
A simple framework for theta-subsumption
testing in Prolog

Hendrik Blockeel1, Svetlana Valevich2

1 Department of Computer Science, KU Leuven
2 KU Leuven

Abstract. We present a simple framework for theta-subsumption test-
ing in Prolog. In its simplest instantiation, it yields an algorithm that
takes only a few dozen lines of code. Despite its simplicity, the framework
has turned out to work very well on data where a state-of-the-art sub-
sumption engine suffered from excessive run times. The framework can
easily be instantiated in different ways, precisely because of its simplic-
ity, and can offer an interesting view on how existing methods compare
to each other.

1 Introduction

Theta-subsumption testing is a crucial and ubiquitous operation in ILP. It is used
in the context of computing the coverage of clauses, but also when reducing a
clause (finding the shortest subclause equivalent to it), which is an important
step in computing the least general generalization of two clauses.

Theta-subsumption testing is NP-hard. Several advanced methods have been
proposed that try to test it efficiently under a wide range of conditions. For
most of these, an implementation is available. These implementations are often
complex, which makes it difficult to understand them fully even if source code is
available. They are also written in a variety of programming languages, making
integration into a Prolog program nontrivial.

In this paper, we propose a simple framework for theta-subsumption testing
in Prolog. The framework has the following advantages: (1) it is easy to under-
stand; (2) the simplest algorithm within this framework takes only a few dozen
lines of Prolog code and is already quite efficient for a wide range of clauses; (3)
the framework offers a useful view on how multiple existing methods relate to
each other; (4) the framework makes a link with query execution in databases.

2 Theta-subsumption

2.1 Definition

We assume familiarity with standard terminology from logic programming and
relational databases, and with Prolog. Theta-subsumption, or briefly subsump-
tion, is defined as follows: A clause c theta-subsumes another clause d, denoted
c �θ d, if and only if there exists a variable substitution θ such that cθ ⊆ d.
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2.2 Testing theta-subsumption in Prolog

We assume clauses are represented as lists of literals. The following code can
then be used to test whether a clause C subsumes a clause D:

subsumes(C,D) :- \+ \+ (copy_term(D,D2), numbervars(D2,0,_), subset(C,D2)).

subset([], D).

subset([A|B], D) :- member(A, D), subset(B,D).

It makes a copy D2 of D to rename its variables apart from those in C, then
skolemizes D2 (i.e., instantiates each variable in it to a different constant), and
tries to unify C with a subset of D2. Skolemizing D2 avoids that the unification
procedure applies variable substitutions to both C and D, instead of only to C.
The double negation (\+ \+) ensures that the unifications do not survive the
call, so that subsumes(C,D) does not have any side effects.

This code exploits Prolog’s unification and backtracking mechanisms. A call
to member(A,D) may have multiple solutions, requiring different substitutions for
the variables in A. Some of these substitutions may make other literals (which
share variables with A) un-unifiable with any member of D. This may be noticed
only later on. Prolog then has to backtrack and try other substitutions for A.

When the first clause contains variables, the subset predicate defines a search
through the space of all possible variable substitutions. The size of this space is
the product of the number of possible instantiations for each variable, and hence
exponential in the number of variables occurring in C.

2.3 Partitioning into independent components

A simple way to make the search more efficient is to first partition the clause C
into minimal subsets such that different subsets share no variables. The choice of
a substitution for one subset then cannot affect the existence of a substitution for
another subset. Each subset can then be tested separately using the code listed
above. The complexity of this method is exponential in the largest number of
variables in any one subset (as opposed to the total number of variables).

Example 1. Let C = {p(X), q(X,Y ), r(Z, 2))} and D = {p(1), p(2), p(3), p(4),
q(2, a), q(4, b), r(b, 1)}. After finding a substitution for p(X) and q(X,Y), Prolog
tries to find a substitution for r(Z,2). There is none. Prolog will then backtrack,
trying to find a different substitution for X and Y . But it is clear that none of
these alternatives will change the fact that no substitution exists for Z that
makes r(Z,2) an element of D. Alternative solutions for X and Y do not affect
the existence of solutions for Z. Therefore, it is more efficient to split C into
C1 = {p(X), q(X,Y )} and C2 = {r(Z, 2)} and perform the search for each of
these separately. The complexity of this is O(|SXY |+|SZ |) instead of O(SXY Z) =
O(|SXY | ∗ |SZ |).

