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Abstract

This paper presents a computational framework for identity
and is particularly focused on identifying the culprit in a
crime-scene investigation. A case is conceptualized as a con-
stellation of situations in the sense of Barwise’s situation the-
ory. Data on a case is stored as RDF triples in a triple store.
Several relevant OWL ontologies have been developed and
supplemented with SWRL rules. Uncertainty and combin-
ing levels of (possibly conflicting) evidence are handled with
Dempster-Shafer theory. A webpage is being developed to
make available to students of criminal justice the results of
our work. The user will be able to query about evidence and
follow how it accrues to various hypotheses.

1 Introduction
We are developing a computational framework for identity,
and, with our focus on criminal investigations, we are in-
tegrating ontologies and (to combine levels of evidence)
Dempster-Shafer theory into our system. A particularly im-
portant goal of this project is a web interface to this system
for learning purposes. This webpage will allow a student to
query information regarding criminal investigations and fol-
low how evidence accrues to various hypotheses about the
identity of the culprit.

The SuperIdentity project is the state-of-the-art in frame-
works for identity (Creese et al. ). It starts with some known
information or element of identity, such as a username or
email address, and transforms that element into others, e.g.,
by looking up an email address to find the associated user-
name. These elements are grouped by type (e.g., phone num-
ber) into characteristics, multisets of elements. The set of all
characteristics is a person’s superidentity, a compilation of
all known information on them. Our framework covers all
aspects of the SuperIdentity framework but from a situation-
theory perspective. We assemble constellations of situations
(in the technical sense of Barwise and Perry (Barwise and
Perry 1983)) to produce a case as in the legal sense, provid-
ing more structure and provenance than provided by superi-
dentities.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background: situation theory (the theoreti-
cal background for our representations), Semantic Web re-
sources (our OWL ontologies serve as knowledge bases, and
data is stored as RDF triples conforming to our ontologies),

and Dempster-Shafer theory (used to handle uncertainty and
collaborating and conflicting evidence). Section 3 presents
our running example, Section 4 presents our ontologies, and
Section 5 summarizes the encoding of our examples in RDF.
Section 6 discusses the SWRL (Semantic Web Rule Lan-
guage) rules that complement our ontologies. Section 7 ad-
dresses evidence in the legal sense and the importance of
certain objects, viz., biometric artifacts, that persist across
situations. Section 8 presents our application of Dempster-
Shafer theory, Section 9 outlines a functional design of our
webpage, and Section 10 sketches the ongoing implemen-
tation of our web-based system. Section 11 concludes and
suggests future work.

Our framework is used in a way compatible with con-
temporary crime-scene investigation, with most information
manually encoded as RDF triples and possibly automated
encoding of documents. We rely on human perception ex-
cept for biometric matching. Ontologies, which capture ex-
pert knowledge and conventional practice (there is no ma-
chine learning), constrain the encoding and support infer-
ence. Dempster-Shafer theory reveals how evidence com-
bines and provides guidance even when evidence is weak.
For other recent presentations of our framework, see (Mc-
Daniel et al. 2017a) and (McDaniel et al. 2017b) regarding
ontologies and (Sloan et al. 2016) and (Sloan et al. 2017)
regarding application of Dempster-Shafer theory.

2 Background
2.1 Situation Theory
Our computational framework is based on the situation the-
ory of Barwise and Perry (Barwise and Perry 1983), espe-
cially as systematized by Devlin (Devlin 1995). According
to Barwise, “‘[s]ituation’ is our name for those portions of
reality that agents find themselves in, and about which they
exchange information" (Barwise 1989). A situation supports
elementary items of information, called infons, each essen-
tially a relation among objects at a time and place (or pos-
sibly the lack of such a relation). A real situation supports
an indefinite number of infons. We generally work with ab-
stract situations, each supporting a finite number of (possi-
bly parameterized) infons. An abstract situation amounts to
a type under which real situations are classified.

There are constraints between situations, as expressed, for
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example, by “smoke means fire." By virtue of constraints,
one situation may carry information about another. By virtue
of conventional (linguistic) constraints, an utterance situa-
tion, in which someone performs a (declarative) speech act,
carries information about a described situation. Whether the
speech act is felicitous may depend on resource situations
related by conventions to the utterance situation; in a purely
linguistic setting, such situations typically support infons ex-
pressed by relative clauses.

