bradshaw, Uszok, and Mon-
tanari 2014) is the broadest and most widely used policy
language.Its policies are rules that define system behavior
choices that reflect on objectives set by system managers.
Other rule-based policy enforcement systems use the event-
condition-action rule paradigm. An example of this is Bell
Labs’ policy description language, in which a policy is a
function that maps a series of events into a set of actions.

Carey et al. created a composite service execution engine
for composing web services (Carey, Lewis, and Wade 2004).
The policy engine for this execution engine uses the Jess rule
engine (Friedman-Hill 2013). The rules are executed to re-
fine goals into service policies. Before the policy engine can
execute, additional information is required such as the name
of the service and the finite state machine (FSM) models
for each of the constituted services. Goals are refined by
Jess rules triggered when the state used in high-level policy
matches the state in the FSM of the composite service.

Requirements
We aim for a system capable of adapting to unforeseen oc-
currences in the operating environment. This includes ad-
justing to situations in a proactive manner as well as reac-
tively supporting system recovery. Here pro-action amounts
to perceiving danger then preempting harm or any compro-
mised system state. Fault tolerance in the operating environ-
ment permits system execution to continue without interrup-
tion, while preempting failure from a system-wide perspec-
tive presupposes the occurrence of a compromised system
component or operation.

Anomaly detection can be a key component to prop-
erly assessing whether events are uncharacteristic of a sys-

tem’s configuration (De Castro and Von Zuben 2000). Fur-
thermore, accompanying this detection method with a re-
sponse procedure that reduces the damage of the compro-
mised component is crucial, but also crucial is simulta-
neously permitting uncompromised system components to
continue. One goal of this research is to provide a sensoring
component that promotes the self-CHOP requirements for
an autonomic system.

One immunity-inspired algorithm of interest focuses on
danger theory, which extends the role of the innate im-
mune system for discriminating between ‘self’ and ‘non-
self’ but employs the acquired immune system to react to
danger (Brownlee 2011). Sensing danger lets a system pro-
tect, recover or heal, optimize and determine whether a re-
configuration assessment is necessary. Unlike Fail2ban, our
system will learn new malicious and unwanted traffic to pro-
tect itself from malicious and unwanted traffic in the future.

System Architecture
Figure 1 shows our proposed system, which realizes the self-
CHOP properties. The external world feeds information into
the system through a series of sensors. AISs are used as de-
tectors that identify anomalies from the outside world. The
input from the external world also feeds into a rule-based
policy engine. The rule-based policy engine connects to a
rule base of policies. This engine accepts as input sensor
data from the AISs as well as the context monitor, which
is the component collecting information about the state of
the system’s context by monitoring network connections and
system resources. In addition to providing status informa-
tion to the context monitor, the system resources also pro-
vide status information to the AISs to help inform the de-
tectors. The system is maintained in a proper state by the
rule-based policy engine.

Figure 1: AIS & Autonomic System with Rule Based Sys-
tem

Rahmira Rufus et al. MAICS 2016 pp. 105–108

106



AIS Sensor Agents
We here discuss how the AISs contribute to the self-CHOP
properties. Note that sometimes we refer to a single AIS
while other times we partition the functionality among sev-
eral AISs. Although we refer to sensing, note that the AISs
detect both external and internal state. The AIS sensoring
apparatus will consist of detector populations that moni-
tor system activity as does a network sniffer or intercept-
ing proxy. The AIS component will deploy detectors that
compare system activity against normal system behavior.
The detection methods behave as intrusion detection sys-
tems (IDSs) that detect system irregularities not stated in the
innate system configuration. The detection method can also
adapt to changes in the system.

The detector set will become a new feature vector for de-
tecting danger in the system. The new vector will allow the
system to recognize system behavior that has been previ-
ously labeled as dangerous. The new danger vector is then
propagated throughout the system to scan for stress levels
that are approaching this danger state.

Each round, the AIS will acquire more knowledge about
the operating environment via the detector populations. The
cloning process allows one generation to be more adept than
the previous. The acquired immunity that aids the AIS in de-
termining the health of the system is expressed via the num-
ber of danger vectors that have been detected and mitigated
properly, with more emphasis on the mitigation process.

