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Abstract

Converting a treebank from one representation type to another poses sev-
eral challenges [4] [3]. These challenges are contingent on (amongst other
things) the information encoded in source representation and the informa-
tion required in target representation. In this paper, we propose a conversion
algorithm that converts the Hindi-Urdu Dependency Treebank (HUTB) to a
Phrase Structure (PS) representation. In order to do this, we extract structural
information (for projecting heads) as well as predicate-argument information
from the dependency structure (DS). The resulting PS trees are relatively flat
with few empty categories (ECs) and are very close to the DS trees in their
syntactic content. Our algorithm generates ‘valid’ PS trees. The validity is
based on certain metrics such as well-formedness, linearity, etc. These trees
could be further transformed for theory specific analyses.

1 Introduction

Most modern treebanks make use of either Dependency Structure (DS) or Phrase
Structure (PS) representation to encode syntactic phenomenon. DS representation
has been used more frequently for free word order languages like Czech, Hindi,
Turkish, Russian etc. In addition, due to the development of efficient dependency
parsing algorithms, use of dependency formalism for treebanking has become com-
mon [10]. While DS representation offers several advantages, it is also known that
certain types of structural constraints (e.g. c-command) that are based on con-
stituent structures cannot be formalized in dependency structure. Such constraints
are known to play an important role in accounting for various syntactic phenomena
(e.g. reference resolution, syntactic islands, etc.) [11] (also see [6, 8]). In addi-
tion, the PS representation lends itself naturally to capture the predictive nature of
human sentence processing via left-corner phrase structure parsing algorithm [7].
It is therefore important to explore both these formalisms in order to investigate
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their usefulness in language modeling and in building various applications. Since
a treebanking task uses a single representation, one needs to transform the original
representation to the desired representation.

The complexity of a conversion algorithm will be contingent on (a) the infor-
mation encoded in the source vs the information required in the target, (b) word
order variation in the language, and (c) the choice of the target representation.
These factors can lead to small or large divergence between the source and target
representation. For example, Bhatt and Xia [4] required an intermediate layer in
order to handle the information asymmetry between the source and target repre-
sentation. Similarly, following Bhatt and Xia [4], Luu et al. [9] also introduced
an additional intermediate layer to handle projectivity in their target PS. In this
work, we propose a conversion algorithm1 that converts the DS tree in HUTB to
the PS representation with the aim of maintaining ‘content of representation’ [12]
between the source and target. The resulting trees are relatively flat with few empty
categories (ECs), i.e. these PS trees are very close to the DS trees as far as syntactic
information is concerned.

Our paper is organized as follows: Section 2 discusses the salient properties
of the PS representation scheme that is generated by the algorithm. In Section 3,
we describe our conversion algorithm. Following this in section 4 we evaluate its
performance. We conclude the paper in section 5 and discuss future directions.

2 The PS representation scheme

Our proposed PS representation is relatively flat as it does not encode syntactic
roles (like Subject, Object etc.) structurally. The PS trees also do not necessarily
have binary branching or syntactically driven ECs. The flatness of the trees is a
by-product of the following representation choices (a) No intermediate projection
for heads, (b) No intermediate projection for dependents, (c) No binary branching.
These choices, in fact, relate to the questions pertaining to head projection and
dependent attachment raised by Xia and Palmer [14]. They point out three issues
to be addressed by any conversion algorithm - (1) What kind of projection can a
category (X) have? (2) How far should a dependent project before it attaches to
its head? (3) To what position on a head’s projection chain2, should a dependent’s
projection attach? Regarding (1) and (2), as stated earlier, we do not have interme-
diate projection for any head or dependent. Regarding (3), in our phrase structure,
a dependent is always a sister of its head. This is illustrated in Figure 1.

In addition, we do not have any structurally distinguished position for encoding
syntactic roles. We capture this information using function tags like ‘–SUBJ’ for
Subject, ‘-OBJ-1’ for direct object etc. These design considerations are motivated

1The implemented algorithm can be downloaded from https://github.com/
yadavhimanshu059/Hindi_DS_to_PS_Conversion

2A chain corresponds to all the intermediate projections of a category (X) upto its maximal pro-
jection.
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Figure 1: The choices taken in our algorithm regarding three questions raised by
Xia and Palmer [14]

by the aim of maintaining ‘content of representation’ [12] between the source and
target.

