
An Adaptive Framework for RDF Stream Reasoning

Qiong Li1,3, Xiaowang Zhang1,3,∗, Zhiyong Feng2,3, and Guohui Xiao4

1 School of Computer Science and Technology, Tianjin University, Tianjin 300350, P. R. China,
2 School of Computer Software,Tianjin University, Tianjin 300350, P. R. China

3 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin 300350, P.R. China
4 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano I-39100, Italy

∗ Corresponding author.

Abstract. In this paper, we propose an adaptive framework for RDF stream
reasoning (PRSPR) in order to obtain more meaningful and valuable informa-
tion, which is an extension of our previous work. Moreover, our work is a kind
of plug-in framework which makes it more adaptive and flexible. Within this
framework, not only can we apply all kinds of SPARQL query engines to pro-
cess RDF streams, but also simultaneously support various inference engines for
RDFS/OWL for stream reasoning. Finally, we experimentally evaluate the per-
formance of PRSPR on YABench. The experiments show that PRSPR can still
maintain the high performance with SPARQL query engines in RDF stream rea-
soning although there are some slight differences among them.

1 Introduction

RDF stream, as a new type of dataset, can model real-time and continuous information
in a wide range of applications, e.g., environmental monitoring and smart city [1]. In
[3] we already presented an adaptive framework PRSP to process RDF streams by ex-
ploiting various SPARQL query engines in a brief way. However, if we want to obtain
more detailed and abounding information, it is necessary to address the problem of per-
forming reasoning for very dynamic inputs. There are many approaches about RDFS
reasoning over static RDF graphs, but rare over RDF streams. Liu et al. [5] proposed
a method over static data to enhance the performance of rule-based OWL reasoning
on Spark by exploiting a locally optimal executable strategy. Chang et al. [4] present a
approach to perform stream reasoning on RDF data using the GPU computing architec-
ture, but it reasons streams after processing streams.

In this paper, we provide an adaptive framework for RDF stream reasoning named
PRSPR which is an extension of our PRSP. In our work, we further optimize PRSP
by improving the performance. On the other hand, we apply the locally optimal exe-
cutable strategy to implement stream reasoning. Therefore, PRSPR not only makes it
possible to use the high-performance SPARQL query engines to process large-volume
RDF streams, but also makes it easier for stream reasoning by applying all kinds of
RDF/RDFS and OWL entailment rules in a convenient way.



2

2 Preliminaries

RDF stream An RDF stream S is defined as ordered sequences of pairs, made of an
RDF triple and a timestamp τ : (〈s, p, o〉, τ).
Continuous Query Formally, a continuous SPARQL query Q can be taken as a 5-tuple
of the form:

Q = [Reg, S,w, s, ρ(Q)]

where
– Reg: the registration;
– S: the RDF stream registered;
– w: RANGE, i.e., the window size;
– s: STEP, i.e., the updating time of windows;
– ρ(Q): a SPARQL query.

RDF Schema RDF Schema (RDFS) is a set of classes with certain properties using
the RDF extensible knowledge representation data model, providing basic elements for
the description of ontologies, otherwise called RDF vocabularies, intended to structure
RDF resources.

3 A framework for RDF stream reasoning

PRSPR is a framework for querying and reasoning both RDF graphs and RDF streams
shown in Figure 1. Both continuous query and RDF streams as the input of PRSPR,
they continuously reason and process by exploiting the following four modules: Query
Preparation, Data Transformer, RDFS Reasoner and Query Execution. We give a de-
tailed description about the workflow below.

Data Transformer

Query 
Preparation

Window 
Selector

RDF
Graph

RDF 
Stream

Continuous
 Query

Result

RDFS
Reasoner

RDF
Graph
Query 

ExecutionSPARQL 
Query

RDF(S)
Graph

Fig. 1. The framework of PRSPR

Query Preparation Continuous queries, as the input of Query Preparation mode, gen-
erate two types of queries, namely, SPARQL query and Window Selector, which can be
addressed in the Query Execution and Data Transformer module respectively.



3

Data Transformer Data Transformer module processes RDF streams. It transforms
RDF streams into RDF graphs based on the window size and step size set at Window
Selector. And the output, RDF graphs are as the input of RDFS Reasoning module.
RDFS Reasoner RDFS Reasoner is responsible for reasoning RDF graphs based on the
rule-based knowledge ontology on Spark. The reasoning computes the deductive clo-
sure of an ontology by applying RDF/RDFS entailment rules in order to make implicit
knowledge explicit, i.e., obtaining RDF(S) graphs.
Query Execution PRSPR defines a unified interface for SPARQL query engines, which
makes it possible and easy for SPARQL query engines to process RDF streams.