In our framework, an id-action takes place in what we
call an id-situation. Any id-action is considered an asser-
tion of identity even if it is not verbal. So an id-situation
is an utterance situation, and the crime scene is the corre-
sponding described situation. Supporting situations essential
to crime-scene evidence (e.g., those where suspects’ finger-
prints were recorded) are resource situations: there are con-
ventional constraints requiring the existence of properly exe-
cuted situations for the evidence to be admissible. Together,
the id-situation, the described situation (crime scene), and
the resource situations make an id-case.

2.2 Semantic Web Resources
The semantic web is built off of two W3C standards (Pan
2009): the resource description framework (RDF) [ref] and
the resource description framework schema (RDFS). The
web ontology language (OWL) extends the expressiveness
of RDFS and allows for the creation of ontologies. “Ontol-
ogy" is a term borrowed from philosophy, where it means
the conceptualization of entities in the world and how they
interact with each other, but, in computer science, it denotes
a conceptualization of a domain.

RDF is a W3C recommendation that allows for the anno-
tation of web resources. RDF statements (known as triples)
are in the form of subject predicate object, where predicate
is a binary relation. A resource (thing) is denoted in RDF by
a uniform resource identifiers (URI), a string unique across
the web. A URI reference (URIref) is a URI with an optional
fragment identifier at the end. A URIref is usually repre-
sented as a Qname, pre:lp, where pre is a URI (essentially
a namespace pefix) and lp is the local part. A blank node
(bnode) is a resource that is not identified by a URIref, func-
tioning like a pronoun. One RDF serialization defined by
the W3C is N3, in which triples are expressed by the three
components separated by whitespace. If several triples share
a subject, we can abbreviate by listing the common subject
then listing predicate-object pairs separated by semi-colons.

RDFS allows for the definition of new RDF classes and
properties. An individual is an instance of a class. A class
may be a subclass of classes and a property may be a sub-
property of properties. A property has a domain, which is
a class to which its subjects belong, and a range, which is
a class or datatype to which its objects belong. For a suc-
cinct representation, where p is a property, Dom is its domain,
and Rng is its range, we write p: Dom ! Rng. Object proper-
ties have classes as ranges while datatype properties have
datatypes. Unlike RDFS, OWL allows for the expression of
local scope of properties, disjointedness of classes, Boolean
combinations of classes, cardinality restrictions, and special
characteristics of properties.

SPARQL (Pérez, Arenas, and Gutierrez 2006) is a SQL-
like query language for triple stores. The WHERE clause con-
tains a pattern of triples that will be matched by the query
engine. Query output is what is bound to the variables in the
SELECT clause. Various applications allow one to infer new
triples from those present in the triple store via connections
captured in the OWL ontologies. For additional inference
patterns, the ontologies can be supplemented with rules in
the Semantic Web Rule Language (SWRL). These are if-
then rules that use the concepts expressed in the ontologies.

2.3 Dempster-Shafer Theory
Dempster-Shafer (DS) theory is a justification-based way of
distributing evidence (Halpern 2005). “Mass" of evidence
distributes to sets of elements or outcomes, with unassigned
mass, representing ignorance, given to the set of all ele-
ments, called the frame of discernment. This assigns masses
sum to 1.0. A focal element is a set with non-zero mass. A
refinement is the analysis on the frame of discernment to get
a more detailed frame of discernment.

Given a mass function, the belief function for a set is
the lower bound for likelihood, calculated by adding the
masses of all subsets of the set, while the plausibility is
the upper bound for the likelihood, calculated by adding
the masses from all of the sets that overlap the set. In
symbols, for a frame of discernment ⇥, a mass function
m, and any subset ✓ of ⇥, Bel(✓) =

P

✓⇤✓✓ m(✓⇤) and
Plaus(✓) =

P

✓⇤\✓ 6=; m(✓⇤). Thus, for any ✓ ✓ ⇥,
Bel(✓)  Plaus(✓).

