
Search Your Own Treebank

Alexandr Chernov, Erhard Hinrichs, Marie Hinrichs

Department of Linguistics
University of Tübingen

E-mail: firstname.lastname@uni-tuebingen.de

Abstract

This paper reports on the use of the treebank search and visualization tool
TüNDRA for the purposes of inspecting linguistically annotated data that are
generated by the web-based annotation tool WebLicht. The motivation for
enriching WebLicht by the functionalities offered by TüNDRA is twofold:
(i) it allows on-the-fly searches for specific linguistic phenomena at the word
and sentence level, (ii) it provides on-the-fly visualizations of such phenom-
ena.

1 Introduction and Motivation

TüNDRA [10] is a web application for hosting, querying, and visualizing tree-
banks. It currently hosts 63 treebanks, including the Tübingen treebanks for Ger-
man, the suite of Universal Dependency treebanks [12], the Latin Index Thomisti-
cus treebank, as well as the Perseus treebanks for Latin and Ancient Greek. TüN-
DRA supports visualization of constituency-based and dependency-based treebanks
and uses the TIGERSearch query language [7] for searching and statistical aggre-
gation of treebank data. Recent back-end optimizations of TüNDRA and WebLicht
(Web-based Linguistic Chaining Tool) [5] reported in [6] allow WebLicht to create
very large treebanks and TüNDRA to host them. An example of this is the auto-
matically annotated dependency treebank of the German Wikipedia, TüBa-D/W,
with approximately 36 million sentences and 615 million lexical tokens.

Prior to the research and development reported in this paper, TüNDRA was
used chiefly for traditional treebank data, even though its functionality is equal-
ly applicable to searching and visualizing linguistic annotations that are generated
dynamically by the workflow engine WebLicht. WebLicht is a web application
for building and executing natural language processing pipelines. It provides easy
access to a wide range of text processing tools (e.g. tokenizers, lemmatizers, part-
of-speech taggers, morphology analyzers, parsers, etc.) which can be assembled to
form processing chains for incremental annotation of linguistic data. To address the
difficulties arising from the fact that each tool has its own input and output formats,

25

TCF (Text Corpus Format) [4] was developed for use as an internal data exchange
format. Annotation tools are wrapped as webservices that receive and return TCF.
WebLicht is a distributed system, where the annotation tool webservices are hosted
at CLARIN1 centers and are invoked via HTTP requests. Currently, WebLicht can
be used to process 11 different languages with over 100 annotation tools hosted at
9 CLARIN centers.

WebLicht has been generally well accepted and has gained an increasing user
base over time, with approximately 700,000 invocations of its webservices in the
past calendar year. However, it still lacks the important feature of providing straight-
forward search functionality on the resulting annotations. Such functionality al-
lows users to better explore their annotation results, enabling them to ask questions
about their data, such as:

• How was a particular word form annotated for part of speech?

• How many occurrences of a proper name were successfully annotated as a
named entity?

• How many occurrences of a particular syntactic construction were annotated
in the data set?

Since TüNDRA provides precisely the type of querying functionality illus-
trated by the above examples, and WebLicht provides the tools to easily create
custom, on-the-fly treebanks, the two applications have been more tightly coupled.
The remainder of this paper is structured as follows: Sections 2 and 3 describe
the state of visualization and exploration in WebLicht before and after TüNDRA
integration, respectively. Section 4 describes enhancements to TüNDRA, includ-
ing those required for WebLicht integration. Sections 5 and 6 describe related and
future work, respectively.

2 WebLicht and TüNDRA Before Integration

In order to better recognize the motivation and impact of the work described here, it
is necessary to understand the prior states of both WebLicht and TüNDRA in terms
of visualization and search functionality. This section gives some background in-
formation about the two applications in isolation.

2.1 WebLicht Before Integration

Prior to the integration of TüNDRA into WebLicht, visualization of annotation
results were provided in ways that are appropriate for the individual annotation
layers. A table view was used for tokens, lemmas, part-of-speech tags, and mor-
phology annotations. Named entities were highlighted within the text using color-
coding to distinguish between different types (person, location, organization, etc).

1https://www.clarin.eu/

26

A graphical view is used for constituency parse trees, and dependency parse trees
were displayed using embedded brat [14] visualizations. Figure 1 shows examples
of these WebLicht visualizations.

Before the integration with TüNDRA, WebLicht provided no direct query func-
tionality for annotation results. Although querying of annotation results produced
by WebLicht was in some cases possible, it was cumbersome and did not provide
a good user experience. Consider the procedure for performing a search on anno-
tations contained in the table view. First the table needed to be downloaded and
opened in external spreadsheet software, followed by use of the generic and rather
rudimentary search functionalities of the spreadsheet software.

