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Abstract

Artificial neural networks (ANNs) utilize the biological prin-
ciples of neural computation to solve engineering problems,
and ANNs also serve as formal, testable hypotheses of brain
function and learning in the cognitive sciences. However,
ANNs are often underutilized in applications where sym-
bolic encoding (SE) of conceptual information is preferred
(robotics, games, theorem proving, etc.) since ANN mod-
els often employ distributed encoding (DE). The Working
Memory Toolkit (WMtk) was developed to aid the integra-
tion of an ANN-based cognitive neuroscience model of work-
ing memory into symbolic systems by mitigating the details
of ANN design and providing a simple DE interface. How-
ever, DE/SE conversion is still managed by the user and
tuned specifically to each learning task. Here we utilize Holo-
graphic Reduced Representation (HRR) to overcome this lim-
itation where HRRs provide a framework for manipulating
concepts using a hybrid DE/SE formalism that is compatible
with ANNs. We validate the performance of the new Holo-
graphic Working Memory Toolkit (HWMtk) using two sim-
ple partially observable reinforcement learning problems, and
show how the HWMtk automates the process of DE/SE con-
version for the user while seamlessly providing additional
cognitive capabilities such as context switching, cross-task
generalization and concept chunking.

The field of artificial intelligence (AI) is synergistic
with a wide range of disciplines but artificial neural net-
works (ANNs) is perhaps the most prolific subfield. Not
only are biological principles of neural computation and
neuroanatomy adapted to solve engineering problems, but
ANNs also serve as formal, testable hypotheses of brain
function and learning in the cognitive sciences. Still, since
ANN models often employ distributed encoding (DE), most
have limited application in other areas of AI where sym-
bolic encoding (SE) is the norm (e.g. planning, reasoning,
robotics).

There is extensive evidence that the brain contains a work-
ing memory (WM) system that actively maintains a small
amount of task-essential information and supports learn-
ing in myriad ways: focusing attention on the most task-
relevant features, transfering learning across tasks, limit-
ing the search space for perceptual systems, providing a
means to avoid the out-of-sight/out-of-mind problem, and
providing robust behavior in the face of irrelevant events
(Baddeley 1986; Waugh and Norman 1965). The prefrontal

cortex and mesolimbic dopamine system have been im-
plicated as the functional components of WM in humans
and animals, and biologically-based ANNs for WM have
been developed based on electrophysiological, neuroimag-
ing, and neuropsychological studies (O’Reilly et al. 2002;
Kriete et al. 2013). A software library, the working mem-
ory toolkit (WMtk), was developed to aid the integration
of ANN-based WM into robotic systems by mitigating the
details of ANN design and providing a simple DE inter-
face (Phillips and Noelle 2005). The WMtk has been tested
in several task domains in the area of cognitive robotics
(Tugcu et al. 2007; Erdemir et al. 2008; Busch et al. 2007;
Gordon, