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Abstract—We apply the cognitive architecture SEMLINCS
to model multi-agent cooperations in a Super Mario game
environment. SEMLINCS is a predictive, self-motivated control
architecture that learns conceptual, event-oriented schema rules.
We show how the developing, general schema rules yield coop-
erative behavior, taking into account individual beliefs and envi-
ronmental context. The implemented agents are able to recognize
other agents as individual actors, learning about their respective
abilities from observation, and considering them in their plans. As
a consequence, they are able to simulate changes in their context-
dependent scope of action with respect to their own interactions
with the environment, interactions of other agents with the
environment, as well as interactions between agents, yielding
coordinated multi-agent plans. The plans are communicated
between the agents and establish a common ground to initiate
cooperation. In sum, our results show how cooperative behavior
can be planned and coordinated, developing from sensorimotor
experience and predictive, event-based structures.

I. INTRODUCTION

Most of the approaches on intelligent, autonomous game
agents are robust, but behavior is typically scripted, pre-
dictable, and hardly flexible. Current game agents are still
rather limited in their speech and learning capabilities as well
as in the way they act believably in a self-motivated manner.
While novel artificial intelligent agents have been developed
over the past decades, the level of intelligence, the interaction
capabilities, and the behavioral versatility of these agents are
still far from optimal [1], [2].

Besides the lack of truly intelligent game agents, however,
the main motivation for this work comes from cognitive sci-
ence and artificial intelligence. Over the past two decades, two
major trends have established themselves in cognitive science.
First, cognition is embodied, or grounded, in the sensory-
, motor-, and body-mediated experiences that humans and
other adaptive animals gather in their environment [3]. Second,
brains are predictive encoding systems, which have evolved
to be able to anticipate incoming sensory information, thus
learning predominantly from the differences between predicted
and actual sensory information [4]–[7]. Combined with the
principle of free-energy-based inference, neural learning, as
well as active epistemic and motivation-driven inference, a uni-
fied brain principle has been proposed [8], [9]. Concurrently,
it has been emphasized that event signals may be processed
in a unique manner by our brains. The event segmentation
theory [10], [11] suggests that humans learn to segment the

continuous sensorimotor stream into event codes, which are
also closely related to the common coding framework and
the theory of event coding [12], [13]. Already in [10] it was
proposed that such event codes are very well-suited to be
integrated into event schema-based rules, which are closely
related to production rules [14] and rules generated by antic-
ipatory behavior control mechanisms [15]. As acknowledged
from a cognitive robotics perspective, event-based knowledge
structures are as well eligible to be embedded into a linguistic,
grammatical system [16]–[18].

We apply the principles of predictive coding and active
inference and integrate them into a highly modularized, cogni-
tive system architecture. We call the architecture SEMLINCS,
which is a loose acronym for SEMantic, SEnsory-Motor, SElf-
Motivated, Learning, INtelligent Cognitive System [19]. The
architecture is motivated by a recent proposition towards a
unifed subsymbolic computational theory of cognition [20],
which puts forward how production rule-like systems (such
as SOAR or ACT-R) may be grounded in sensorimotor expe-
riences by means of predictive encodings and free energy-
based inference. The theory also emphasizes how active-
inference-based, goal-directed behavior may yield a fully
autonomous, self-motivated, goal-oriented behavioral system
and how conceptual predictive structures may be learned by
focusing generalization and segmentation mechanisms on the
detection of events and event transitions.

SEMLINCS is essentially a predictive control architecture
that learns event schema rules and interacts with its world
in a self-motivated, goal- and information-driven manner. It
specifies a continuously unfolding cognitive control process
that incorporates (i) a self-motivated behavioral system, (ii)
event-oriented learning of probabilistic event schema rules,
(iii) hierarchical, goal-oriented, probabilistic reasoning, plan-
ning, and decision making, (iv) speech comprehension and
generation mechanisms, and (v) interactions thereof.

Here, our focus lies on studying artificial, cognitive game
agents. Consequently, we offer an implementation of SEM-
LINCS to control game agents in a Super Mario game envi-
ronment123. Seeing that the game is in fact rather complex,

1https://www.youtube.com/watch?v=AplG6KnOr2Q
2https://www.youtube.com/watch?v=ltPj3RlN4Nw
3https://www.youtube.com/watch?v=GzDt1t iMU8
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the implementation of SEMLINCS faces a diverse collection
of tasks. The implemented cognitive game agents are capable
of completing Super Mario levels autonomously or coopera-
tively, solving a variety of deductive problems and interaction
tasks. Our implementation focuses on learning and applying
schematic rules that enable artificial agents to cause behav-
iorally relevant intrinsic and extrinsic effects, such as collect-
ing, creating, or destroying objects in the simulated world,
carrying other agents, or changing an agent’s internal state,
such as the health level. Signals of persistent surprise in these
domains can be registered [21], which results in the issuance
of event schema learning [20], and which is closely related to
the reafference principle [22]. As a result, production-rule-like,
sensorimotor-grounded event schemas develop from signals
of surprise and form predictive models that can be applied
for planning. SEMLINCS thus offers a next step towards
complete cognitive systems, which include learning techniques
and which build a hierarchical, conceptualized model of their
environment in order to interact with it in a self-motivated,
self-maintenance-oriented manner.

