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Abstract

Recognising objects in everyday human environments
is a challenging task for autonomous mobile robots.
However, actively planning the views from which an
object might be perceived can significantly improve the
overall task performance. In this paper we have de-
signed, developed, and evaluated an approach for next
best view planning. Our view planning approach is
based on online aspect graphs and selects the next best
view after having identified an initial object candidate.
The approach has two steps. First, we analyse the vis-
ibility of the object candidate from a set of candidate
views that are reachable by a robot. Secondly, we anal-
yse the visibility of object features by projecting the
model of the most likely object into the scene. Experi-
mental results on a mobile robot platform show that our
approach is (I) effective at finding a next view that leads
to recognition of an object in 82.5% of cases, (II) able
to account for visual occlusions in 85% of the trials, and
(III) able to disambiguate between objects that share a
similar set of features. Hence, overall, we believe that
the proposed approach can provide a general methodol-
ogy that is applicable to a range of tasks beyond object
recognition such as inspection, reconstruction, and task
outcome classification.

1 Introduction
Autonomous mobile robots that operate in real-world envi-
ronments are often required to find and retrieve task-related
objects to accomplish their tasks. However, perceiving and
recognising objects in such environments poses several chal-
lenges. Firstly, object locations are continuously changing.
That is, a mobile robot cannot simply rely on a fixed set of
views from which it can observe an object. The robot needs
to plan in a continuous space where to stand and where to
look. That is, the robot has to select a view from the un-
countably infinite set of possible views which allows it to
observe the sought object. Matters are further complicated
by dynamic obstacles which might hinder the robot to take
a particular view. Or, when taking a view, relevant features
of an object might be occluded by other objects and/or by
the object itself (self-occlusion). Finally, other conditions
such as lighting and/or sensor noise can influence the per-
formance of object recognition tasks.

In previous work, we have enabled robots to find objects

in particular rooms (Kunze et al. 2012) and in relation to
other objects (Kunze, Doreswamy, and Hawes 2014). These
approaches guide robots to locations from which they can
potentially observe an object. In this work, however, we
propose a complementary planning approach that selects the
next best view after having identified a potential object can-
didate. Such local, incremental view planning is crucial for
two reasons: (1) it allows robots to disambiguate between
objects which share a similar set of features, and (2) it im-
proves the overall performance of object recognition tasks
as objects are observed and recognized from multiple views.

Our local view planning approach addresses all of these
above mentioned challenges. It is based on using a realistic
sensor model of an RGB-D camera to generate online aspect
graphs (a set of poses around an object which describe object
visibility at that point) and takes the kinematic constraints of
a mobile robot platform into account. Hence, by changing
the sensor and/or the kinematic model our approach can eas-
ily be transferred to robot platforms of different types. We
further consider two environmental constraints when gener-
ating robot and camera poses: (1) dynamic obstacles which
might hinder a robot to take particular views, and (2) oc-
clusions of object features which might be hidden by other
objects (or by the object itself). Finally, we consider learned
object models in the planning process to predict the location
and visibility of features of object candidates. An overview
of the next best view planning approach is given in figure 1.

Experimental results show that our next best view plan-
ning approach, which takes multiple views of an object,
allows us to improve the performance of recognition tasks
when compared to single-view object recognition. Further,
it enables robots to differentiate between objects that share
a similar set of features.

To this end, this work contributes the following:

1. a method for analysing potential views using online as-
pect graphs by taking both into account: (1) occlusions,
and (2) the visibility of features based on learned object
models.

2. a next best view planner that selects a view based on the
method above and an executive that accounts for dynamic
obstacles during execution

3. a set of experiments which demonstrates (a) how robots
can disambiguate objects which share similar feature sets,



Figure 1: Next best view planning: Conceptual overview.
The approach has two steps: (A) an environmental analysis
and (B) a model analysis. The analysis of the environment
reasons about the visibility of an object and is carried out
based on a set of navigable poses. Poses in suitable areas
are then carried on into the model analysis (B), in which the
visibility of object features is evaluated. Conceptually, the
resulting areas from (A) and (B) are combined to find the
next best view (C).

and (b) how the performance of object recognition can be
improved by taking multiple views.

