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Abstract
This paper presents an ongoing research project called
“natural logic” and makes the case that it is relevant to
AI, Computational Linguistics, and Cognitive Science.
We propose to add some of the natural logic modules
which have already been developed to existing NLP sys-
tems. We see our approach as complementing and aug-
menting data-driven approaches exemplified by IBM’s
Watson. We give a brief introduction to natural logic and
present examples of proofs that can be given in a work-
ing system. We furthermore introduce monotonic logic,
another promising approach for extracting information
from sentences that contain quantifiers. We finish the
paper by presenting some early work that integrates syl-
logistic reasoning into exsiting NLP systems.

Introduction
The history of logic and AI is a checkered one. Starting
with huge optimism, the idea of applying logic in AI and
NLP is very much a minority one today. The 2015 re-
port of the One Hundred Year Study on Artificial Intelli-
gence states that ”The resounding success of the data-driven
paradigm has displaced the traditional paradigms of AI. Pro-
cedures such as theorem proving and logic-based knowl-
edge representation and reasoning are receiving reduced at-
tention, in part because of the ongoing challenge of con-
necting with real world groundings.” (Stone et al. 2016).
At the same time, there were important contributions in
previous parts of the AI literature on the topic of reason-
ing with fragments of natural language. Important for our
story are (Nishihara et al. 1990; McAllester and Givan 1992;
Purdy 2006).

We propose to add syllogistic reasoning to NLP sys-
tems. The sort of system we have in mind is exemplified
by IBM’s Watson system. Jim Hendler and his research
group (Hendler and Ellis 2014) proposed that Watson’s ac-
complishments are due to a combination of natural language
processing, search technologies, semantic typing, scoring
heuristics and machine learning. Conspicuously absent from
this list are reasoning and logic. We know that several kinds
of reasoning took place behind the scenes, such as in the
context of semantic typing and in the context of reasoning
about time and place (Kalyanpur et al. 2012; Ferrucci 2012;
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Gliozzo et al. 2013). While some of the reasoning in Wat-
son was in support of finding answers to questions and to
establish the confidence of potential answers, the geospa-
tial and temporal reasoning were designed to make explicit
some of the information that was implicitly contained in the
given information. In this context, our project is aimed at
adding addition reasoning components to NLP systems such
as Watson.

We see our project as a support system that is designed
to extract yet more information from natural language texts.
It is decidedly not a free standing reasoner. As such, we see
our project as part of a research agenda implicitly defined
by IBM Watson, i.e. to do better than the Jeopardy! system.
Watson used some fairly off-the-shelf IR techniques, includ-
ing passage term matching, textual alignment and skip bi-
grams (Murdock et al. 2012). The designers of Watson ad-
ditionally extracted information from sources that they knew
would be valuable, such as anchor tag links and the contents
of title tags in the HTML sources of Wikipedia pages. We
believe that by adding syllogistic reasoning, NLP systems
will be able to extract further information from documents
or will be able to find further evidence for given information.
In this context, we see our approach as supporting a data-
driven approach through reasoning. We believe that reason-
ing adds additional, valuable resources to processing natural
language texts.

Natural Logic: Extended Syllogistic Reasoning
We describe here the research program of extended syl-
logistic reasoning as it appears in papers such as (van
Benthem 1986; Sánchez-Valencia 1991; van Eijck 2007;
Fyodorov et al. 2003; Moss 2015; van Benthem 2008;
Pratt-Hartmann and Moss 2009). The basic idea is to take
very small fragments of language, fragments where one can
find “reasoning”’ of some kind, and to find complete log-
ical systems for those fragments. Ideally, the logical sys-
tems would not use “extra syntax” of any kind, and thus
not involve translation into first-order logic. Even more, they
should be efficiently decidable. That means that there should
be algorithms that carry out the decision procedure (unlike
what we see for very strong logical systems), and these algo-
rithms should be very fast for the very simplest fragments.