DS theory allows for the combination of multiple mass
functions for different kinds of evidence to produce a new
mass function that relates to the combined evidence. There
are a number of combination rules that fit different types of
data better. For example, Dempster’s rule combines pieces of
evidence that are equally reliable while preserving the uncer-
tainty inherent within each piece of evidence. Specifically,
Dempster’s rule calculates a measure, K, of conflict between
the mass functions and divides that measure as mass among
the different focal elements, including the focal element
that is the entire frame of discernment. In symbols, with
K =

P

B\C 6=✓ m1

(B)m
2

(C) for mass functions m
1

and
m

2

and focal elements B and C. Dempster’s rule combines
m

1

and m
2

as m
12

= (
P

B\C=A m
1

(B)m
2

(C))/(1�K).
Other combination rules include Zhang’s rule (which al-
lows combination of mass functions with different frames of
discernment) and the mixing rule (which assigns different
weights to the combined mass function and so compensates
for the fact that some pieces of evidence may be more re-
liable than others). And often researchers create their own,
context-specific combination rules.

3 Running Example
We consider a scenario where a theft has occurred at a party.
There is a list of possible suspects in the form of a guest list.
Evidence from the crime scene includes a group photograph
from a security camera with one guest with their hand on the
doorknob of the door to where the valuables were kept and a
fingerprint on that doorknob. This scenario is a constellation
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of situations, centering around two separate id-situations for
the two pieces of evidence: the fingerprint and the snapshot.
Situation s

1

(see Figure 1) is the id-situation for the finger-
print case; an analyst compares fingerprints on file from the
partygoers to the forensic one at the crime scene. In situa-
tions s

3a-s
3d, a suspect has their fingerprint taken by a police

officer, and in situation s
4

, the criminal touches the door-
knob, placing the forensic fingerprint. The CSI team lifts
the fingerprint from the doorknob in situation s

5

. The id-
situation for the case with the security camera image, s

2

, is
supported by its own constellation of situations. See Figure
2. Police take a mugshot of each suspect in situations s

6a-
s
6d. Those mugshots are then compared with the security

camera image in s
2

. The security camera records the group
in situation s

7

, which acts as an utterance situation, describ-
ing the group in s

8

. Situation s
4

, in which the fingerprint is
left by touching the doorknob, is a part of situation s

8

.

Figure 1: Mugshot ID case

4 The Ontologies
Figure 3 shows the ontologies created for the framework and
their relationships to each other. Each ontology inherits from
the ontology below.

Our ID-Situation Ontology (to which we associate the
prefix id) focuses on situations and constellation of sit-
uations (i.e., id-cases) that involve id-actions as well as
any evidence supporting them. This ontology is built on
the Situation Ontology (to which we associate the pre-
fix sit), whose two major classes are sit:Situation and
sit:Infon, whose children are essential in encoding our
example. Subclasses of sit:Infon corresponding to vari-
ous relations are defined in the ID-Situation Ontology. For
such a subclass, we define properties with it as domain
for the argument positions in the corresponding relation.
This avoids RDF’s restriction to binary relations (“proper-
ties") and accommodates variable-arity relations. For sim-
plicity, we associate time and location with a situation

Figure 2: Fingerprint ID case

Figure 3: The ontologies and their inclusions

rather than with individual infons. Consequently, we define
top-level classes sit:Temp and sit:Loc as well as various
functional properties such as sit:tempLoc: sit:Situation

! sit:Temp and sit:spatialLoc: sit:Situation ! sit:Loc.
For the sit:Situation class, there is a reflexive and
transitive object property sit:partOf: sit:Situation !
sit:Situation to indicate that one situation is a part of an-
other.

The ID-Situation Ontology includes class id:IdCase,
an instance of multiple situations that form an id-case.
There is an object property id:hasSituation: id:IdCase

! sit:Situation, connecting an id-case to its con-
stituent situations. Subproperties of id:hasSituation

are id:hasIdSituation: id:IdCase ! sit:Situation and
id:hasSupportingSituation: id:IdCase ! sit:Situation.
The first acts as a functional property that relates an
id-case to its id-situation; the latter links an id-case to
supporting situations. We also have an equivalence property,
id:coordindatedIdCase: id:IdCase ! id:IdCase, that relates
id-cases that refer to the same scenario.
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As shown in Figure 3, the ID-Situation Ontology incorpo-
rates other ontologies that relate not only to the structure of
a case but also to the specific kind of information–biometric
artifacts–and procedures needed for evidence to support id-
actions. This includes the Physical Biometric Ontology that
addresses biometric artifacts, which are images of the sus-
pects’ physical features registered for use by forensic pro-
fessionals. For the information captured by physical biomet-
rics, we have a Physical Features Ontology that addresses
the human body, which relates specific surface features to
specific persons, allowing the biometric images to serve as
identifiers.