The remainder of the paper is structured as follows. We
first discuss related work in Section 2, followed by a con-
ceptual overview of our approach in Section 3 and a detailed
description of the implementation in Section 4. In Section 5,
we present and analyse experimental results and discussion,
before we conclude with a summary and conclusion in Sec-
tion 7.

2 Related Work
Hutchinson et al. (Hutchinson and Kak 1989) used aspect
graphs to determine the pose in which most unseen object
features were present when digitally reconstructing an ob-
ject. By storing a geometric model of an object they were
able to determine what features of the object could be seen
from various poses around it. The sensor would then move
to the pose in which the most features were available. How-
ever, geometric analysis accounted for minute edges and
ridges which are not necessarily visible to the camera. As-
pect graphs were computed offline and used as a lookup ta-
ble for a mobile sensor. This work does not take into account
camera limitations and thus may provide a view which is
theoretically optimal, but practically unobtainable. To com-
bat this, the work presented in this paper seeks to model the
sensor used in task. Aspect graphs will also be built online
to account for accessibility of the environment.

The approach used by Stampfer et al. (Stampfer, Lutz,
and Schlegel 2012) bares most resemblance to the current
work. By taking candidates from the initial scene, they se-
lected next best view locations that maximised the probabil-
ity of recognising objects in the scene from a local object
database, which is analogous to this project. But instead of
planning next best view locations based on geometric anal-
ysis they used photometric methods to locate specific visual
features. A camera mounted on a manipulator arm is used to
sequentially move to these feature rich locations. This how-
ever, does rely on the object to have colour/contrast differ-
ences, bar codes or text, which may not be true of all objects.
Photometric based analysis has its merits, but geometic fea-
ture analysis has also been shown to be effective (Vázquez
et al. 2001; Roberts and Marshall 1998). This also requires a
robot with a manipulator to move around the object and does
not account for visual occlusions that may hamper the line
of sight of the camera. Although reliable this approach re-
quires several sequential before recognition. In this project
we aim to minimise the amount of views taken.

Early work into next view planning was based on detect-
ing which parts of an object were causing self occlusion (Ba-
jcsy 1988)(Connelly 1985)(Maver and Bajcsy 1993). These
methods were effective at obtaining high levels of coverage
of an object for digital reconstruction, but high amounts of
new views were needed in order to achieve this. Methods on
the current work are inspired by these concepts for detecting
occlusions in the environment so as to avoid them in the next
view.

Okamoto (Okamoto, Milanova, and Bueker 1998) used a
model free approach to move to a precomputed best pose
for recognition. A stream of video like images was taken
en-route to this location and produced a recognition based
on this stream. This method was able to disambiguate sim-
ilar looking objects. However, this solution made no con-
sideration for environmental obstacles and no backup if the
optimal pose was unavailable. In our work, the next view
planner will plan to avoid environmental obstacles and will
not require the use of expensive visual processing methods
but will still be able to differentiate between similar objects.

Callari (Callari and Ferrie 2001) sought to use contextual
information from a robot’s surroundings to identify an ob-
ject. This is a useful metric, as contextual information has
been shown to be useful in directing object search (Hanheide
et al. 2010; Kunze et al. 2014). Although, in order for this
solution to work, a great deal of prior information is required
to influence identification and is unlikely to cope well in a
novel environment. The current work does take in prior in-
formation, but this is limited to a snapshot of the current
environment which is used to detect visual occlusions.

Wixson (Wixson 1994) proposed moving at set intervals
around a target for high surface coverage of the object within
a fixed number of movements with little computational cost.
Though this naive approach offers very low computing costs
with potentially high information gain, the cost of move-
ment would potentially huge if recognition did not occur in
the first couple of movements. The present work seeks to
use current information to limit the number of movements
required to identify an object.



Figure 2: Illustrates how the next best view planning in this
paper fits within the perception-action cycle. Blue boxes
represent action/perception stages. Green boxes represent
planning stages.

Vasquez-Gomez and Stampfer (Vasquez-Gomez, Sucar,
and Murrieta-Cid 2014; Stampfer, Lutz, and Schlegel 2012)
considered some of the restricting effects of an uncertain en-
vironment using a mobile robot when digitally reconstruct-
ing an object with a camera attached to a multi-joint ma-
nipulator on a mobile base. The main contribution of this
work to the current study is that not only did it consider the
placement of the sensor but also of the mobile base which
was always planned to be placed in open space. These con-
siderations are extended in this project to account for agent
placement and visual occlusions.

