
Reversible Semantics in Session-based
Concurrency?

Claudio Antares Mezzina1 and Jorge A. Pérez2

1 IMT School for Advanced Studies Lucca, Italy
2 University of Groningen, The Netherlands

Abstract. Much research has studied foundations for correct and reliable
communication-centric systems. A salient approach to correctness uses
session types to enforce structured communications; a recent approach
to reliability uses reversible actions as a way of reacting to unanticipated
events or failures.
This note describes recent work that develops a simple observation: the
machinery required to define monitored semantics can also support re-
versible protocols. We illustrate a process framework of session commu-
nication in which monitors support reversibility. A key novelty in our
approach are session types with present and past, which allow us to
streamline the semantics of reversible actions.

1 Introduction

The purpose of this short paper is to motivate and describe our ongoing work in
reversible models of structured communications [8]. Framed within concurrency
theory and process calculi approaches, we are interested in developing rich models
of concurrent computation in which communicating processes follow structured
interaction protocols (as described by session types [3]), and whose underlying
operational semantics admits the possibility of reversing their actions. This inte-
gration of structured communication and reversibility should inform the design of
sound programming abstractions for resilient communicating programs governed
by casual consistent semantics.

Models of reversible computation and structured communications have re-
ceived much attention (cf. [1,3]). Reversing computational steps is an appealing
feature in different scenarios; for instance, in the case of a failure in a (concurrent)
program or transaction, we might like to undo all steps leading to the failure, so
? Partially supported by EU COST Actions IC1201 (Behavioral Types for Reliable
Large-Scale Software Systems) and IC1405 (Reversible Computation - Extending
Horizons of Computing).

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 221–226
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

222 Claudio Mezzina and Jorge A. Pérez

as to return to last known stable state of the system. Indeed, good examples of
how reversibility can be used to model transactional models are [2,6]. The design
of reversible semantics for models of concurrency is a delicate issue, for we would
like to undo computational steps in a causally consistent fashion: a step should
be undone only if all its causes (if any) have been already undone. In this way,
reversibility in a causal consistent model leads to a system state that could have
been reached by performing forward steps only.

The key observation that underlies our work is that the design of casually
consistent operational semantics for concurrent processes can take advantage of
the structured protocols that typically govern their behavior. As session types
abstract sequences of communication actions (protocols), they appear as a natural
choice for recording the forward and backward actions of interacting processes.

In recent work, we have started to formalize the integration of reversibility
and session-based concurrency [8]. In this note, we illustrate the model in [8] by
means of a simple example that contains the main ingredients of our approach,
namely an operational semantics for untyped processes which is instrumented by
monitors that contain protocols specified as session types. In order to support
both forward and backward steps, we consider session types that describe both
past and present protocol states.

2 Reversible Sessions, By Example

Our proposal builds upon the approach of models of concurrency such as the π-
calculus. As such, main ingredients in our approach are configurations, processes,
and (protocol) types, whose syntax is given in Figure 1. We assume a language
of the expressions e, e′, . . . that includes basic values, variables, and functions on
them. The syntax of configurations includes the empty configuration 0, name
restriction νn.M , parallel composition M ‖ N , but also running processes and
monitors:

– A running process
〈
P · σ · ũ

〉
s̃
is univocally identified by s̃, the list of session

endpoints occurring in P . The local store σ is a list of pairs of the form
{x, ṽ} (i.e., a set of mappings from variables to values); the list ũ collects the
subjects of actions already performed by P .

– Given a session name s, a monitor sbH · ẽc contains a protocol (session) type
H that describes the structured behavior associated to s (see below) and a
list ẽ containing all the expressions (including variables) used by the process.

Intuitively, the list ũ in the running process and the list ẽ in the monitor will be
used to record previously performed actions and reconstruct the process structure
accordingly.

The design of the operational semantics for our model is inspired by the ap-
proach of [5], in which session types are used as monitors that enable communica-
tion actions: a synchronization can only occur if the process actions correspond
to the intended protocols given by the monitor types. After synchronization, por-
tions of both processes and monitor types are consumed. Our approach consists

Reversible Semantics in Session-based Concurrency 223

(configurations) M,N ::= 0 | 〈P · σ · ũ〉
s̃
| sbH · ẽc | νn.M | M ‖ N

(processes) P,Q ::= u(x : S).P | u〈x : S〉.P | k〈e〉.P | k(x).P | νa.P | 0

(actions) α, β ::= !U | ?U (protocol types) S, T ::= end | α.S
(history types) H,K ::= ^ S | S ^ | α1. · · · .αn. ^ S