2.2 TüNDRA Before Integration

Since TüNDRA was specifically designed for processing treebanks, much care was
taken to provide visualization and search support for any annotations that a tree-
bank may contain. TüNDRA’s flexibility enables it to support nearly any type of
treebank. No assumptions are made about what a treebank node represents or the
number or type of features it contains. Exactly this flexibility makes it easy for
TüNDRA to work with the dynamic data produced by WebLicht, which may or
may not have structural information.

TüNDRA uses the query language Tiger [7, 9], which supports querying of
both constituent-based and dependency-based treebanks. The Tiger language sup-
ports the querying of nodes and of edge labels in syntax graphs. Individual nodes
can be identified by hash-tag variables and further specified by Boolean expres-
sions of feature-value pairs. Tiger queries can make reference to the two primitive
node relations of precedence (.) and (labelled) dominance (>). The dominance
relations can be further specified by particular edge labels. Node identifiers in a
query can, inter alia, be used to collect statistics on matches. Although some un-
derstanding of the structure and of the features of a treebank are required in order
to form search queries, the required information can usually be gained by browsing
through the treebank itself or by the stylebook of a treebank, if such off-line docu-
mentation is available. See section 3 for examples of using TüNDRA to query and
gather statistics on dynamic WebLicht data.

3 Integration of TüNDRA into WebLicht

Using the newly integrated TüNDRA, it is possible to conveniently execute queries
and to gather statistics on annotations directly within the WebLicht application.
Queries are not restricted to parsed data, but can be executed on all levels of an-
notation. However, structural queries can only be successful if the text has been
parsed, which is not always the case for WebLicht data. This section presents two
examples of using TüNDRA to query and gather statistics on WebLicht-generated
datasets.

27

F
ig

ur
e

1:
W

eb
L

ic
ht

V
is

ua
li

za
ti

on
s:

D
ep

en
de

nc
y

an
d

C
on

st
it

ue
nc

y
T

re
es

,N
am

ed
E

nt
it

ie
s,

Ta
bl

e
V

ie
w

In
cl

ud
in

g
th

e
se

nt
en

ce
:

In
1
9
0
4

h
e

a
ls

o
sp

en
t

a
se

m
es

te
r

a
t

th
e

L
u
d
w

ig
-M

a
xi

m
il

ia
n
-U

n
iv

er
si

ty
in

M
u
n
ic

h
.

28

3.1 Example 1: Searching for Named Entities in a German Corpus

The following example demonstrates gathering statistics about named entities on
non-parsed data. The WebLicht data format includes an attribute for named en-
tity annotations for further categorizing them (e.g. person, location, etc). The
new TüNDRA implementation makes it possible to search for named entities of a
particular type. The query in (1), executed with the "statistics" option, finds the
frequency and percentage of geo-political named entities:

(1) # ne : [_ne ="GPE "]

This query was executed on a text that was automatically annotated with named
entities in WebLicht. The text was about the physicist Hans Geiger and the results
of the statistical query can be seen in the table in Figure 2.

In addition to the benefit of enabling exploration of WebLicht data, the inte-
gration of TüNDRA into WebLicht leads to a unified presentation of data in the
applications. Since TüNDRA was designed to process parsed text, it is particularly
advantageous to have its constituency-based and dependency-based visualizations
in WebLicht. Figure 2 shows parse tree visualizations as they appear in both We-
bLicht and TüNDRA.

1904

pos: CARD

verbrachte

pos: VVFIN

er

pos: PPER

auch

pos: ADV

ein

pos: ART

Semester

pos: NN

an

pos: APPR

der

pos: ART

Ludwig-Maximilians-Universität

pos: NN

München

pos: NE

.

pos: $.

VF

NX

LK

VXFIN

NX

SIMPX

ADVX

NX

MF

PX

NX NX

NX

VROOT

1904

pos: CARD

verbrachte

pos: VVFIN

er

pos: PPER

auch

pos: ADV

ein

pos: ART

Semester

pos: NN

an

pos: APPR

der

pos: ART

Ludwig-Maximilians-Universität

pos: NN

München

pos: NE

.

pos: $.

ZEIT

ROOT

SUBJ

ADV

DET

OBJA

PP

DET

PN

APP -PUNCT-

Figure 2: Sample Trees and Statistics View for Example 1

29

3.2 Example 2: Searching for Verb-Preposition Pairs in an English

Corpus

Since the WebLicht suite of services is not limited German, but also includes tools
for English, it is also possible to annotate and query English corpus data. The
query used in section 3.1 is simple in the sense that it only searches for a single
class of lexical tokens. However, TüNDRA supports the full expressiveness of the
Tiger query language, thus allowing also queries that involve multiple constituents
and/or lexical tokens. For example, lexicographers and lexical semanticists may be
interested in the set of prepositions that co-occur with a particular verb in a given
corpus. The query in (2) exemplifies such a query for the English verb agree in a
constituency-based treebank.