A significant aspect when considering multi-agent architec-
tures inspired by human cognition is cooperation and commu-
nication: Unique aspects of human cognition are characterized
by social skills like empathy, understanding the perspective of
others, building common ground by communication, and en-
gaging in joint activities [23]. As a step towards these abilities,
we show that the developing event-oriented, schematic knowl-
edge structures enable the implemented SEMLINCS agents to
cooperatively achieve joint goals. Thus, our implementation
shows how sensorimotor grounded event codes can enable
and thus bootstrap cooperative interactions between artificial
agents. SEMLINCS is designed such that the developing
knowledge structures and the motivational system can be
coupled with a natural language processing component. In our
implementation, agents are able to learn from voice inputs
of an instructor, follow instructed goals and motivations, and
communicate their gathered plans and beliefs to the instructor.
Moreover, they can propose to and discuss with other game
agents potential joint action plans.

In the following, we provide a general overview of the
modular structure of SEMLINCS in application to the Su-
per Mario game environment. Moreover, we outline key as-
pects for coordinated cooperation in our implementation. We
evaluate the system in selected multi-agent deduction tasks,
focusing on learning, semantic grounding, and conceptual
reasoning with respect to agent-individual abilities, beliefs, and
environmental context. The final discussion puts forward the
insights gained from our modeling effort, highlights important
design choices, as well as current limitations and possible
system enhancements.

II. SEMLINCS IN APPLICATION TO SUPER MARIO

Here we give a brief overview of the main characteristics
of SEMLINCS in application to the Super Mario game en-
vironment. A detailed description is available in [19]. The
implementation consists of five interacting modules as seen
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Fig. 1. Overview of the main modules and the cognitive control loop in the
implementation of SEMLINCS.

in Figure 1. The motivational system (i) specifies drives that
activate goal-effects that are believed to bring the system
towards homeostasis. The drives comprise an urge to col-
lect coins, make progress in the level, interact with novel
objects, and maintain a specific health level. Goal-effects
selected by the motivational system are then processed by an
event-anticipatory schematic planning module (ii) that infers
a sequence of abstract, environmental interactions that are
believed to cause the effects in the current context. The
interaction sequence is then planned in terms of actual motor
commands by the sensorimotor planning module (iii), which
infers a sequence of keystrokes that will result in the desired
interactions. Both, the schematic and sensorimotor forward
models used for planning are also used to generate forward
simulations of the currently expected behavioral consequences.
These forwards simulations are continuously compared with
the actual observations by the event-schematic knowledge and
learning module (iv), where significant differences are regis-
tered as event transitions that cause the formation of procedu-
ral, context-dependent, event-schematic rules. The principle is
closely related to Jeffrey Zacks and Barbara Tversky’s event
segmentation theory [10], [11] and the reafference principle
[22]. After a desired goal effect was achieved, the respective
drive that caused the goal is lowered, and a new goal is
selected, completing an action cycle. The speech system (v)
provides a natural user interface to all of these processes, and
additionally enables verbal communication between agents. In
the following, we focus on the steps most relevant for our
implementation of coordinated joint actions: Event-schematic
knowledge and planning.

A. Event-Schematic Knowledge and Planning

An event can be defined as a certain type of interaction that
ends with the completion of that interaction. An event bound-
ary marks the end of such an event by co-encoding the encoun-
tered extrinsic and intrinsic changes or effects. Since the possi-
ble interactions with the environment are context-dependent in
nature, we describe an event-schematic rule as a conditional,
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probabilistic mapping from interactions to encountered event
boundaries. Production-rule like schemas can be learned by
means of Bayesian statistics under assumptions that apply in
the Mario environment: Object interactions immediately result
in specific effects, such that temporal dependencies can be
neglected. Furthermore, the effects always occur locally, such
that spatial relations can be neglected. Thus, in the Mario
world, interactions can be restricted to directional collisions,
which may result in particular, immediate effects, given a
specific, local context.