Fig. 1. Syntax of Configurations, Processes, and Types.

in keeping, rather than consuming, these monitor types. For this to work, we need
to distinguish the part of the protocol that has been already executed (its past),
from the protocol that still needs to execute (its present). We thus introduce
session types with present and past (H in the syntax): the type α1. · · · .αn.^ S
says that actions α1, · · · , αn are past protocol actions, whereas actions in proto-
col S are yet to be executed. That is, the cursor ^ in history types helps us to
distinguish the past from the present. Each action αi corresponds to the input
or output of a value; we use U to range over the types of these values (e.g., int,
str, etc.).

We illustrate our approach by means of a simple business protocol example [4]:
a slightly modified version of the two buyers protocol. It involves three participants:
a Buyer, a Seller, and a Buyer’s Friend. Buyer is willing to buy a book, and sends
to Seller the title of the book he is interested in. Seller replies with the price
of the book, and awaits for final information (e.g., shipping address and order
confirmation) from Buyer, before providing a delivery date. Once Buyer receives
the price, he realizes that he needs a loan from Friend in order to finalize the
purchase. To this aim, Buyer contacts Friend and then the transaction is finalized.
The set of interactions of Buyer with Seller and Friend are prescribed by the
following session types:

Sa : ?str.!int.?str.?int.!cal.end Sb : ?int.!int.end

Ta : !str.?int.!str.!int.?cal.end Tb : !int.?int.end

Above, Sa describes the interaction between Buyer and Seller from Seller’s per-
spective; type Ta is its dual and describes the protocol from Buyer’s perspective.
In session types, duality is essential to (statically) ensure action compatibility
between partners (and therefore, to guarantee absence of communication errors).
Types Tb and Sb describe the interaction between Buyer and Friend, from each
perspective.

Having defined the interaction protocols using types, we proceed to examine
some possible process implementations for Buyer, Seller, and Friend. The behavior

224 Claudio Mezzina and Jorge A. Pérez

of Buyer may be specified by the following process:

Buyer , a〈z : Ta〉.z〈“dune”〉.z(prc).
b〈w : Tb〉.w〈loan(prc)〉.w(cash).z〈addr〉.z〈cash〉.z(date).0

The implementation for Buyer involves the creation of two interleaved sessions:
the first one is established with the prefix a〈z : Ta〉, which explicitly mentions
the session protocol to be executed with the implementation of Seller; the sec-
ond session is established with the implementation of Friend through the prefix
b〈w : Tb〉. Process implementations for Seller and Friend can be specified by the
following processes:

Seller , a(z : Sa).z(title).z〈quote(title)〉.z(addr).z(paymnt).z〈date(addr)〉.0
Friend , b(w : Sb).w(amount).w〈loan〉.0

Note that functions loan(), quote() and date() are used to calculate the amount
of money to be borrowed, the book price and the delivery date, respectively.
The overall system specification is then given by the parallel composition of
configurations containing the three processes (in what follows, ε denotes the
empty list):

System ,
〈
Buyer · ε · ε

〉
ε
‖
〈
Seller · ε · ε

〉
ε
‖
〈
Friend · ε · ε

〉
ε

In the following, we will indicate with Buyeri (resp. Selleri and Friendi)
the process Buyer after performing its i-th action. We will do the same with
types.

The operational semantics that we have defined in [8] is based on a reduction
relation with both forward and backward steps, denoted � and , respectively.
The first forward reduction of System is establishing a session between Buyer
and Seller, using the fact that Ta and Sa are dual types. We have:

System �(νs, s).
(〈

Buyer1 · {z, s} · a
〉
s
‖ sb ^ Ta · zc ‖〈

Seller1 · {z, s} · a
〉
s
‖ sb ^ Sa · zc ‖

〈
Friend · ε · ε

〉
ε

)
(1)

As we can see, once a session is established two monitors are created, one per
endpoint; their task is to discipline the behavior of the process holding the
endpoint. For example, the behavior of Buyer in session s has to obey type Sa.
Buyer then sends (according to Sa) to Seller the request for the book, and the
entire system evolves as:

�(νs, s).
(〈

Buyer2 · ({z, s}) · a, z
〉
s
‖ sb!str ^ Ta1 · z, “dune”c ‖〈

Seller2 · ({z, s}, {title, “dune”}) · a, z
〉
s
‖

sb?str ^ Sa1 · z, titlec ‖
〈
Friend · ε · ε

〉
ε

)
= M (2)