The most important of the supporting ontologies is the
Law Enforcement Ontology. (For simplicity, we now omit
prefixes.) The standard FOAF ontology has a top-level Agent
class with children Organization and Person. We provide
a child LawEnforcementAgency of Organization and a child
LawEnforcementProfessional of Person itself with children
ForensicProfessional, PoliceOfficer, PoliceInvestigator,
and ProsecutionProfessional. There is an affiliation prop-
erty associating agents with organizations and a certification
property associating forensic professionals with certificates.
There is a Personal Records Ontology.

5 Encoding in RDF of the Example
We outline the RDF encoding of the fingerprint case, provid-
ing an example of code. A shorter summary of the mugshot
case is presented.

5.1 The Fingerprint Id-Case
s
1

is the id-situation for the fingerprints. It supports
two essential infons, both instances of children of
id:MatchingFpInfon (a child of sit:Infon). One child of this
class is id:AnalystMatchingFpInfon, information that an at-
tempt is made to match a fingerprint from the scene against
a recorded fingerprint, and the other is id:SimilarFpInfon,
information on the similarity measure for the match and the
matching procedure used. For the first suspect, s

1

supports
the following two infons (denoted by blank nodes, with “_"
in place of a prefix).

_:i11a a id:AnalystMatchingFpInfon;

id:fpAnalyst forprof:117;

id:fpObserved forensicfp:652;

id:fpRecorded fpfile:496;... .
_:i1a a id::SimilarFpInfon;

id:fpObserved forensicfp:652;

id:fpRecorded fpfile:496;

id:simMeasure "0.92";

id:simProc similar:Proc1; ... .

We assume that the relevant agency has indexed the in-
dividuals with numerical identifiers. We introduce prefixes
for individuals thus indexed: forprof for forensic profession-
als, forensicfp for fingerprints collected at crime scenes, and
fpfile for fingerprints on file. We also assume unique iden-
tifiers with prefix similar for the matching procedures used.
The same pair of fingerprints appears in both infons. There
are similar pairs of infons for the other suspects.

s
3a is the situation where the fingerprints of the first sub-

ject were taken and recorded. It supports one essential in-
fon, the information that a forensic professional takes the
fingerprint of a subject. There is one such infon for the other
three fingerprint-recording situations. s

4

is the described sit-
uation, where someone leaves their fingerprint on the door-
knob. There are two essential items of information here, that
the fingerprint is on the doorknob, and that some suspect left
their fingerprint. s

5

, where the fingerprint on the doorknob is
lifted, has one essential item of information, that a forensic
professional lifts a fingerprint.

5.2 The Mugshot Id-Case
s
2

, the id-situation for the mugshots, supports two essential
infons similar to those in the fingerprint id-situation, s

1

. The
photo of the culprit is a part of the photo that the officer took:
the part showing their face. s

6a, where the mugshot of the
first subject was taken and recorded, supports one essential
infon, that a given forensic professional takes and records
a mugshot of a suspect with a given camera. There is one
such infon for each of the remaining three situations. s

7

,
where a forensic professional takes a picture, has two sig-
nificant infons. One is that a certain officer takes a picture
of a given situation with a given camera thereby producing
a given group photo. s

7

is an utterance situation: it produces
an artifact carrying information about another situation, viz.,
s
8

. The other significant infon in s
7

is that a certain group is
in the described situation, s

8

. When our culprit is identified,
we add a triple stating that they are a member of the group.
The described situation, s

8

, has one significant infon, for the
touching. Once we have identified the culprit, we add a triple
for the toucher. This infon is supported by the described sit-
uation while s

7

carries this infon by virtue of the photo it
produces. There is a part-whole relation between s

4

and s
8

.

6 SWRL Rules
SWRL rules allow us to infer new triples and thus fill in
our descriptions of objects, situations, and agents based on
triples already in our ontologies. There are two significant
tasks for our SWRL rules: identify the culprit and classify
situations and entire id-cases.

6.1 Identifying the Culprit
Typically, there is a described situation where the culprit is
unidentified and an id-situation, where the evidence is pre-
sented for pronouncing a judgment on the identity of the
culprit in the described situation. For example, in the fin-
gerprint case, once we have an identity judgment, we can fill
in the value for the id:fpProducer property for the instance of
id:LeaveFpInfon supported by s

4

. We have created a rule that
does the updates subsequent to identifying the culprit. This
includes supplying id:toucher in id:TouchInfon and an agent
in id:AgentInfon for the described situation s

8

. We also as-
sert a triple of the form x sit:agentInSit s, indicating that x
is the agent of interest in situation s. This is top-level infor-
mation not associated with any other situation that provides
one way of identifying the agent. Inference will generally
identify several suspects as “the" culprit since inference does
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not consider the goodness of biometric matches; we handle
level of evidence with Dempster-Shafer theory – see Section
8.