The splitting of clauses into independent parts, each solved separately, is a
crucial element in all efficient theta-subsumption testers.
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Clauses to tables

c:    p(a,X,Y),                              p(b,Y,X),                                                  q(Y,Z),              r(Y)

d: p(a,1,2), p(a,3,5), p(a,1,0), p(b,1,1), p(b,5,3), p(b,1,0), p(b,2,0), q(5,a), q(3,b), r(1), r(2), r(3)

X Y
1 2
3 5
1 0

X Y
1 1
3 5
0 1
0 2

Y Z
5 a
3 b

Y
1
2
3

X Y
3 5

Y Z
5 a
3 b

Y
1
2
3

c: p(a,X,Y), p(b,Y,X), q(Y,Z), r(Y)
d: p(a,1,2), p(a,3,5), p(a,1,0), p(b,1,1), p(b,5,3), p(b,1,0), p(b,2,0), q(5,a), q(3,b), r(1), r(2), r(3)

X Y
3 5

Y Z
3 b

(a)

(b)

(c)

(d) (e)

Fig. 1. Constructing instantiation tables. (a) Clauses c and d for which c ≤θ d is to
be tested. (b) For each literal in c, the matching literals in d are shown. (c) For each
literal l in c, an instantiation table shows the possible instantiations of the variables
notation in l. (d) Two tables with the same attributes (variables) can be replaced by
their intersection. (e) When the attributes of table T are a subset of the attributes of
T ′, T ′ can be dropped after replacing T by T n T ′.

2.4 Pruning the search space based on semi-joins

In the context of testing C �θ D, let d be the skolemized version of D and c
one of the independent subsets of C. A solution is a variable substitution θ such
that cθ ⊆ d. A literal l1 matches a literal l2 if and only if a variable substitution
θ exists such that l1θ = l2. The instantiation list of a literal l ∈ c is the set of
all literals l′ ∈ d that match l. Figure 1 shows an example pair of clauses c and
d (a), and for each literal in c the matching literals in d (b).

Using terminology from relational databases, we define the instantiation table
of a literal l as a table with as attributes the variables in l, and as tuples the
value combinations for these variables that occur in the instantiation list. An
instantiation table is simply a different representation for an instantiation list.
Figure 1(c) shows the instantiation tables of the four literals in c.

Note that the instantiation tables serve as constraints on the possible instan-
tiation of tuples of variables. Let T be an instantiation table and X the set of
variables corresponding to its attributes. Any solution θ must instantiate X such
that Xθ occurs in T . Therefore:

– when tables T and T ′ have the same attribute set, attr(T ) = attr(T ′), they
can be replaced by a single table that contains their intersection.
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– more generally, when attr(T ) ⊆ attr(T ′), all t′ ∈ T ′ for which πattr(T )(t
′) 6∈ T

can be removed from T ′, and after doing this, T can be dropped (it no longer
imposes a constraint that is not already imposed by T ′)

– even more generally, let A = attr(T ) ∩ attr(T ′); when A 6= ∅, all tuples t′

of T ′ for which πA(t′) 6∈ πA(T ) can be removed from T ′, and vice vera, all
t ∈ T for which πA(t) 6∈ πA(T ′) can be removed from T .

Figure 1 illustrates the effect of replacing the first two tables by their intersection
(d), and of dropping the Y table after filtering the Y Z table based on it (e).

In relational algebra terms, the above three rules can be summarized as
follows. (1) A table T can always be replaced by T n T ′, its semi-join with T ′.
The (left) semi-join operator is defined as T n T ′ = πA(T ∗ T ′), with π the
projection operator, ∗ the natural join, and A the set of all attributes of T . (2)
After this semi-join, T ′ can be dropped if attr(T ′) ⊆ attr(T ). These operations
can reduce the number of tables and the size of each table.

2.5 The search itself

When the search space can no longer be reduced in the way described, an exhaus-
tive search is needed. The following procedure is then recursively applied: choose
a table T ; for each tuple t ∈ T : filter the other tables by leaving out all tuples
incompatible with t (that is, remove each t′ ∈ T ′ such that πA(t′) 6∈ πA(T ) with
A = attr(T ) ∩ attr(T ′)); call the search procedure recursively on the resulting
set of tables. When there are no tables left to choose from, a solution has been
found. If at any point, a table becomes empty, the search must backtrack and
choose the next t; if no alternatives for t are left, this means no solutions exist.

The selection of T can be done according to a heuristic. Ideally, it maximally
reduces the search space. A table with n attribute, each with domain size m, has
domain size mn. Of all values in this domain, only the tuples in the table are
valid; so, if the table contains l tuples, the search space is reduced by a factor
mn/l (compared to exhaustively trying all values). This factor can be used as
a heuristic. Another factor to take into account is: in how many other tables
lists do the attributes occur, and to what extent will those tables be reduced?
Finally, as observed by Santos and Muggleton [5], the instantiation may cause
further decomposition of the clause. A heuristic that tries to maximize such
decomposition is likely to be advantageous.