3 Next Best View Planning

This section provides a conceptual overview of the pro-
posed view planning approach. Implementation details can
be found in Section 4.

Figure 2 shows the next best view planner’s place in the
perception-action cycle of a robot. A hypothesis about an
object’s identity and its estimated pose are the inputs into
the planner. As output, the planner provides the next best
view from which it determines the robot has the best chance
of identifying the object.

The following briefly describes the view planning process
after a candidate identity is received: (I) potential viewing
locations are checked for dynamic obstacles on the local cost
map. (II) Views that are reachable by the robot are subjected
to an environmental analysis to determine if any visual oc-
clusions block the view of the candidate object. (III) Views
which survive environmental analysis undergo model anal-
ysis to determine the amount of visible surface area visible
from each view point.

Before describing the individual components of the view
planning approach in detail, we motivate when next best
view planning is initiated and why.

The Need for Local View Planning
In the context of object search tasks, a robot might seek ob-
jects in certain rooms (Kunze et al. 2012) or in proximity to
other objects (Kunze, Doreswamy, and Hawes 2014). How-
ever, objects cannot always be recognized with high confi-
dence from a first view. To verify the identity of an object the
robot may have to take an additional view. We have identi-
fied the following situations in which one or more additional
views would be beneficial:

1. When the recognition service provides a low confidence
estimate of an object’s identity. In this situation, another
view would be required to confirm or deny this hypothe-
sis. By moving the camera to a location where more of
the object is visible there is a higher chance of obtaining
a high confidence identification.

2. When a identification is returned with high confidence but
not high enough to meet other task requirements; another
view could lead to a higher confidence. This may be use-
ful in identifying high priority items in a service environ-
ment, such as looking for the correct medicine.

3. In the event of more than one candidate identities being
returned for the same object. This can occur when the vis-
ible features match more than one modelled object. Fur-
ther views of the object can lead to disambiguation.

When any of these conditions are met, next view plan-
ning is the initiated. The components of the approach are
described in the following sections.

Perception
Streams of images received from the robot’s camera are pro-
cessed to detect candidate objects. Bottom-up perception al-
gorithms used - making estimates of object identities based
on information available in the scene and no contextual in-
formation. Segmented sections of the scene are compared
with a model database; any matches between the two are re-
turned with a confidence measure as estimated object iden-
tities.

Online Aspect Graph Building
An object cannot be seen in its entirety from one view-
point and different viewpoints prnt different features to a
sensor. Aspect graphs are a method of simulating which
features may be visible at different viewpoints around an
object. A typical aspect graph for next view planning
consists of a sphere of poses around a model and geo-
metric analysis determines which features are visible from
each point. In past work, aspect graphs have been com-
puted offline (Cyr and Kimia 2004; Maver and Bajcsy 1993;
Hutchinson and Kak 1989) which produces a set of coordi-
nates for a sensor and an associated value to denote the num-
ber of visible features at each pose. This is used as a lookup
table and requires knowledge of the object being viewed and
its pose.

This project will instead build aspect graphs online which
will be built in two stages. By moving online, we can
account for real-time information about environmental ob-
structions and their effect on potential new poses. Aspect



graphs are generated for both Environmental Analysis and
Model Analysis, which will be discussed next. The shape of
aspect graphs in this project are governed by the robot’s de-
grees of freedom. The robot used in this paper had 3-DOF
(base movement and pan/tilt unit) and so graph nodes were
arranged in a disc surrounding the candidate object.

Environmental Analysis After receiving a candidate
identity we need to decide which available pose offers the
next best view. The first step is to determine if any part of the
environment lies between the sensor and the candidate ob-
ject, thus creating a visual occlusion. To achieve this, a snap-
shot of the current environment is taken and converted into
a volumetric representation. From various points around the
candidate object the sensor (oriented towards the object) is
modelled. Within this model, any part of the sensor’s field
of view which does not reach the estimated position of the
object is discarded. This leaves a circle of poses around the
object, each containing its respective remaining field of view
which allows unobstructed line-of-sight to the object. These
remaining parts of the field of view are then carried forward
to model analysis.

Model Analysis Surviving sections of the modelled cam-
era at each pose do not necessarily represent the visibility of
the object at that location. In order to establish which view
provides the most information about the object we use the
model of the object from the object database along with sur-
viving sections of the modelled cameras at each pose from
the previous step.