Following the detection of a stress level threshold being
met, the policy engine will determine whether the system is
in danger based upon the signal that the AIS found to indi-
cate danger. If danger is confirmed, then the policy engine
will determine what the system needs to repair or heal itself.
For each consecutive detection round, the AIS will monitor
the healing process by executing a subset of detectors for
repair monitoring.

The system will adapt to the configuration expected of
systems and components as per high-level policies during
self-configuration (Kephart and Chess 2003). Conversely,
within the configuration assessment module, the AIS will
initially transmit a response to the policy engine that the
need for repair or healing is not foreseeable. During the
healing or repair process, the repair subset monitors the heal-
ing of the system via the change from affinity to a danger
vector to the self set. Excessive danger is the signal to the
policy engine to determine whether the system should limit
the usage of the system component because the component
might cause other components to be compromised. To in-
crease the fault tolerant capabilities for the autonomic sys-
tem, the AIS will monitor the affinity to danger or self for all
system components involved or related to this configuration
assessment.

Context Monitor
The environment of a computer system can undergo changes
for any number of reasons. To deal with this, one ex-
ploits context awareness, a computer sensing and reacting
to changes in its environment (Abowd et al. 1999). The en-
vironment that is monitored by some context-aware device is

generally external; however, there is no reason that the envi-
ronment cannot be the internal workings of a system. There
are several consistent workings of any system that are con-
sistent, such as CPU usage, amount of memory available,
and network traffic to name a few.

Rule-based Policy Engine
For our rule-based policy engine, we used Jess (Java Ex-
pert System Shell) (Friedman-Hill 2013) . The policies use
if-then rules as is standard with Jess. The variables in the
rules are values provided by the AIS and the context moni-
tor. The rule-based system will control switches and various
resources. The sensor data from the AIS and the context
monitor will be fused using the Dempster-Shafer theory of
evidence (Shafer 1976). Based on the fused data, policies
that are appropriate will be executed.

One of the purposes of our proposed system is intrusion
detection. With this in mind, there are policies that are fo-
cused on this activity. For one thing, if packets from the
network come in and the timestamp of these packets are a
certain time away from the system’s current time, a flag will
be raised. If continuous traffic is coming from one specific
IP address, it could be indicative of a Denial-of-Service at-
tack. In this case, the system may block packets from that
particular IP address. For any input coming into the system,
it is assumed that the input is in a standard format. How-
ever, if the input appears to be irregular, such as a password
having many symbols not numerical or alphabetical, then a
warning flag may be raised. There are also policies related
to internally monitoring the system. The system should run
fairly consistently, where the CPU usage may spike or idle
depending on certain actions occurring on the system. If
there are times when the CPU spikes or peaks and none of
the activities that normally causes this are occurring, then
the system may take actions to run a diagnostics check on
it. If enough memory is consumed, the system may run a
heuristic to delete items that it considers to no longer be nec-
essary. The AISs in the machine are developing detectors to
detect anomalies externally and internally. The policies can
have additional steps that state that if it catches anything the
detectors from the AISs do not, it will prompt the AISs to
adjust its detector creation strategy.

enough memory is consumed, the system may run a
heuristic to delete items that it considers to no longer be nec-
essary. The AISs in the machine are developing detectors to
detect anomalies externally and internally. The policies can
have additional steps that state that if it catches anything the
detectors from the AISs do not, it will prompt the AISs to
adjust its detector creation strategy.

Within any automated system, faults can occur. Faults can
be described as unexpected changes from the normal system
condition. The area of research dedicated to detecting faults
is referred to as the Abnormal Event Management (AEM)
in research done by Laurentys et al. (Laurentys et al. 2010).
More specifically, the AEM deals with detecting, diagnosing
and correcting abnormal conditions in real-time. An AIS can
develop detectors that have a great information processing
capability, pattern recognition and learning ability. These
abilities can be applied towards creating detectors that can

Rahmira Rufus et al. MAICS 2016 pp. 105–108

107



detect faults and take appropriate action. In the scope of our
problem, the faults would be internal such as if something
goes wrong with disk mirroring, or memory swapping from
the disk. The self set of a detector would be the “normal”
state of the system, and non-self would be anything that is
different enough from the baseline of the system.

Realization of the Self-CHOP Properties
A major aspect of protection is sensing attempted intrusion,
which is a standard task for AISs, detecting “self” and “non-
self.” We can generalize this function to perceiving danger
(in the environment) in general and perhaps even to recog-
nizing a need to adapt to a change in the environment. The
general notion is that of monitoring the environment to pro-
tect self. The intent is that an AIS will identify a threat and
characterize it sufficiently so that the policy engine may ac-
tivate resources as per the applicable policies. The expert
system may consult with AISs in the course of enforcing a
policy.