Interestingly, Collins et al. [5] have also argued for flat PS representation scheme
for Czech, which is also a free word order language like Hindi. On the other hand,
PS representation scheme for Hindi by Bhatt et al. [2] maintains fixed structural
positions for core arguments etc. leading to multiple empty categories. They con-
sistently assume a binary branching representation while maintaining a linear word
order. It is easy to see that getting to a representation proposed by [2] is difficult
because of the information asymmetry and the divergent analyses of various phe-
nomena in DS and PS [3]. Of course, we are not claiming that a more detailed
PS scheme for Hindi (e.g. Bhatt et al. [2]) will not be useful at all. Indeed, from
a theoretical perspective, PS trees with elaborate empty categories might be very
useful. In fact, we envisage our PS schema (that is closer to DS) to be a useful
resource in order to reach such a representation.

3 DS to PS conversion algorithm

As stated earlier, our conversion algorithm does not use any additional information
other than the DS. We extract modifier-modified information (for projecting heads)
as well as predicate-argument information from the DS.

We illustrate our conversion algorithm with the example in Figure 2 below.
The algorithm applies the following rules (i) rules for head-projection (ii) rules for
argument-adjunct distinction (iii) rules for joining argument structure sub-trees (iv)
rules for joining clauses in case of multi-clause constructions.
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Figure 2: DS to PS conversion steps for example 1. In Step-1, H*1, H*2 etc. are
the computed heads from the DS. In Step-2, these heads are projected recursively
to form phrase fragments. Dashed boxes show a set of phrase fragments. In Step-
3, we extract dependency relation information from DS and use the set of phrase
fragments from Step-2 as input to form argument structure subtrees. These subtrees
are combined in Step-4 to get the clausal PS tree.
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Illustrative Example (see Figure 2)

(1) Mohan=kii
Mohan.N.m.sg=Gen

baRI
elder.adj

bahan
sister.N.M.sg

shyaama
Shyama.N.f.sg

aajkal
nowadays.adv

puranii
old.adj.f.pl

kitaabein
book.f.pl

paRh-rahii-hai
read-prog.f.sg-be

‘Mohan’s elder sister Shyama is reading old books these days’

We use the sentence shown in Example 1 to illustrate our conversion process.
In step-1 (see Figure 2), we use the modifier-modified relation from the DS tree to
compute the heads of phrases in the corresponding PS tree. The modified element
takes the head position in phrases. The heads are marked with H* in Figure 2. In
step-2, the heads extracted from DS are recursively projected to generate phrase-
fragments. We use the part-of-speech (POS) tag information from DS at this level.
Thus, a head with POS tag X projects to XP in phrase structure. The modifiers of
a head in DS take the non-head positions in a minimal phrase fragment.

In step-3, we use the dependency relation label information of the modifiers
of the predicate in DS in order to make the distinction between arguments and ad-
juncts. The following dependency relation to syntactic role mappings were used:
k1 – subject, k2/k2p – object, etc. Previous attempts to extract argument infor-
mation from the DS have shown that this mapping can correspond to predicate-
argument information [1, 13]. Once the argument-adjunct distinction has been
made, we then create sub-trees by adjoining the phrase fragments corresponding to
NP-SUBJ, NP-OBJ etc. This means that syntactic roles such as subject and object
are not encoded structurally; rather this information is encoded through the phrase
tag. We get the complete PS tree by joining sub-trees as shown in step-4.

If a sentence is composed of two or more clauses, each clause is formed using
the same procedure shown as in Figure 2. We then adjoin these clauses at a clause
joining step.

3.1 Basic Argument Structure

Dependency Label Phrase-Tag
k1 -SUBJ

k2, k2p -OBJ-1
k4, k2g -OBJ-2

k4a -SUBJ-Dat
pk1 -SUBJ
jk1 -J-SUBJ
k2s -OBJ-Comp

Table 1: Dependency label to Phrase-Tag mapping

As stated earlier, we use phrase tags instead of structural encoding for argument
structure information. In a minimal clause, arguments licensed by verb are repre-
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sented using phrase tags like -SUBJ, -OBJ-1, -OBJ-2 etc (see Table 1). It makes
our resulting trees flatter and non-binary branched, see Figure 3. Previous attempts
to extract argument information from the DS have shown that this mapping can
correspond to predicate-argument information [1, 13].