Here is a summary of the field. There are many sound and
complete logical systems for small fragments of language.
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The most basic is the one with sentences All x are y. In more
detail, the syntax is minimal (and will be extended quite
soon): it consists only of sentences of the form All x are

y, where x and y are taken from a pre-assigned set of nouns.
The semantics of the language is very simple. A model M is
a set M together with interpretations [[x]] for all nouns. Then
we say that M |= All x are y if [[x]] ✓ [[y]]. Further, for a
set � of sentences of this language, we say that M |= � if
M |=  for all  2 �. Given � and another sentence ', we
say that � |= ' if every M |= � has M |= '.

All of this is semantic; that is, having to do with models.
There is a matching proof system, generated by the follow-
ing two rules:

All p are p
AXIOM

All p are n All n are q

All p are q
BARBARA

Then we have the following result.
Theorem 1 The proof system is sound and complete: � |=
' iff � ` '. Moreover, the problem of deciding whether,
given a finite � [ ', we have � |= ' or not is decidable in
polynomial time.

This is the simplest result in the area. (In fact, it is the
simplest completeness theorem in all of logic.)

Figure 1 is a picture of a few of the logical system which
have been treated in this way. For a description of the logi-
cal fragments depicted in this figure, please see (Moss 2015).
Each has a precise syntax, semantics, proof theory, and al-
gorithmic support. For example, R allows one to use verbs
and relative clause. Other fragments add comparative adjec-
tives. Especially noteworthy are some fragments which al-
low one to compare the sizes of sets. That is, one can say
there are more dogs than cats, and perform reasoning
with this. This is important because cardinality comparison
goes beyond first-order logic; so it cannot be treated by any
contemporary theorem provers. The reason that we can in-
corporate this kind of cardinality comparison into natural
logic is that the systems are not built on top of first-order
logic, or even on top of propositional logic. As such, work-
ing with a relatively weak “base”, we are able to do things
like cardinality comparison. And in a sense, this is the point.

Haskell Implementation
There are several implementations of natural logic frag-
ments. Some are in Sage, an open source mathematics soft-
ware package implemented in Python. The work on Sage is
available at www.sagemath.com. Many of the systems
have been implemented in Haskell. We discuss here aspects
of the implementation (Moss 2017), primarily to demon-
strate that such implementations exist.

The design features of the implementation are as follows:
1. A user can enter a finite set of syllogistic rules (a logic

L) and a finite set � of assumptions, and generate all sen-
tences which are provable from � in L.

2. If sentence ' is provable from � in L, we can generate
and display the proof.

3. The logic L may contain negated nouns and also verbs
and relative clauses.

4. L must consist of rules which are entirely syllogistic.
Rules that infer information from contradictions, also
called “explosion” rules, are fine. But reductio ad absur-
dum is not allowed in full generality.

5. Up until now, the items on this list are all entirely proof-
theoretic. We have also built some tools for the intended
semantics. For most of the standard systems in the liter-
ature, the work here also builds counter-models. That is,
if ' does not follow from � in L, then we may ask for a
counter-model showing this. This is only possible when
we have a semantics for which the proof system is sound
and complete.

6. As a particular case of point 5 just above, we can handle
logics which are not expressible in first-order logic, such
as the logic of most, all, and some.

7. For most of points 1–6 above, the system here is the first
implementation which can do that point. That is, the im-
plementation here goes well beyond what has been done
so far.
We should emphasize the last point, the one about

counter-model generation. It is standard to use a theorem
prover like Prover9 together with a model-finder like Mace4
[https://www.cs.unm.edu/⇠mccune/mace4/]. The two pro-
grams are very different. In our setting, the prover and the
counter-model generator are basically two branches of the
same tree. They are not so different, actually. The reason for
this seems to be (again) that the logics are rather simpler
than full first-order logic.

To give a sense of the flavor of this implementation, we
show in figure 2 part of a proof session. The session was
edited to fit on one page. The user typed in a set � of assump-
tions. In this case, � consists of the sentences all skunks

mammals, some skunks skunks (i.e., skunks exist), all

skunks chordates. Then the user asks whether it follows
that some mammals mammals. That is, the user wants to
know whether the assumptions in � entail that some mam-
mals exist. This sentence follows from the assumptions and
a derivation is given in English. The derivation is shown in
the top half of figure 2. While somewhat terse, this proof is
much more readable than output from a theorem prover.