In a similar vein, we can have the AISs detect when the
system is not “itself” and in need of repair; this is the heal
CHOP attribute, and what is monitored is self. The role of
the AIS here is to identify faulty behavior and to characterize
it so that the expert system may activate resources as per the
applicable policies. Again, the policy engine may consult
with AISs in the course of enforcing a policy.

This vigilance regarding the system’s own behavior may
extend to self-optimization if we have a baseline reading of
system behavior. An AIS would help us distinguish accept-
able patterns that deviate from this pattern (as when some re-
source is accessed) from unacceptable patterns. Something
similar could address self-configuration. The most obvious
occasions for self-configuration, however, are where a new
device is attached. In such cases, a simple signal from a
context monitor would suffice to provide the policy engine
all the information needed to apply policies.

Conclusion & Future Work
We have sketched the autonomic system we are developing
that uses artificial immune systems (AISs) augmented with
a context monitor to provide data to a rule-based policy en-
gine. The architecture is conceptualized as the AISs and
context monitor providing sense data to the policy engine,
but not that the data is also from the internal state of the sys-
tem. We discussed how the system supports the self-CHOP
properties: self configuring, self-healing, self-optimizing,
and self-protecting.

We are implementing our autonomic architecture on a
stock workstation that is attached to the Internet (inviting in-
truders) and to which we can attached multiple accessories
(requiring self-configuration). In the future, we plan to in-
vestigate autonomic cyberphysical systems. In the future,
we shall look into other biological metaphors and implement
some into our system.

References
Abowd, G. D.; Dey, A. K.; Brown, P. J.; Davies, N.; Smith,
M.; and Steggles, P. 1999. Towards a better understanding of

context and context-awareness. In Handheld and ubiquitous
computing, 304–307. Springer.
Abraham, A. 2005. Rule-based expert systems. Handbook
of measuring system design.
Bradshaw, J. M.; Uszok, A.; and Montanari, R. 2014.
Policy-based governance of complex distributed systems:
What past trends can teach us about future requirements. Ag-
ile Computing.
Brownlee, J. 2011. Clever algorithms: nature-inspired pro-
gramming recipes. Jason Brownlee.
Carey, V. K.; Lewis, D.; and Wade, V. 2004. Automated
policy-refinement for managing composite services. M-
Zones White Paper June 4:114–130.
DasGupta, D. 1993. An overview of artificial immune sys-
tems and their applications. Springer.
De Castro, L. N., and Von Zuben, F. J. 2000. Artificial
immune systems: Part i–basic theory and applications. Uni-
versidade Estadual de Campinas, Dezembro de, Tech. Rep
210.
Forrest, S.; Perelson, A. S.; Allen, L.; and Cherukuri, R.
1994. Self-nonself discrimination in a computer. In null,
202. Ieee.
Friedman-Hill, E. 2013. Jess, the rule engine for the java
platform. Java Expert System Shell, http://jessrules.com,
United States.
Hofmeyr, S. A., and Forrest, S. 2000. Architecture for
an artificial immune system. Evolutionary computation
8(4):443–473.
Huebscher, M. C., and McCann, J. A. 2008. A survey of au-
tonomic computingdegrees, models, and applications. ACM
Computing Surveys (CSUR) 40(3):7.
Kephart, J. O., and Chess, D. M. 2003. The vision of auto-
nomic computing. Computer 36(1):41–50.
Kephart, J. O., and Walsh, W. E. 2004. An artificial in-
telligence perspective on autonomic computing policies. In
Policies for Distributed Systems and Networks, 2004. POL-
ICY 2004. Proceedings. Fifth IEEE International Workshop
on, 3–12. IEEE.
Laurentys, C.; Ronacher, G.; Palhares, R. M.; and Camin-
has, W. M. 2010. Design of an artificial immune system
for fault detection: a negative selection approach. Expert
Systems with Applications 37(7):5507–5513.
Shafer, G. 1976. A mathematical theory of evidence, vol-
ume 1. Princeton university press Princeton.

Rahmira Rufus et al. MAICS 2016 pp. 105–108

108