Figure 3: A DS and the derived PS showing basic argument structure for the sen-
tence ‘Mr. X was playing cards with friends at home.’

3.2 Non-finite Clause

The Hindi-Urdu Treebank (HUTB) makes a distinction between finite verbs and
non-finite verbs. We maintain predicate-argument information in a minimal non-
finite clause using phrase tags -SUBJ, -OBJ-1, -SUBJ-Dat etc. Although we do
not posit any structural preferences for a non-finite clause, we encode a distinction
between finite and non-finite clause using phrase names S and S-NF/S-NN respec-
tively. An example non-finite clause is shown in Figure 4. Our system does not
add empty categories for shared subjects. If there is any empty node in DS, then,
we maintain it in resulting PS.
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Figure 4: A DS and the derived PS showing a non-finite clause for the sentence
‘After assuring the people they cleared up the traffic.’

3.3 Relative Clause

Similar to the DS representation, relative clauses directly modify the nouns in the
PS tree (see Figure 5). We use the modifier-modified relation information from DS
to identify the head of the relation clause. The S node in the relative clause tree
appears as a sister of the head noun in the PS tree.

3.4 Multi-clause Coordination

Two clauses at the same level are adjoined to the coordinating conjunction such
that both the clauses take the coordinating conjunction as their head (Figure 6).
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Figure 5: A DS and the derived PS showing an embedded relative clause for the
sentence ‘Jagdish’s younger brother who studies in Delhi came yesterday’

Figure 6: A DS and the derived PS showing a multi-clause coordination for the
sentence ‘For the first time literacy has increased significantly and the number of
illiterates is going down.’
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4 Evaluation

We evaluate the validity of the automatically generated PS trees using various met-
rics. This was done to ensure that the information transfer from DS to PS was in-
deed successful. In addition we wanted to test the structural consistency of the PS
representation. This is necessary because we do not have gold PS trees, therefore
we have to use quantitative methods to analyze the performance of our system.
The evaluation was performed on Hindi Dependency Treebank (ver-0.05) which
consists of 18853 sentences with an average of 20 words per sentence.3

We used the following metrics (1) Well-formedness: the tree has one root, is
acyclic and has no duplicated sub-trees (2) Linear order: terminal nodes in the
tree match the linear word order in sentence (3) Argument representation: All the
arguments given in DS are reflected in the PS output (4) Clausal Correspondence:
whether all verbal predicates in DS have their corresponding S nodes in PS.

The first two tests validate the correctness of the constituent structure while the
latter two tests analyze the performance of our algorithm in extracting information
from the DS and representing the same information on the PS.

Well-formedness Linear Argument Clausal All
order representation correspondence constraints

99.90% 99.78% 99.87% 99.96% 99.74%

Table 2: System evaluation

Table 2 shows the performance of our conversion algorithm on all the metrics.
We find that we are able to convert the DS trees into PS trees with high accuracy.
The high accuracy demonstrates that the conversion produces PS trees that can be
reliable enough for other applications. We note that our system is able to success-
fully convert nearly all types of constructions in the HUTB into PS. We also exper-
imented with handling non-projectivity. We were successful in handling a majority
of such dependencies. However the resulting PS structures were not always consis-
tent with regards to the placement of the empty category. In addition, certain cases
of inter-clausal non-projective dependencies were not being converted. In order to
handle these issues consistently across the treebank, we chose to not handle non-
projectivity in the current release of the implemented algorithm. We do plan to
release an updated version that can handle non-projectivity in the near future.

5 Summary and Conclusion

In this paper, we have proposed a DS to PS conversion algorithm for the HUTB.
The goal of our system was to maintain a close correspondence between the syn-
tactic information in DS and PS representations. This algorithm generates PS

3We found 0.2% dependency trees in the treebank as either disjoint or cyclic which we ignored
for the purposes of this evaluation. Non-projective trees were also not considered.
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trees with high accuracy while avoiding an intermediate level of representation.
We envisage that this resource will be immediately useful for NLP tools such as
parsers and also for language modeling. Our system currently does not handle
non-projectivity. In addition, we do not specifically handle complex predicates.
We intend to handle these phenomena in the near future.
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