Next, the user wants to know whether all mammals

skunks. In this case the does not follow from the assump-
tions and the system returns with a counter-model. This
countermodel is shown in the bottom half of figure 2.

Monotonic Reasoning
Let us recapitulate where we are in this paper. We began
with a discussion of Watson, mainly to motivate the idea
of incorporating reasoning into a real life AI/NLP systems.
Then we gave a brief discussion of the logical systems of
natural logic, to present logical systems which are sound and
complete, have low computational overhead, and which are
capable of representing a fair amount of natural language
inference. However, the logics from the prior section have
some limitations from the point of view of NLP: they are
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S: all/some/no p are q

A: all p are q

Figure 1: Natural logics. The fragments described on the right are explained in a number of papers, along with sound and
complete proof systems for them. In many cases, proof search has been automated.

based on toy grammars and as such have limited applications
in text as it comes. In other words, it would be difficult to see
how to use those logical systems directly in an recognizing
textual entailment task (Sammons 2015).

In this section, we present work that aims to overcome this
issue. The work in this section is more speculative than that
of the previous one, but we believe that it is more promis-
ing for future developments. To set the stage, consider the
following sentences.

every dog

#
barks

"

no dog

#
barks

#

not every dog

"
barks

#

some dog

"
barks

"

most dogs

⇥
bark

"

The arrows indicate upward or downward inference. For
an introduction to this notation, see (van Benthem 1986).
In the first sentence, if we know (of a scene, or a story,
or a situation) that every dog barks, then it follows that
every old dog barks and that every beagle barks. In both

of those cases, we go “down” from dog to some sub-
set of it. And the inference on barks goes the other way.
If we know that every dog barks, then it follows that
every dog vociferates.

Work on monotonicity merges the theory of grammar with
the theory of inference. The idea is to enrich the lexical en-
tries (words) with various forms of “up and down arrow”
information. Then this information is propagated in deduc-
tions, as shown above. Deductions in systems like Combina-
tory categorial grammar (CCG) are basically forms of pars-
ing. Current work on monotonicity (Icard and Moss 2014;
Icard 2012; MacCartney and Manning 2009; Nairn et al.
2006) merges the monotonicity calculus from natural logic
with linguistic frameworks like CCG. The idea is to have
something that can automatically infer the correct “up and
down arrow” information from real text, and then to use this
in connection with NLP inference tasks.
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ghci
GHCi, version 7.10.2: http://www.haskell.org/ghc/ :? for help
Prelude> :l S_dagger
[1 of 8] Compiling ProofTreeNumbers ( ProofTreeNumbers.hs, interpreted )
[2 of 8] Compiling Syntax2 ( Syntax2.hs, interpreted )
[3 of 8] Compiling ExampleSentences ( ExampleSentences.hs, interpreted )
[4 of 8] Compiling FrontEnd ( FrontEnd.hs, interpreted )
[5 of 8] Compiling ExampleRules ( ExampleRules.hs, interpreted )
[6 of 8] Compiling SyllogisticInference ( SyllogisticInference.hs, interpreted )
[7 of 8] Compiling Models ( Models.hs, interpreted )
[8 of 8] Compiling S_dagger ( S_dagger.hs, interpreted )
Ok, modules loaded: S_dagger, Syntax2,..., Models

⇤S_dagger> let gamma=["all skunks mammals","some skunks skunks","all skunks chordates"]
⇤S_dagger> followsInSdagger "some mammals mammals" gamma

The sentence follows, and here is a derivation in S-dagger from the assumptions:

(1,all skunks are mammals,"A",[])
(2,some skunks are skunks,"A",[])
(3,some skunks are mammals,"darii",[1,2])
(4,some mammals are skunks,"some2",[3])
(5,some mammals are mammals,"some1",[4])

⇤S_dagger> followsInSdagger "all mammals skunks" gamma

The given sentence is not provable in S-dagger from the assumptions.
Here is a counter-model:

The universe is the set of numbers in [0,1].