In the SEMLINCS implementation, event boundary detec-
tion is implemented by detecting significant sensory changes
that the agent does not predict by means of its sensorimotor
forward model. Amongst others, these include changes in an
agents’ health level or the number of collected coins, the
destruction or creation of an object, or the action of lifting
or dropping an object or another agent.

The context for the applicability of a schematic rule,
however, is determined by different factors: It includes a
procedural precondition for an interaction, which specifies in
our current implementation the identity of actor and target as
well as the intrinsic state of the actor (i.e. its health level). On
the other hand, an environmental context precondition limits
the applicable rules to the current scope of an action. That
is, the target of a schema rule must be available and the
interaction with the target must be expected to lead to the
desired effect given the current situation. While the compliance
with procedural constraints can be determined easily, the
reachability of objects has to be ascertained by an intelligent
heuristic, which we describe in the following.

B. Simulating the Scope of Action

The scope of action in a simulated scene is determined by
a recursive search based on sensorimotor forward simulations.
The search starts at the observed scene or environmental
context and then simulates a number of simplified movement
primitives in parallel. Each of the simulations results in a num-
ber of collisions (or interactions), as well as a new, simulated
scene. Sufficiently different scenes are then expanded in the
same manner, until the scope of action is sufficiently explored.
As a result, it encompasses the reachable positions as well
as attainable interactions in a local context as provided by
the sensorimotor forward simulation, neglecting, however, the
effects that may result from the interactions.

The simulation of changes in the scope of action is ac-
complished using the abstract, schematic forward simulation
of the local environment. In the current implementation, the
schematic forward model is applied by a stochastic, effect
probability based Dijkstra search. In contrast to the sensori-
motor forward model, it neglects the actual motor commands
but integrates the estimated, attainable interactions in the local
context as provided by the recursive, sensorimotor search.
When specific interactions relevant to the scope of action are
simulated (for example the destruction of a block) the scope
of action is updated.

Fig. 2. Expansion of the scope of action by simulating environmental
interactions. Red fields mark the reachable positions, while blue arrows denote
the registered object interaction options, while simulating the scope of action.
Top row: The scope of action is updated by simulating the destruction of
an object. Bottom row: The scope of action is updated by simulating the
interaction with another agent.

In the first example shown in Figure 2, an agent aims at
collecting a specific item (the coin on the top right). However,
this item is blocked by destructible objects (the golden boxes
to the right of the agent). Assume that the agent has already
learned that it can destroy and collect the respective objects. In
the initial situation (top left picture), however, the learned rule
about how to collect the coin is not applicable. The schematic
planning module thus first simulates the destruction of one
of the blocking objects, and then updates the simulated scope
of action. When there is more than one destructible object in
the current scene, it furthermore has to identify the correct
object for destruction, that is, degeneralize the schematic rule
with respect to the context (in the example, both objects are
suitable). Next, the agent realizes that the desired item can be
collected, given that one of the blocks was destroyed, resulting
in a schematic action plan.

C. From Schematic Planning to Coordinated Cooperation

Schema structures gathered from sensorimotor experiences
can be embedded into hierarchical, context-based planning.
Human cognition, however, is highly interactive and social. To
enable our architecture to act in multi-agent scenarios, it has to
(i) recognize other agents as individual actors (ii) observe and
learn about their actions and abilities, (iii) consider them as
actors in own plans (iv) consider them as possible interaction
targets, and (v) communicate emerging plans. Since agents
may have different knowledge and scopes of action, this can
already result in simple cooperative behavior, for example, if
the destruction of a specific block is needed but in the scope
of action of another agent only.

To yield a greater variety of cooperative scenarios, we addi-
tionally equip the agents with individual abilities. Specifically,
agents are equipped with different jumping heights or the
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unique ability to destroy specific blocks. As shown in Figure
2, the agents may then expand their scope of action when
considering interactions with other agents during schematic
planning. As a consequence, depending on the situation, agents
may be committed to include other agents into their plans, as
will be shown in the experiments.

While these principles are sufficient to model cooperative
planning, additional mechanisms are needed to account for
the coordination and communication of plans. In our imple-
mentation, all schematic plans are strictly sequential, meaning
that only one interaction by one agent is targeted at a time,
eliminating the need for a time-dependent execution of plans.
The communication of plans is done via the speech system
by communicating (grammatical tags corresponding to) the
planned, abstract, schematic interaction sequences from the
planning agent to possibly involved agents. Neither the con-
crete, contextualized interaction sequence, nor corresponding
sensorimotor plans are communicated. As a consequence,
the addressed agent has to infer the concrete instances of
targeted objects that the planning agent is talking about. To do
so, the agent performs contextual replanning to comprehend
the proposed plan using his own knowledge – essentially
mentally reenacting it. Given that the involved agent has
learned a different set of knowledge than the planning agent,
it is likely to end up with a different plan and a different
overall probability of success. In our current implementation,
an involved agent accepts a proposed plan when it does not
have another solution for the targeted goal that is more likely
successful than the proposed plan given its knowledge. Given
the involved agent gets to a different plan, it makes a counter
proposal that is always accepted by the initial planning agent.
The process of negotiation is shown in Figure 3.