2.6 Algorithm

The above points give rise to a simple algorithm for efficient subsumption test-
ing. A number of auxiliary functions and procedures of the algorithm can be
instantiated in different manners. The algorithm thus gives rise to a framework
that we an easily experiment with.

Our current implementation uses a very simple and rough heuristic: it simply
uses 5n/l (that is, it assumes an average domain size of 5). It performs semi-joins
until a fixpoint is reached. The filtering during the search uses a single step of
semi-joining the chosen tuple with the other tables. Decomposition into inde-
pendent components is done only at the beginning, not after each instantiation.
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2.7 Situating existing methods in this framework

Existing subsumption algorithms can be situated within this framework, making
it easier to explain and compare them. We focus on Subsumer [5], Resumer [3],
Django [4], and the algorithm proposed by Scheffer, Herbrich and Wysotzky [6],
which we call SHW here. For lack of space, we focus on two main differences.

All methods mentioned above phrase the problem as a constraint program-
ming problem and use advanced constraint solving methods. An important dif-
ference among methods is in how they define the variables and domains for the
solver. Subsumer and Resumer use as variables the logical variables that oc-
cur in the clauses. Django and SHW use as variables the literals in c, and as
possible values the (matching) literals in d. From the constraint solving point
of view, our method uses tuples of logical variables as the variables to solve
for, and tuples of values as their values. The use of single variables is inherently
less efficient, as information about which combinations of values occur in clause
d is ignored. Using variable tuples as opposed to literals has the advantage that
when the same tuple of variables occurs in multiple literals, only one variable is
introduced for them in the constraint solver.

Instantiating a variable tuple may cause a connected component to decom-
pose into independent components. Subsumer is the only method to exploit this.
Santos and Muggleton showed that this can yield important efficiency gains [5].
The idea can easily be incorporated into our framework. The selection heuristic
can be adapted to take the ensuing search space reduction into account.

3 Experimental Evaluation

This work was motivated by work on learning language from sentences in a
context, where the context is described as a logical interpretation [1, 2]. The
incremental learning algorithm proposed there repeatedly computes lggs, which
themselves involve multiple subsumption tests, and the straightforward imple-
mentation of subsumption testing quickly turned out too slow. Somewhat to our
surprise, also Subsumer, the most recently proposed subsumption engine, turned
out to be problematically slow on some cases. Repeated attempts to improve our
own straightforward subsumption algorithm yielded a simple instantiation of the
framework described above.

We compared the runtimes of Subsumer and our algorithm, dubbed Subtle,3

on a dataset of 10000 sentence/context examples. Due to the NP-hardness of the
problem, average timings take very long to obtain and are not very informative
(they are strongly influenced by the heavy tails of the runtime distribution).
We have therefore followed the following methodology. The incremental learner
processes examples one by one. When the processing of a single example takes
over a minute (indicating that it gave rise to a “difficult” pair of clauses), the
example is commented out and the learner restarted. As more and more such

3 “SUBsumption Testing with Little Effort”
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“problematic” examples are removed, the learner gets further into the dataset
before getting stuck. After removing 10 problematic examples, we stopped.

Subsumer had its 10th problematic example at index 73. Subtle had only 7
problematic examples; the remaining 9993 were processed in 27 minutes.

On one benchmark included in the Subsumer distribution (specifically, testing
40 hypotheses from the file hyp1 00.pl on the 400 examples in exs 00.pl), we
found CPU time ratios for Django, Subsumer and Subtle of roughly 1:5:30. On
separate sets of subsumption problems generated from the language learning
problem, we found the ratios of roughly 1: – : 5 on one dataset, and – : 7 : 12
on another dataset, where – indicates that the system did not run to completion
(due to memory problems or excessive time). While Subtle is not the fastest
method on either dataset, it is the only one that could handle both.

All this indicates that different methods are best for different datasets, and
a versatile framework is therefore useful. We believe that our simple framework
can offer that versatility, but more experiments are needed to confirm this.

4 Conclusions

We have proposed an framework for testing theta-subsumption that is easy to
understand, easy to implement in Prolog, and significantly outperforms a state-
of-the-art system on a practically motivated problem. Given the NP-hardness of
theta subsumption, it is to be expected that different algorithms will be optimal
under different circumstances. An important advantage of our framework is that
it can easily be adapted to different types of datasets. The simplicity of the
framework also makes it possible to incorporate ideas from different existing
systems into it.

A more extensive experimental evaluation is needed to evaluate the true
potential of the method. This will include experiments on a variety of datasets,
and with different instantiations of the method.
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