The object database contains a manipulable model of the
target object. This model is rotated to match the estimated
pose of the candidate object. From here we again simulate
each camera pose from the previous step, using only the sur-
viving fields of view. Each modelled camera at each pose
will be oriented towards the object model; the proportion of
the field of view of each camera which is filled by the object
is then saved and represents the visibility of the object from
each pose around it.

Next Best View Selection
After environmental and model analysis, each pose is
matched with a score which represents its visual coverage
of the candidate object. The pose with the highest score is
determined to be the next best view; this is sent to the robot’s
navigation component. Once at the new location the robot
will either accept or reject the initial identity estimate or be-
gin to determine another next best view if the first did not
lead to recognition.

4 Implementation
In this section we describe how the view planning approach
is integrated with the data structures and algorithms of the
robot’s perception and control components. Figure 3 pro-
vides an overview of the different components and explains
the view planning process step-by-step.

Object Recognition
In this work, we build on a state-of-the-art object modelling
and object recognition framework (Aldoma et al. 2013;

Prankl et al. 2015). Our implementation is based on ROS1,
a message based operating system used for robot control.
For object instance recognition, we use an adapted version
of a ROS-based recognition service of the above mentioned
framework. The service takes an RGB point cloud as input
and returns one of following:

(1) list of candidate object hypotheses identities In case
an object’s identity cannot be verified a list of hypotheses
is returned. The hypotheses include the object’s potential
identity and a pose estimate in the form of a 4 × 4 trans-
formation matrix which aligns the object to the point of
view of the camera.

(2) a verified object identity If an object is identified with
high confidence, the object’s identity, pose and the confi-
dence level are returned.

In Figure 3, the input to the object recognition service, the
service itself, and a visualisation of the output is depicted in
Step A, B, and C respectively. In this case, the output is
a hypothesis for a candidate object identity (here: a book).
The object recognition service is used after moving to the
next best view (see Step H, I, and J) this time, the outcome
is a verified identification of the object.

View Generation
After a candidate identity is received, a series of poses are
generated around it. These poses are generated in two uni-
formly distributed rings of robot poses around the estimated
location of the object, each oriented directly towards the lo-
cation of the object.

The accessibility of each of these poses is assessed by col-
lision checking the views using the local cost map. Any
views in which the robot would collide with environmental
obstructions are discarded. This is seen in Figure 3 (Step
D), where views that make contact with the supporting sur-
face of the object are eliminated. The remaining views are
carried forward to be assessed for visual occlusions.

Environmental Analysis
After a set of accessible views has been generated and
tested, environmental analysis is performed on the initial
point cloud to assess whether any regions of the environment
might occlude the view of the object. In order to do this, the
current point cloud is converted into an octree representation
(Figure 3 Step E) (using Octomap (Hornung et al. 2013)) an
RGB-D camera is then modelled at every view. The sections
of each modelled camera that do not make contact with the
bounding box of the candidate object are eliminated from
future analysis. The sections of each camera model that al-
lows an unobstructed of the candidate object are then carried
forward to the next stage, all other sections are discarded.

Model Analysis
Figure 3 (Step F), shows the model analysis step. By com-
pleting the previous two steps, the amount of possible view
locations and camera fields of view have been reduced. Each

1http://www.ros.org/



Figure 3: The next best view planning process step-by-step: A: Receive initial view. B: Recognition service processes point
cloud. C: Candidate object and pose identified. D: Collision detection around object location. E: Environmental analysis for
occlusions (candidate object in pink, occlusions in white and blue). F: Model analysis with remaining rays. G: Move to best
view pose. H: New point cloud sent to recognition service and object recognised. I: Point cloud from second view is sent to
recognition service. J: Visualisation of recognition service correctly and fully recognising the target object.

surviving part of the modelled camera is simulated and di-
rected towards a model of the candidate object. The remain-
ing sections of each camera are simulated using ray-casting;
this computes a line from the origin of the camera out in the
direction of the field of view. If the line makes contact with
the model it is considered that the part of the object with
which it made contact would be visible to the camera from
that viewpoint. After the camera is modelled at each view,
we are left with a measure of the amount of object visible at
each location. The view which enables the highest visibility
is then considered the next best view.