4 Experiments and Evaluations

All centralized experiments were carried out on a machine running Linux, which has
4 CPUs with 6 cores and 64GB memory, and 4 machines with the same performance
for distributed experiments. The version of Spark is 1.5.2. We utilized YABench RSP
benchmark[2], and registered LUBM as the RDF streams. The complexity of the sce-
narios was in the ascending order, from the least complex configuration (LUBM200)
that loaded roughly 28 million triples to the most complex configuration (LUBM1000)
that injected more than 130 million triples. In our experiments, we perform sliding win-
dows with a 2400-seconds-window which slides every 2300 seconds, and chose the
two queries over LUBM, i.e., Q6 and Q10. The reason is that the two queries can not
return results over LUBM unless the data has been inferred by reasoners. We use the
OWL-Horst rules[5] as the reasoner in our experiments.

Table 1. RDFS reasoning time

Dataset lubm200 lubm300 lubm400 lubm500 lubm1000
Time(s) 3155 4039 5024 6145 9688

200 300 400 500 1000
0

0.2

0.4

0.6

0.8

1
·104

LUBM/the number of university

Ti
m

e[
s]

gStore RDF-3X gStoreD TriAD S2RDF

(a) Triples loading time

200 300 400 500 1000
0

10

20

30

40

50

LUBM/the number of university

Ti
m

e[
s]

gStore RDF-3X gStoreD TriAD S2RDF

(b) Query response time

200 300 400 500 1000
0

0.2

0.4

0.6

0.8

1
·104

LUBM/the number of university

Ti
m

e[
s]

gStore RDF-3X gStoreD TriAD S2RDF

(c) Engine execution time

Fig. 2. RDF stream for processing time of Q6 within PRSPR

We compare the performance of the five different SPARQL query engines, including
two centralized engines (RDF-3X and gStore) and three distributed systems (gStoreD,
TriAD and S2RDF) in a unified way. The RDFS reasoning time (shown in table 1), is
increased in varying degrees with the growth of dataset. The processing time of the two
queries within PRSPR is shown in Fig 2 and Fig 3, respectively. gStoreD and S2RDF
can not process the whole triples in the window at the specific time over LUBM1000,



4

which results in some window triples lose and the results are incomplete. When the
load ranges from LUBM200 to LUBM1000, the triples loading time, query response
time and engine execution time are increasing. But we can also get that the distributed
engines (TriAD and S2RDF) have the better performance than centralized engines.

200 300 400 500 1000
0

0.2

0.4

0.6

0.8

1
·104

LUBM/the number of university

Ti
m

e[
s]

gStore RDF-3X gStoreD TriAD S2RDF

(a) Triples loading time

200 300 400 500 1000
0

10

20

30

40

50

LUBM/the number of university
Ti

m
e[

s]
gStore RDF-3X gStoreD TriAD S2RDF

(b) Query response time

200 300 400 500 1000
0

0.2

0.4

0.6

0.8

1
·104

LUBM/the number of university

Ti
m

e[
s]

gStore RDF-3X gStoreD TriAD S2RDF

(c) Engine execution time

Fig. 3. RDF stream for processing time of Q10 within PRSPR

5 Conclusions

In this paper, we present the PRSPR, as a plugin adaptable for various SPARQL query
engines and reasoning machines, which makes the system more adaptive. Moreover,
PRSPR is for both RDF streaming and stream reasoning, so that it can obtain more
valuable information. Therefore, it can also process large-volume RDF streams by ap-
plying distributed SPARQL query engines.

Acknowledgments

We thank Bo Zhao for his assistance in the experiments of this paper. This work is sup-
ported by the programs of the National Natural Science Foundation of China (61672377),
the National Key R&D Program of China (2016YFB1000603), and the Key Technology
Research and Development Program of Tianjin (16YFZCGX00210).

References

1. Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., and Grossniklaus, M.: Querying RDF
streams with C-SPARQL. SIGMOD REC. 39(1), 20–26 (2010)

2. Kolchin, M., Wetz, P., Kiesling, E., and Tjoa, A. M.: YABench: A comprehensive framework
for RDF stream processor correctness and performance assessment. In: Proc. of ICWE ’16,
pp. 280–298 (2016)

3. Li, Q., Zhang, X., Feng, Z.: PRSP: A plugin-based framework for RDF stream processing.
In: Proc. of WWW’17, poster, pp. 815–816 (2017)

4. Liu C, Urbani J, and Qi G.: Efficient RDF stream reasoning with graphics processingunits
(GPUs). In: Proc. of WWW ’14, pp. 343–344 (2014)

5. Liu, Z., Feng, Z., Zhang, X., Wang, X., and Rao, G.: RORS: Enhanced Rule-Based OWL
Reasoning on Spark. In: Proc. of APWeb ’16, pp. 444–448 (2016)


	An Adaptive Framework for RDF Stream Reasoning