The nouns are interpreted as follows:

Noun | Interpretation
----------+---------------
skunks | 0
mammals | 0, 1
chordates | 0, 1

Here is how the assumptions and purported conclusion fare in this model:

Sentence | Truth Value
-------------------------+------------
all skunks are mammals | True
some skunks are skunks | True
all skunks are chordates | True
all mammals are skunks | False

Figure 2: A Haskell proof session in which one sentence is shown to follow from the assumptions (top) and one is shown as not
provable (bottom.)
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Integration into NLP Systems
We began work on integrating naural logic into an NLP
parser so as to increase the amount of information that can be
extracted from text. Consider the following example, which
outlines the basic approach we took. At the most basic, we
plan to identify passages in natural language text that are
instances of universally qualified statements. Consider the
statement:

All dogs are mortal.

An off-the-shelf parser such as the Stanford NLP
kit [http://nlp.stanford.edu/software/] produces an internal
graph of the parsed sentence that is displayed as follows:

word All ,pos: DT ,ne: O
word dogs ,pos: NNS ,ne: O
word are ,pos: VBP ,ne: O
word mortal ,pos: JJ ,ne: O
word �,pos: �,ne: O

(ROOT (S (NP (DT All) (NNS dogs))
(VP (VBP are) (ADJP (JJ mortal))) (. �)))

! mortal-JJ (root)
! dogs-NNS (nsubj)
! All-DT (det)

! are-VBP (cop)

We modified the Stanford NLP kit to process the internal
representation of the parsed sentence to (i) identify a subset
of simple universally quantified sentences and (ii) if success-
fully identified, to return a representation of that sentence for
further processing. It should be noted that (i) and (ii) are ac-
complished in one step. If a sentence can be successfully
parsed, we return the representation of it. If it cannot be suc-
cessfully parsed, we ignore it. We would like to point out
that this is very much in keeping with the data-intensive ap-
proach that a system like Watson uses. We do not expect our
system to parse each universally qualified sentence. We will
certainly continue to revise our system so that it can process
increasingly complex sentences, but expect that this will be
a drawn out process. The sentence returned by our system is
as follows, but could be returned in other formats, suitable
for further processing.

mortal(All, dogs)

We are now in a position to combine this information with
other information we may find in the same document or that
is known as part of background information. Suppose that
the document states that Fido is a dog. In this case, we are
able to confirm that Fido is mortal. This may be sufficient to
answer a given question. However, it can also be supporting
evidence to already known information. Suppose that either
through a different text or from another passage in the given
text, we learn that Fido died. In this case, we may use the
inferred information that Fido is mortal as supporting evi-
dence for the information that Fido died, thereby increasing
the overall confidence in a statement. Again this is a tool in
support of a data-driven approach such as found in IBM’s
Watson.

Conclusions
In this paper, we motivated the idea of incorporating rea-
soning into AI/NLP systems. We gave a brief discussion
of the logical systems of natural logic, to present logical
systems which are sound and complete, have low compu-
tational overhead, and which are capable of representing a
fair amount of natural language inference. We furthermore
presentd an approach from monotonic reasoning which en-
riches words with various forms of “up and down arrow”
information, so that this information can be propagated in
deductions. We finished this paper by presenting some initial
work that aims to integrate natural logics into NLP systems.

The work described here is very much in the beginning
stages. Undoubtedly, challenges will need to be addressed.
In the near future, we plan to expand and integrate the ex-
isting systems. We additionally plan to improve the number
and complexity of statements that can be recognized. Later
this year, we plan to integrate a syllogistic reasoning com-
ponent into a multi-year research project aimed at human-
robot collaborative problem solving in a shared space. It will
be designed to process statements that contain quantifiers. It
will be one component of many; however, it will enable us
to extend the functionality in a crucial way.
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