Multi-object Disambiguation Note, if the recognition
service returns more than one candidate hypothesis, aspect
graph building is performed for every object, each with its
own pose transformation. After this, each is analysed to find
the best compromise view—one which gives the best chance
for recognition of each model. A solution to this is, after
calculating the sum of visible surface area for each view, the
difference between them is then subtracted. This ensures no
high surface area visibility from one pose dominates over a
low score for the same pose on another object.

View Execution: Navigation & Recognition
When the next best view has been found, the pose associated
with it is sent to the robot’s navigational packages, which
manoeuvres the robot to that view (Figure 3, Step G). In
this case, the pose consists of movement by the base of the
robot and angular movement by pan/tilt unit to centre the
camera on the object’s location. Once the goal is reached,

input resumes to the recognition service (Figure 3, Step I);
The response of the recognition service will denote different
things:

1. Verification: If a high confidence estimate of the object’s
identity is returned, the next view is considered successful
and the object considered identified.

2. No candidate: If the recognition service returns no high
confidence identity after the next view it should either
be considered successful in dispelling a false hypothesis
from the first view (true negative) or unsuccessful, as it
has lowered the amount of information available to the
recognition service to deny further identification.

Depending on the result of the movement: the object
search will end, another view is taken or the candidate will
be discarded and the search continued. This gives a detailed
overview of the process this next view selection undergoes
in order to produce a next best view pose. The components
of this system will now be assessed and results examined.

5 Experimentation and Evaluation
Experiments were conducted to test the capabilities of this
next best view planner. All experiments were carried out on
a Scitos G5 robot equipped with pan/tilt unit. In each exper-
iment the robot was located in an open area with few obsta-
cles. The centre of this area contained a tall, thin plinth, the
plateau of which was just below the robot’s camera height.
Test objects and obstacles were placed on this supporting ta-
ble and the robot was able to move around to reach a new



Table 1: Results of trials when presented with a single object
and no obstruction (Experiment 1)

Result # Trials Percentage %
Moved. Recognised 33 82.5%
Moved. No Recognition 4 10.0%
No Initial Candidate 3 7.5%
Total 40 100.0%

Figure 4: Graphical representation of selected next best view
poses for a book and mug in experiment 1. Poses surrounded
by black rings did not lead to recognition.

view. Each experiment used its own specific of target ob-
jects. Details of the set-up of individual experiments are
given below.

Experiment 1: Non-obstructed Next View Selection
Set-up The primary function of this planner is to take in
hypotheses about potential objects and select the best pose
to enable their accurate confirmation or rejection. This func-
tion was tested during this experiment. No obstacles or oc-
clusions were used apart from the object’s supporting plane.
40 trials were carried out in total, 20 each on two different
objects: a large book and a standard mug. In all cases the
robot was initially positioned with a view of a the object
which gave a low chance of recognition. Success in these
trials were defined by the ability of the recognition service
to make a high confidence identification of the target object
after the next best view planner selected a new pose and the
robot had moved. In each trial up to two next best view lo-
cations were permitted.

Results Table 1 shows the results of this experiment. The
table shows a successful verification rate of 82.5%, meaning
that in most cases the planner was able to take an uncertain
hypothesis and verify it through moving to a new location.
In 10% of trials, two next view poses were taken, but no
recognition was achieved.

Discussion Failure to provide a verified hypothesis in 10%
of cases can be attributed to the pose estimation provided by
the recognition service. If the view of the candidate in the
initial view is very low quality, pose estimation can be inac-
curate; this leads to poorly aligned candidate poses and thus

inaccurate movement. In some cases this was be compen-
sated for: of the 33 successful trials, 7 required two views
before high confidence recognition was achieved. The initial
inaccurate pose estimation led to poor next view selection;
however, the new view presented better quality information
about the object to a point where the pose estimation im-
proved and the subsequent view resulted in recognition. The
nature of taking pose estimates from low confidence identity
hypotheses does inherently hold the risk of inaccurate pose
estimation, so this is to be expected.

Circled poses in figure 4 show the final positions of 10%
of the trials in which no recognition could be made after two
views, which can be attributed to a succession of inaccurate
pose estimations. The red pose arrows in figure 4 tend to
cluster in areas with a view of large surface area of the ob-
ject. When using the book this was a view from which both
the spine and cover were visible and where the handle and
body were visible on the mug. This demonstrates that given
a reasonably accurate initial pose estimation of the object,
the next best view planner is able to locate the view which
presents one of the largest faces of the object to the camera
and that doing this leads to reliable recognition. This shows
that aspect graphs can be computed online to lead to high
recognition accuracy and do not require excessive analysis.