(2) #vp : [c a t ="VP "] > [lemma=" a g r e e "]
& #vp > [c a t ="PP "] > #p : [pos =" IN "]

This query searches for VP nodes (#vp) which dominate a lexical node with lemma
agree and a PP node, which in turn dominates a lexical node with part-of-speech
IN, the label used for prepositions in the Penn treebank tagset [8]. Since this lexical
node is identified by the hashtag variable #p, statistics on the word forms for this
lexical node can be gathered.

The same type of query can be created for execution on a dependency treebank.
The following query finds lexical nodes with lemma agree and with an edge, la-
belled with relation name VMOD and pointing to a lexical node with part-of-speech
label IN.

(3) [lemma=" a g r e e "] > VMOD #p : [pos =" IN "]

Figure 3 shows a sample sentence found by the constituency and dependency
queries in the Leipzig University Corpora Collection [3], which was annotated with
lemmas, part-of-speech tags, constituent and dependency parsing in WebLicht. In
both the constituency and dependency annotation in Figure 3 the portion of the con-
stituency and dependency annotation that matches the Tiger query is highlighted in
the TüNDRA visualization for ease of reference. In addition, Figure 3 shows the
list of prepositions, sorted by absolute frequency, that co-occur with the verb agree

in the corpus at hand.

4 Enhancements to TüNDRA

In order to complete the integration of TüNDRA into WebLicht, it was necessary to
(i) accommodate the WebLicht data format and (ii) refactor the code into front-end
and back-end components.

Before WebLicht data can be used in TüNDRA, it must first be converted into
the TüNDRA internal format. This is a straightforward process for most annota-
tions at the token level, with the exception of named entities, which can span more
than one token. They are handled by adding a special "_ne" attribute. At the struc-
tural level, the case where parse annotations are not present in the data must be

30

I

pos: PRP

lemma: I

text: I

agree

pos: VBP

lemma: agree

text: agree

with

p

pos: IN

lemma: with

text: with

the

pos: DT

lemma: the

text: the

decision

pos: NN

lemma: deci
sion

text: decis
ion

of

pos: IN

lemma: of

text: of

the

pos: DT

lemma: the

text: the

court

pos: NN

lemma: court

text: court

.

pos: .

lemma: .

text: .

NP

S1

VP
vp

PP

NP

NP

PP

NP

S

I

pos: PRP

lemma: I

text: I

agree

pos: VBP

lemma: agree

text: agree

with
p

pos: IN

lemma: with

text: with

the

pos: DT

lemma: the

text: the

decision

pos: NN

lemma: deci
sion

text: decis
ion

of

pos: IN

lemma: of

text: of

the

pos: DT

lemma: the

text: the

court

pos: NN

lemma: court

text: court

.

pos: .

lemma: .

text: .

SUB

ROOT

VMOD NMOD

PMOD

NMOD NMOD

PMOD

P

Figure 3: Sample Trees and Statistics View for Example 2

handled. This is done by creating "fake" tree structures with all tokens attached di-
rectly to the root, allowing them to be processed like all other trees in TüNDRA. In
addition, a table view, similar to that which was previously available in WebLicht,
but not in TüNDRA, has been incorporated into TüNDRA.

It was necessary to refactor the TüNDRA code into well-defined front- and
back-ends. The front-end is used by both applications. This is done in WebLicht
by simply replacing the prior visualization component with TüNDRA’s front-end.
The front-end in turn communicates with the back-end which does any necessary
data conversion and performs queries. This clean division of labor into the user
interface (front-end) and the query-processing engine (back-end) made it possible
for both applications to share the same visualization and search component.

5 Related Work

There are many well-known treebank search and visualization tools, such as INESS
[11], PML-TQ [13], GrETEL [1], and ICARUS [2]. Although some of them
provide upload or import options for processing personal treebanks (PML-TQ,

31

ICARUS), to our knowledge none of them are tightly integrated into a workflow
engine that allows on-the-fly annotation using custom-built pipelines. INESS has
rich support for search and visualization of hosted treebanks, including comparison
of parallel corpora, but only authorized users can run annotation pipelines. GrE-
TEL is a treebank search engine which is very easy to use due to its novel way of
guiding the query building process, but only supports hosted treebanks.

6 Conclusion and Future Work

In this paper we have shown how the treebank visualization and search application
TüNDRA has been integrated into the annotation workflow engine WebLicht, mak-
ing it possible to apply TüNDRA’s full query/visualization/statistics capabilities to
on-the-fly treebanks created in WebLicht. It was necessary to refactor large parts
of the TüNDRA code to make its front-end available in WebLicht. At the time of
writing, the new versions of both applications are in beta phase.