Reversible Semantics in Session-based Concurrency 225

As effect of the communication, both types register the action and move forward.
Another effect is that the information needed to restore back the consumed
prefixes is stored into the running configurations and the related monitors. Com-
munication in (2) can be reverted by moving backward the monitor types, by
restoring the prefixes and deleting the read value from the receiver store, that is:

M (νs, s).
(〈
z〈“dune”〉.Buyer2 · ({z, s} · a

〉
s
‖ sb ^ !str.Ta1 · zc ‖〈

z(title).Seller2 · {z, s} · a
〉
s
‖ sb ^ ?str.Sa1 · zc ‖

〈
Friend · ε · ε

〉
ε

)
(3)

We can easily check that the configurations in (3) and (1) are equivalent. FromM
in (2) the interaction between Buyer and Seller goes on, and the system arrives
to a point in which Buyer establishes a new session with Friend:

M �∗(νs, s, r, r).
(〈

Buyer4 · ({z, s}, {w, r}) · ũ1, b
〉
s,r
‖

rb ^ Tb · bc ‖ sbT ′a ^ Ta3 · z, “dune”, prc, wc ‖〈
Seller3 · ({z, s}, {title, “dune”}) · a, z, z

〉
s
‖

sbS′a ^ Sa3 · z, title, quote(title)c ‖
〈
Friend1 · {w, r} · b

〉
r
‖ rb ^ Sb · wc

)
(4)

As (4) shows, the running process for Buyer is present in two sessions: one with
Seller and another one with Friend, and has two associated monitors, identified
by endpoints s, r. The list of subjects stored into the running process allows us to
reverse communications (possibly in different sessions) and session establishments
in the order in which they were performed, thus respecting causality of actions.
In this way, Buyer cannot undo a communication with Seller while the session
with Friend is still established.

3 Future Work

We have described recent work on the integration of reversible semantics and
session-based concurrency [8]. It represents a fresh approach with respect to
previous approaches [9]. Several directions deserve further investigation:

– Richer (typed) languages. The process model in [8] is admittedly simple; to
model and reason about interesting examples we need support for constructs
such as labeled choices. Also, process specifications do not specify reversible
actions; this is the role of monitors, history types, and other mechanisms.
Since reversibility is independent from specifications, rich types are needed
to support controlled forms of reversibility. In recent work we propose alter-
natives to these challenges [7].

226 Claudio Mezzina and Jorge A. Pérez

– Multiparty session communications. The model in [8] concerns binary session
types, which codify interaction between exactly two partners. Generalizing
our approach tomultiparty session types [4] should require a finer, coordinated
representation of reversible actions, as protocol exchanges may involve more
than two participants.

– Dedicated reasoning techniques. Session types induce a “simpler” model of
concurrency in which reversibility is a better behaved phenomenon. It re-
mains to be seen to what extent such a setting enables the development of
tractable reasoning techniques (e.g., axiomatizations, behavioral equivalences,
and proof systems).

References

1. Danos, V., Krivine, J.: Reversible communicating systems. In: Proc. of CONCUR
2004. pp. 292–307. LNCS, Springer (2004)

2. Danos, V., Krivine, J.: Transactions in RCCS. In: CONCUR 2005. LNCS, vol. 3653,
pp. 398–412 (2005)

3. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP’98. LNCS, vol. 1381,
pp. 122–138. Springer (1998)

4. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008. pp. 273–284. ACM (2008)

5. Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics. In: Proc.
of FMOODS 2011 and FORTE 2011. LNCS, vol. 6722, pp. 228–243. Springer (2011)

6. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Concurrent
flexible reversibility. In: ESOP 2013. LNCS, vol. 7792, pp. 370–390 (2013)

7. Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: A fresh look
(2016), draft available in http://www.jperez.nl

8. Mezzina, C.A., Pérez, J.A.: Reversible sessions using monitors. In: Proc. of PLACES
2016. EPTCS, vol. 211, pp. 56–64 (2016), http://dx.doi.org/10.4204/EPTCS.211.
6

9. Tiezzi, F., Yoshida, N.: Reversible session-based pi-calculus. J. Log. Algebr. Meth.
Program. 84(5), 684–707 (2015)

http://www.jperez.nl
http://dx.doi.org/10.4204/EPTCS.211.6
http://dx.doi.org/10.4204/EPTCS.211.6

	Reversible Semantics in Session-based Concurrency
	Introduction
	Reversible Sessions, By Example
	Future Work