6.2 Classifying Situations and Id-Cases
We need abstract situations as types to classify real situa-
tions and abstract id-cases to classify constellations of situa-
tions in a way conducive to identification. The ID-Situation
Ontology has subclasses of class sit:Situation, essentially
abstract situations, and it has an id:IdCase class, which has
subclasses for classification. Determining whether a given
situation should be an instance of a given situation class is
a classification problem that hinges on whether the real situ-
ation supports certain infon subclasses. When we described
our running example, we described real situations, but the
descriptions themselves, where we talked about essential in-
fons, basically formulated abstract situations. Our classify-
ing SWRL rules, then, have the form
Situation(?s), ... -> SituationSubClass(?s)

The conditions that fill in the ellipsis relate to the infons that
?s supports. We also classify an instance of id:IdCase as an
instance of a subclass of that class. Finally, we have a SWRL
rule for determining that an instance of the mugshot id-case
and an instance of the fingerprint id-case are coordinated

7 Biometric Artifacts and Legal Evidence
Objects and situations (or events) are complementary (Gal-
ton and Mizoguchi 2009). Objects are created, changed,
copied, and destroyed in situations, and situations consist
of objects related in various ways. Though our foundations
are built on situations, objects are important in several ar-
eas. Some objects are passive participants (e.g. doorknob)
while others play essential roles in capturing evidence (e.g.
camera). To support our conclusions from the evidence col-
lected, we may need facts regarding these objects. The ob-
jects of primary interest are biometric artifacts, serving as
threads that stitch together the situations building an id-case.
E.g., in the fingerprint id-case, fingerprints are recorded on
file (situations s

3a-s
3d), providing objects used in the id-

situation, s
1

, and a fingerprint is lifted from the doorknob
in s

5

, providing the object against which the fingerprints on
file are compared.

To see how such objects count as evidence, note that evi-
dence in criminal prosecution includes any documents, tes-
timony or tangible objects that tend to prove or disprove
the existence of alleged facts (Black, Garner, and McDaniel
1999). Documentary evidence consists of any written object
or article, e.g., letters, contracts, deeds, licenses, and certifi-
cates, presented as proof. Testimonial evidence consists of
any statement made under oath by a witness during trial or
at deposition. “Tangible object" evidence refers to any phys-
ical item or its representation presented as proof to support
an alleged fact. Physical evidence includes biological and
non-biological trace evidence. Here, trace evidence is de-
fined as evidence that can be transferred between people, ob-
jects or the environment. Physical evidence also includes fa-
cial recognition (photography and videography) and finger-
print and biometric (DNA, blood, semen, saliva, urine, feces,

hair, teeth, bone, tissue, and cells) evidence. The use of all
evidence is subject to law, legal rules and procedures to de-
termine its admissibility and probative value. Additionally,
the provenance, preservation (cf. chain of custody–CoC–
immediately below), and analysis of evidence is central to
its forensic application.

In particular, biometric artifacts used as evidence have to
be genuine throughout. CoC theory addresses what is essen-
tial “to ensure the integrity of evidence" (Giannelli 1993).
Our framework facilitates application of CoC theory, focus-
ing (for now) on physical, or “real," evidence, tangible evi-
dence used to prove a fact that is at issue in a case (Citizens
Information 2014). It also has to be relevant, material, and
competent (Findlaw 2016) to be admitted in court. Follow-
ing what CoC theory states is required, one can authenti-
cate real evidence since CoC theory requires the mapping of
who, what, where, and how evidence is obtained and han-
dled (Giannelli 1993). We appeal to CoC theory since our
central focus is to evaluate whether the metadata or foren-
sic data (as real evidence) is sufficient to identify suspects.
Our framework records CoC steps followed; it does not itself
physically obtain or preserve the evidence.