Makes plan to reach 
a goal event

Start sensorimotor 
planning

Contextual replanning

Counterproposal of plan

Propose plan to
involved agent

plan includes another agent?         no    
       
       
       

                                                    yes

● Application of own knowledge
● Schema degeneralization
● Plan probability comparison

Start sensorimotor 
planning

           yes                          accept plan

no                                 

Start sensorimotor 
planning

accept plan

Fig. 3. Negotiation diagram for two agents. Blue boxes: Tasks of the planning
agent. Red boxes: Tasks of an agent involved in the initial plan. Grey boxes:
Both agents are planning.

III. EVALUATION

We evaluated the resulting cooperative capabilities of SEM-
LINCS by creating exemplar scenarios in the Super Mario
world, which illustrate the cooperative abilities of the agents.
We show two particular, illustrative evaluations. However,
we have evaluated SEMLINCS in various, similar scenarios
and have observed the unfolding of similarly well-coordinated

behavior. Videos showcasing these scenarios are available on-
line45. An additional scenario showing the negotiation process
is also available, but it is not included in this paper because
it is not the main focus here 6.

A. Toad Transports Mario

The first scenario is shown in Figure 5. In the initial scene
(top left picture), the agent ‘Mario’ stands on the left, below
an object named ‘simple block’ while the agent ‘Toad’ stands
close to Mario to the right side. Neither Mario nor Toad have
gathered schematic knowledge about their environment so far.
Mario is instructed to jump and learns that if he is in his ‘large’
health state and collides with a simple block from the bottom,
the block will be destroyed. Next, he is ordered to jump to
the right– essentially onto the top of Toad – resulting in Toad
carrying Mario and the learning of the option to ‘mount’ Toad
and thus be carried around. As Mario is instructed to jump to
the right again, he also learns how to dismount Toad. Figure 4
shows a graph of Mario’s schematic knowledge at this point.

Effect
DESTRUCTION
of simple block

Interaction
Collision from below

with simple block

Preconditions
Health: Large

Actor / Target
Actor: Mario 

Target: Simple Block

P = 1.0

Actor / Target
Actor: Mario 
Target: Toad

Interaction
Collision from above

with Toad

Effect
MOUNT

the agent Toad

P = 0.6

Interaction
Collision from left

with Toad

Effect
DISMOUNT

the agent Toad

P = 0.6

Fig. 4. Mario’s schematic knowledge in scenario 1. The respective entries
are put into context by the schematic planning module.

Equipped with this knowledge, Mario is ordered by voice
input to ‘destroy a simple block’. This sets as goal effect the
destruction of a simple block object which activates planning
in the schematic knowledge space. As can be seen in Figure 5,
the only simple block is located at the top right in the current
context. In this implemented scenario, Toad is able to jump
higher than Mario, such that he can jump to the elevation,
while Mario is not able to do so. Thus, a direct interaction
with the simple block is not possible for Mario as it is not in
Mario’s current scope of action.

The schematic planning is thus forced to consider other pre-
viously experienced interactions in the context of the current
situation. We assume that all agents have full knowledge about
the sensorimotor abilities of the others. Thus, inferring that it
will expand his scope of action, Mario simulates to jump on
the back of Toad, followed by Toad transporting Mario to the
elevated location on the right. Because the combined height of
Mario and Toad is too tall to pass through the narrow passage
where the simple block is located, a dismount interaction is
simulated subsequently. Finally, Mario is able to destroy the
simple block since it is now in his scope of action.

This interaction plan is then negotiated between the two
agents before they start sensorimotor planning. As Toad ob-
served Mario and thus learned the same knowledge entries, he

4Scenario 1: https://youtu.be/0zle8L6H- 4
5Scenario 2: https://youtu.be/WzOg WcNDik
6Additional Scenario: https://youtu.be/7RV4QCwDK8U
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Fig. 5. Senario 1: Toad helps Mario to destroy a block.

infers the same schematic plan and thus considers the proposal
useful and accepts. After the agreement, both agents plan
their part of the interaction sequence in terms of keystrokes
(top right picture) and wait for the other agent to execute its
part when necessary. The resulting execution of the plan is
shown in the following pictures: Mario mounting Toad; Toad
transporting Mario to the elevated ground; Mario dismounting
Toad and finally Mario moving to the simple block and
destroying it.