Experiment 2: Confirmation Views

Set-up After making a high confidence identification of an
object, it may be useful to take another from a different po-
sition, as two high confidence identifications provide more
certainty than one. This experiment followed the same pro-
cedure as experiment 1, except for the starting position of the
robot which was positioned to allow a high confidence iden-
tification. Success in this experiment was measured firstly
on whether the next view led to another high confidence
recognition and secondly on how much identification con-
fidence increased from the first pose to the next.

Results Table 2 shows the descriptive statistics for the sec-
ond experiment. On average, moving from one verified
viewpoint to another resulted in an increase in confidence
in 60% of cases, with an average increase in confidence of
3.65%. The size of increase/decrease fluctuations was quite
large, but the average change in confidence shows an upward
trend over these 20 trials.

Discussion Increases in confidence were largest when the
start position did not align with the largest face of the ob-
ject; next view selection was then able to find the largest
face in the subsequent view. On the contrary, in situations
where confidence decreased, the initial view coincided with
the largest face of the object so the subsequent view moved
away from this largest face. However, instances of reduced
confidence should are not necessarily failures, as this still
provided two high confidence identifications of the object.
This block of experiments shows the planner is able to se-
lect a view to verify an object hypotheses with a good level
of reliability.



Table 2: Descriptive statistics of the results of the confirma-
tion views experiment (Experiment 2)

Measure Result
Attempts 20
Found New Confirmation 20
Increased 12 (60%)
Decreased 8 (40%)
Average Change + 3.65%
Standard Deviation 6.14%
Largest Decrease -9.67%
Largest Increase +15.02%
Mean Initial Confidence 62.35%
Mean Final Confidence 64.53%

Experiment 3: Visually Obstructed Views
Set-up Environmental obstacles potentially act as visual
occlusions when selecting a view. Next view planning must
be able to recognise these in one view and assess their im-
pact on the next. Without this ability the next view planner
can select a view that would theoretically lead to a recogni-
tion confidence of 100%, but but this view may be blocked
by another object, thus the actual recognition confidence is
closer to 0%. To test this functionality the robot is presented
with a scene which contained a target object and potential
occlusion to block all or large parts of the object. Over 20
trials the robot was provided with a initial view of the object
which allowed low confidence recognition. Each trial would
be deemed a success if the object was recognised with a high
level of confidence after the first movement.

Results Results showed that in 17 of the 20 cases (85%),
the planner was able to select a pose which both avoided the
occlusion and lead to recognition. Of the remaining trials,
the selected pose allowed a view of the target object but the
view was incomplete - being partially occluded by the ob-
stacle.

Discussion In most cases the planner was able to account
for an environmental occlusion and choose a best view pose
that avoided it. In the remainder of cases the next view pose
lead to a partially obscured view of the object. This is due to
occlusion modelling being based on the information gained
from a single frame during the initial view. If the potentially
occluding object is occluded by the target object then the
environmental analysis is detrimentally affected by partial
observability of the obstacle.

Experiment 4: Ambiguous Objects
Set-up A new view of an object can be taken to differen-
tiate between objects that share similar features, which was
the basis of this experiment. When presented with a view
of an object that could belong to a target object or unre-
lated object, it would be best to disambiguate this view to
decide if the target object has been found. To test this, two
custom objects were used. Figure 5 shows the two modelled
objects share a face from which the are almost indistinguish-
able, but are structurally different from other angles. In this

Figure 5: Objects which share common features. They ap-
pear identical from a front view, but are distinguishable from
other angles (Experiment 4).

experiment the robot will be placed with a view of the com-
mon face of these two objects and is expected to decide on a
pose which increases the difference between the number of
clusters recognised from each object. In all experiments the
cuboid object(figure 5) was the target object. The robot was
required to select a new pose to increase the strength of one
correct hypothesis and decrease that of the incorrect one in
20 trials. The number of visible features that the recognition
service matched to each candidate identity is a measure of
the strength of that hypothesis.