8 Application of Dempster-Shafer Theory
For each id-case, a numerical measure is created of who
is likely to be the criminal and then all known id-cases
are combined using Dempster-Shafer theory. For each id-
situation and each suspect, there is a distance measure that
is part of the id-situation. A mass function is then created
based on that distance measure. To work with the scenario
from the running example, to create the mass function for
the fingerprint id-case, as shown in Figure 1, masses are as-
signed based on the distance between each suspect’s finger-
print and the fingerprint from the crime scene. Conversion
of distances to masses uses a customized sigmoid function,
which provides a threshold below which a possible match
can be ignored. Those masses are then normalized so that
all values sum to 1.0.

An id-situation is tied to resource situations through con-
straints. Every piece of evidence in the id-situation has been
collected in some other situation or set of situations, follow-
ing appropriate legal procedures to maintain a chain of cus-
tody, a convention that specifies a related situation or set of
situations (e.g., the s

3

situations in Figure 1) that must have
occurred. There are three possible interpretations of the con-
straints in the context of Dempster-Shafer theory. One is that
each set of situations provides a separate mass function so
that the mass function from the resource situations must be
combined with the mass function from the id-situation. The
second is to consider each resource situation as a refinement
of the frame of discernment created in the id-situation. The
third interpretation has the resource situations modifying the
mass function.

Treating each set of situations as a separate piece of ev-
idence, with its own mass function, would sanction appli-
cation of Dempster-Shafer combination rules. The frame of
discernment for the id-situation in fact is the same as the
frame of discernment for a collection of resource situations
that covers all the suspects from the id-situation. Dempster’s
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combination rule is appropriate because the underlying un-
certainties should be preserved.

Treating the constraints as refinements would make each
group of resource situations modify the arrangement of the
set of suspects. As noted, however, in our framework, the
frame of discernment is the same throughout.

Not all resource situations can be accommodated us-
ing the two previously described methods. For example,
in Figure 1, information from situation s

5

modifies the id-
situation, but it does not refer to any suspect and so does
not refine the frame of discernment or even rearrange focal
elements. The analysts who collected the crime scene fin-
gerprint might be untrustworthy. This could be handled by
moving some mass to the entire frame of discernment or by
weighting the piece of evidence less heavily when combin-
ing it with evidence from other id-situations.

Table 1 shows the mass, belief, and plausibility for the
mass functions from the two id-situations and their combi-
nation. Masses of non-singleton sets other than the entire
frame of discernment (“All") are all zero. The mass values
have been subject to modification to accommodate aspects
of the resource situations as just discussed.

Photographic Evidence
Suspect Mass Belief Plaus

201 0.399 0.399 0.595
202 0.405 0.405 0.601
203 0 0 0.196
204 0 0 0.196
All 0.196 1.0 1.0

Fingerprint Evidence
Suspect Mass Belief Plaus

201 0.290 0.290 0.596
202 0 0 0.306
203 0.215 0.215 0.521
204 0.188 0.188 0.494
All 0.306 1.0 1.0

Combined Evidence
Suspect Mass Belief Plaus

201 0.528 0.528 0.636
202 0.222 0.222 0.330
203 0.076 0.076 0.183
204 0.066 0.066 0.174
All 0.108 1.0 1.0

Table 1: Mass, belief, and plausibility (abbreviated to plaus)
measures for the three mass functions created by our two
id-situations and their combination using Dempster’s rule

9 Webpage

This section outlines the functionality of the webpage inter-
face to the system we are building. The webpage will have
three major functional areas: the case description , query,
and evidence panes.

9.1 Case Description Pane
The case description pane will include a menu of cases.
When a case is clicked, a short paragraph describing the case
will appear, providing information about the case including
an outline of the events as well as a summary of the kinds
of evidence available. The user may switch between the var-
ious scenarios and investigate the scenario of their choice.
The case description will have a button to bring up a menu
of suspects. When the user selects a given suspect, a short
description of the suspect appears along with a template for
constructing queries about the suspect. Generally, this pane
provides information to initiate interaction in the other two
panes.

9.2 Query Pane
This pane, whose content is specific to the selected case,
supports both queries on the triple stores and inferences
made on these stores given the ontologies and the SWRL
rules. There is a tab for each kind of evidence. In our run-
ning example, there is a tab for the fingerprint evidence and
a tab for the mugshot evidence. There is also a tab for infer-
ring the identity of the culprit, and a tab for classifying the
case and its constituent situations.