B. Mario Clears a Path for Toad

In the second scenario, shown in Figure 6, Toad is at first
instructed to collect the coin object, while Mario is ordered
to destroy the simple block (see top left picture). We assume
that Toad is not able to destroy a simple block by himself,
and does not generalize that he can do so as well. Toad is
instructed to increase his number of coins (top right picture).
Although he knows that a collision with a coin will yield the
desired effect, there is no coin inside his scope of action, since
the only coin in the scene is blocked by a simple block. Thus,
the schematic planning module anticipates a destruction of
the simple block by Mario (bottom left picture), expanding
Toad’s scope of action. After that, Toad is able to collect the
coin (bottom right picture).

Both shown scenarios demonstrate how SEMLINCS agents
are able to learn about each other, include each other in their
action plans by recognizing individual scopes of action in an
environmental context, and coordinate the joint execution of
the plans. Communicating cooperative goals to the participat-

Fig. 6. Scenario 2: Mario helps Toad to collect a coin.

ing agents establishes a common ground, consisting of the
final goal an agent wants to achieve as well as the interactions
it plans to execute while pursuing the final goal.

IV. CONCLUSION

Humans are able to understand other agents as individual,
intentional agents, who have their own knowledge, beliefs,
perspectives, abilities, motivations, intentions, and so their
own mind. [24]–[26]. Furthermore, we are able to cooperate
with others highly flexibly and context-dependently, which
requires coordination. This coordination can be supported by
communication, helping to establish a common ground about
a joint interaction goal.

In the presented work, we showed how social cooperative
skills can be realized in artificial agents. To do so, we equipped
the agents with different behavioral skills, such that particular
goals could only be reached with the help of another agent.
To coordinate a required joint action, SEMLINCS had to
enable agents to learn about the capabilities of other agents by
observing other agent-environment interactions and to assign
the learned event schema rules to particular agents. Moreover,
our implementation shows how procedural rules can be applied
to a local, environmental context, and how sensorimotor and
more abstract schematic forward simulations can be distin-
guished in this process, and applied to build an effective, hier-
archical planning structure. Besides the computational insights
into the necessary system enhancements, our implementation
opens new opportunities for future developments towards even
more social, cooperative, artificial cognitive systems.

First of all, currently the agents always cooperate. A con-
ditional cooperation could be based on the creation of an
incentive for an agent to share its reward with the participating
partner agent. Indeed, it has been shown that a sense of fairness
in terms of sharing rewards when team play was necessary is
a uniquely human ability [27]. While a sense of fairness is a
motivation to share when help was provided – or also possibly
when future help is expected, that is, expecting that the partner
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will return the favor – a more long term motivation can create
social bonds by monitoring social interactions with partners
over time and preferring interactions and cooperations with
those partners that have shared rewards in the past in a fair
manner. Clearly many factors determine if one is willing to
cooperate, including social factors, game theory factors, and
related aspects – all of which take the expected own effort
into account, the expected effort of the cooperating other(s),
as well as the expected personal gain and the gain for the
others.

It also needs to be noted that currently action plans are
executed in a strict, sequential manner. In the real world,
however, joint actions are typically executed concurrently,
such as when preparing dinner together [25]. Thus, in the
near future we will face the challenge to allow the parallel
execution of cooperative interactions, which will make the
timing partially much more critical.

Although our agents already communicate plans on an
abstract, schematic level, all sequential steps of the plans need
to be fully verbalized in order to coordinate a joint action
at the moment. An alternative would be to simply utter the
goal and ask for help, thus expecting the other agent to help
under consideration of the known behavioral abilities of the
individual agent. Therefore, more elaborate theories of mind
would need to be taken into consideration [28]. For example,
in the first scenario mentioned above, Toad may realize that
he needs to transport Mario to the higher ground on the
right to enable Mario to destroy the box up there, because
Mario cannot reach this area. Humans are clearly able to
utter or even only manually signal a current goal and still
come up with a joint plan, without verbally communicating
the plan in detail. While verbal communication certainly helps
in the coordination process, obvious interactions can also un-
fold successfully without communication (e.g. letting another
pedestrian pass; passing an object out of reach of another
person, who apparently needs it). Although the Mario world
is rather simple, cooperative interactions of this kind could
actually be enabled when enhancing the current SEMLINCS
architecture with the option to simulate potential goals of the
other agent and plans on how to reach them, thus offering a
helping hand wherever it seems necessary.
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