Results Figure 6 shows that when presented with a scene
in which one of two objects is present, the next best view
planner can strengthen the hypothesis of the correct object
and weaken that of the incorrect identity. Of the clusters
recognised in the initial view, an average of 367.4 belonged
to the correct object and 210.65 to the incorrect object. After
one movement based on the selection of the next best view
selection, the average available clusters for the correct object
rose to 456.4 and 152.8 for the incorrect object.

Discussion This shows that selecting one new view can
increase the differentiation between two ambiguous objects
and lead to a reliable identification. This suggests much sim-
pler and less computationally expensive methods of hypoth-
esis differentiation that in Okamoto (Okamoto, Milanova,
and Bueker 1998) and that by only taking one view rather
than a constant stream, the process is also much simpler.

6 Operation Time
The time for making one movement: from receiving a candi-
date identity and pose estimation to arriving at the next loca-
tion is 1 minute 44 seconds. For two cycles the completion



Figure 6: Results for experiment 4. Percentage of available
clusters for two ambiguous objects before and after move-
ment.

time jumps to 4 minutes 58. This is due to the large amount
of data needed to compute each camera model at each pose.
This is clearly a number that needs to be reduced and can be
a subject for future work.

General Discussion
Experimental results show this is a strong next view algo-
rithm for object recognition that can work reliably in clut-
tered, unpredictable environments.

In order to improve this solution further some areas can be
enhanced to make it more robust and generalisable. Poten-
tial next view locations are currently set at a fixed distance
from the candidate object; this can be a hindrance in certain
topological layouts. Developing adaptable next view loca-
tions which, rather than test which of a fixed set of locations
are in free space and therefore available, the potential loca-
tions should be instead generated in exclusively free space
and then environmental and model analysis take place from
there.

In adopting a greedy approach, this work selected only
poses with the highest visible portion of the object; future
work should focus on including a cost function to form a
utility between movement distance and amount of the model
which is visible.

7 Summary & Conclusion
A summary of the contributions of this project are shown
below. The results shown in the previous section will be
presented in support of these.

In summary, the aims of this study were to show that:

1. a method for analysing potential views using online as-
pect graphs by taking both into account: (1) occlusions,
and (2) the visibility of features based on learned object
models.

2. a next best view planner that selects a view based on the
method above and an executive that accounts for dynamic

obstacles during execution

3. a set of experiments which demonstrates (a) how robots
can disambiguate objects which share a similar set of fea-
tures, and (b) how the performance of object recognition
can be improved by taking multiple views.

Results of experiment 1 show that the online aspect
graphs analysis is able to verify candidates put forward by
the recognition service with an accuracy of 82.5%; how-
ever this also showed that the next best view planner is also
highly dependent on the accuracy of the pose estimation pro-
vided to it. Experimentation also showed that dynamic col-
lision detection was able to eliminate unavailable poses; re-
moving around 17 of 38 poses on average during every trial.
We can also show that in 85% of cases, the planner was able
to avoid visual occlusions in the environment, but this was
heavily dependent on the visibility of the obstruction during
the initial view. This was dually confirmed when two iden-
tical starting poses in experiment 1 & 3 both arrived at dif-
ferent final poses, as the best view when no occlusions are
present was unavailable when clutter was introduced. Fi-
nally, we showed that the planner was able to decrease am-
biguity in objects that have identical faces.

To achieve these aims we used online aspect graph build-
ing and octree based visual occlusion detection. These
were new ways of approaching next best view planning and
showed that online aspect graph analysis for view planning
was possible and unlike offline examples (Hutchinson and
Kak 1989) could account for full or partial occlusions in the
environment and thus avoid these when planning the next
best view. Also, online aspect graph building allows mod-
els to be added during autonomous patrol and immediately
available for recognition, whereas offline building would re-
quire a period of down-time. By decreasing the ambiguity
between two identical looking objects, we showed that ex-
pensive image streaming methods (Okamoto, Milanova, and
Bueker 1998) are not necessary and a more intelligent ap-
proach that fixed angle movements (Wixson 1994) was pos-
sible, using no more than two views, with an identification
rate of 82.5%.

The work presented in this paper was successful in its
aims. From online aspect graph building and collision de-
tection to camera modelling and near real time occlusion
analysis, the way this planner was designed allows it to be
plugged into any robot using any model based recognition
system, meaning this planner is available for a variety of
robots that conduct object search in cluttered environments.
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