The contents of the tabs for the various kinds of evidence
are structured similarly. Consider, for example, the tab for
the fingerprint evidence. Often a value will be selected from
a menu. The following are some possible topics for queries.
• Who took a given fingerprint that is on file? When?

Where?
• How was the fingerprint preserved or copied?
• Who lifted the fingerprint?
• Who handled the comparison of the fingerprint on file and

the forensic fingerprint?
• How good a match is the match between a given finger-

print on file and forensic fingerprint?
Many of these queries relate to provenance, including chain
of custody. Note that it is natural for a query to span situa-
tions, often by following the CoC. For example, one could
ask for the name of the professional who took the finger-
print on file in situation s

3a that is used in the id-situation
s
1

. Many queries could be issued for a set of fingerprints on
file. The results will be displayed in a table, possibly ranked
by the value of some field (e.g., the goodness of match). If
the result of a query indicates some suspect is particularly
interesting, the user may bring up the template mentioned
above for queries about a person. Legal professionals may
also be of interest (e.g., those who took fingerprints), and a
variation of the template will be available for querying about
them.

The tab for inferring the identity of the culprit basically
does just that. Often, however, there will be more than one
culprit inferred since mere inference does not take into ac-
count how good the evidence is (which is the realm of
Dempster-Shafer theory, accessed via the evidence pane).
One will be able to control the size of the set of inferred
culprits by setting thresholds on matches and restricting ev-
idence to just some kinds of evidence (e.g., fingerprint or
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mugshot). To find details of an alleged culprit, one can fol-
low up with the suspect template mentioned above.

The tab for classifying the case and its constituent situa-
tions provides an interface for applying some of the SWRL
rules mentioned in Section 6. We could find the classes (if
any) that the various situations instantiate. For example, a
situation might be an instance of the abstract id-situation
where an attempt is made to identify a culprit by fingerprint.
We could find the id-case class (if any) that an id-case in-
stantiates. For example, a given constellation of situations
forming an id-case may be an instance of a case where a cul-
prit is identified by fingerprint. Finally, we could determine
whether a given id-case is coordinated with another id-case
as they involve the same described situation and similar set
of suspects.

9.3 Evidence Pane

The evidence pane will support the application of Dempster-
Shafer theory to the evidence provided for the cases. It is
assumed that mass functions have been defined for each kind
of evidence in each case. Like the query pane, the contents of
the evidence pane will be specific to the selected case. The
user will be able to access the templates for suspects and
for personnel in this pane as well to see details on people of
interest.

There will be a tab for each kind of evidence and a tab for
the combined evidence. The contents of the tabs for the var-
ious kinds of evidence will have similar structure. Consider,
for example, the tab for the fingerprint evidence. The user
will be able to request a table for the singleton sets of sus-
pects ordered by belief or ordered by plausibility, given the
mass function based on fingerprint matches. This could be
restricted to the top few in belief or plausibility. Frequently,
the belief or plausibility of non-singleton sets is of interest,
particularly when the belief for such a set is high or the plau-
sibility is low. The user might request small sets with high
belief or large sets with low plausibility. The mass functions
can me modified by features of the resource situations, such
as the reliability of the forensic professional who took the
fingerprint on file. The fingerprint tab will include ways for
the user to have such modifying aspects incorporated into
the mass function.

The tab for the combined evidence will allow the user to
view tables of singleton sets, now with the belief and plausi-
bility from the combined mass function. Non-singleton sets
are of interest here as they are with a single kind of evi-
dence. The user will be able to select the combination rule
used, the default being Dempster’s rule. There will also be a
way to analyze sensitivity. For example, the fingerprint from
the scene might be quite indistinct so that it does not dis-
criminate sharply between the suspects while the forensic
mugshot may be a clear picture of the culprit’s face. In that
case, the page should indicate that identification relies much
more on the one kind of evidence (mugshots) than on the
other (fingerprints) and give some indication of how much
more.