The main focus of future work in TüNDRA are in the areas of query building
and statistics views. Query building needs to be simplified for users who are unfa-
miliar with the query language. This can be done by offering graphical guidance
and limiting elements of the query to valid values where possible. It is also planned
to provide more detailed statistics views, including more visualization options and
allowing more in-depth exploration of the statistics. A version of TüNDRA that
can be run and administered locally is also planned, enabling the local use of tree-
banks that, for example, cannot be hosted by the public version of TüNDRA for
legal reasons. In the near future, the public treebanks hosted by TüNDRA will be
made available without the need for logging in.

Future work on WebLicht includes providing a batch mode for more conve-
nient processing of very large texts. This goes beyond what WaaS can already do
(executing chains from the command line or programming code) by splitting up
very large texts into smaller chunks for processing if necessary, invoking the tool
chain in parallel on the smaller chunks, piecing it all back together, and storing the
finished result for later download. Users will be able to monitor the progress of
their jobs and will be notified when it is finished.

References

[1] Liesbeth Augustinus, Vincent Vandeghinste, and Frank Van Eynde (2012).
Example-based Treebank Querying. In: Proceedings of the 8th International

Conference on Language Resources and Evaluation (LREC-2012). Istanbul,
Turkey. European Language Resources Association (ELRA).

[2] Markus Gärtner, Gregor Thiele, Wolfgang Seeker, Anders Björkelund and
Jonas Kuhn (2013). ICARUS – An Extensible Graphical Search Tool for
Dependency Treebanks. In: Proceedings of the 51st Annual Meeting of the

32

Association for Computational Linguistics: System Demonstrations. Sofia,
Bulgaria.

[3] Dirk Goldhahn, Thomas Eckart und Uwe Quasthoff (2012). Building Large
Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to
200 Languages. In: Proceedings of the 8th International Conference on Lan-

guage Resources and Evaluation (LREC-2012). Istanbul, Turkey. European
Language Resources Association (ELRA).

[4] Ulrich Heid, Helmut Schmid, Kerstin Eckart, and Erhard Hinrichs (2010).
A corpus representation format for linguistic web services: The d-spin text
corpus format and its relationship with iso standards. In: Proceedings of the

7th International Conference on Language Resources and Evaluation (LREC

2010). Valletta, Malta. European Language Resources Association (ELRA).

[5] Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow (2010). WebLicht:
Web-Based LRT Services for German. In: Proceedings of the Systems

Demonstrations at the 48th Annual Meeting of the Association for Compu-

tational Linguistics (ACL-2010). pp. 25-29. Uppsala, Schweden.

[6] Daniël de Kok, Dörte de Kok, and Marie Hinrichs (2014). Build your own
treebank. In: Proceedings of the CLARIN Annual Conference. Soesterberg,
The Netherlands

[7] Wolfgang Lezius (2002). TIGERSearch - Ein Suchwerkzeug für Baum-
banken. In: Proceedings der 6. Konferenz zur Verarbeitung natürlicher

Sprache (KONVENS 2002). Saarbrücken.

[8] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz (1993).
Building a Large Annotated Corpus of English: The Penn Treebank Compu-

tational Linguistics, 19.2, pp. 313–330.

[9] Scott Martens (2012). TüNDRA: TIGERSearch-style treebank querying as an
XQuery-based web service. In: Proceedings of the joint CLARIN-D/DARIAH

Workshop "Service-oriented Architectures (SOAs) for the Humanities: Solu-

tions and Impacts" (DH 2012). Hamburg, pp. 41-50.

[10] Scott Martens (2013). TüNDRA: A Web Application for Treebank Search
and Visualization. In: Proceedings of The Twelfth Workshop on Tree-

banks and Linguistic Theories (TLT12). Sofia, pp. 133—144. (URL:
http://bultreebank.org/TLT12/TLT12Proceedings.pdf)

[11] Paul Meurer (2012). INESS-Search: A Search System for LFG (and Other)
Treebanks. In: Miriam Butt and Tracy Holloway King, editors, Proceedings

of the LFG2012 Conference. CSLI Publications.

33

[12] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg,
Jan Hajic, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty and Daniel Zeman (2016). Universal
Dependencies v1: A Multilingual Treebank Collection. In: Proceedings of

the 10th International Conference on Language Resources and Evaluation

(LREC 2016). European Language Resources Association (ELRA).

[13] Petr Pajas and Jan Štěpánek (2009). System for Querying Syntactically Anno-
tated Corpora. In: Proceedings of the ACL-IJCNLP 2009 Software Demon-

strations, pages 33–36, Suntec, Singapore. Association for Computational
Linguistics.

[14] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ana-
niadou and Jun’ichi Tsujii (2012). brat: a Web-based Tool for NLP-Assisted
Text Annotation. In: Proceedings of the Demonstrations Session at EACL

2012.

34