10 Implementation of the Web-based System

This section describes the implementation of our web-based
system, which is a work in progress. To implement the
backend of our system, we used the Apache Struts model-
view-controller framework (The Apache Software Founda-
tion 2010), Apache Velocity template engine (The Apache
Software Foundation 2014), and the Stardog triplestore [12].
The view (frontend) and the controller interface are provided
by Struts and can integrate with other technologies to pro-
vide the model. A controller acts as a bridge between an
application’s model and the web view. The Stardog triple
store (Complexible 2014) supports OWL and rule reasoning,
which it does in a lazy and late-binding fashion: reasoning is
performed at query time according to a reasoning type spec-
ified by the user. Apache Velocity is a template engine for
Java that provides the user a simple but powerful template
language able to reference objects defined in Java. We use
Velocity to create SPARQL queries from a template since
we assume that the user is not familiar with SPARQL. We
connect to the Stardog triplestore using the RESTful web
service exposed by Stardog. We decided to use the RESTful
web services because the Jena (Apache Software Founda-
tion 2013) interface code was not available. (Jena is our pre-
ferred Semantic Web framework.) A RESTful web service
uses HTTP verbs for accessing and manipulating data.

To keep the web application running as fast as possible, an
XML document was created to store meta-information about
and control information for our scenarios. The information
in this XML document includes the id, name, and descrip-
tion of the scenario. The user will access the data in this
XML document through the interface. The XML document
will also contain the possible queries that can be executed on
each piece of evidence as well as the types of evidence for
each scenario. The code will turn similarity measures into
masses used later for belief and plausibility calculations.

Belief and plausibility calculations are written in Python.
To run this script from Java, we use the Jython interpreter
(Jython 2001), which is a Python interpreter written in Java
and is embeddable in Java applications. To store the data
produced by the code executed by Jython, a data structure
was created to store belief and the plausibility values. The
data structure with the masses will be stored into a session
variable to be used later. After the user selects the combi-
nation rule to use, the data structure will be passed into a
combination method with a string identifier that identifies
the combination rule. The Jython interpreter will run the ap-
propriate method for that particular combination rule. The
output of the running of the interpreter will be stored into
a data structure of data objects. The data produced by the
Jython interpreter will be cached into memory using Infin-
ispan (Redhat 2009), which is an in-memory key-value data
store written in Java and used as a cache or a data grid. It
can be embedded into Java applications or used as a remote
service over a variety of protocols. Our setup will have In-
finispan embedded into our application so that some of the
data may be cached .
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11 Conclusion
We have presented our computational framework for agent
identity, currently focused on criminal investigations, espe-
cially the use of biometrics therein. This paper is especially
concerned with ongoing development of a web-based sys-
tem that makes available via a webpage the functionality
of this framework especially for pedagogical putposes. The
theoretical underpinnings are in Barwise’s situation theory.
We construct a case as a constellation of situations, includ-
ing an id-situation, corresponding to Barwise’s utterance sit-
uation and involving an identity assertion (of the culprit).
The described situation is the crime scene. There are also
resource situations tied by convention to the id-situation,
such as where fingerprints are recorded and filed. Cases are
encoded in RDF, and several OWL ontologies have been
developed to serve as a knowledge base and define RDF
classes and properties. Dempster-Shafer theory is used to
handle uncertainty and in combining levels of possibly con-
flicting or corroborating evidence. We presented an example
and discussed its encoding in RDF as per our ontologies. We
discussed our ontologies and the SWRL rules that enhance
them. Evidence in the legal sense was discussed in the cur-
rent context, and the importance of biometric artifacts that
persist across situations was noted. A functional design of
our webpage was presented, and the ongoing implementa-
tion of the web-based system was discussed.

The webpage will make available to students of criminal
justice our work on a computational framework on identity
as it is particularly focused on identifying the culprit in a
crime scene investigation. A computerized evidentiary fact
pattern would help students develop their critical thinking
skills and support interdisciplinary problem solving. Addi-
tionally, the availability of the web interface will provide un-
limited opportunities for students to practice and engage in
fact-pattern scenarios, thus building valuable experience for
future careers and research. The Criminal Justice program
at North Carolina A&T State University will use the web-
page in four of its courses and in its signature co-curricular
project. The webpage can be used as an instructional tool
and for formative assessment. The web interface could also
be used in the Aggie Sleuths Project, an interdisciplinary, in-
terdepartmental research project based on a simulated crime
scene (Fakayode et al. 2016).

We have encoded several scenarios besides the example
given in this paper, and we are in the process of encoding
several more. Note that fingerprint and mugshot biometrics
are used online. In working with online authentication (Jenk-
ins et al. ), we are addressing behavioral biometrics (e.g.,
swipe patterns on mobile devices). We intend eventually to
address any kind of evidence for identity and to develop on-
tologies as required. And we shall continue to enhance our
use of Dempster-Shafer theory, looking at various combina-
tion rules and ways to modify mass functions.
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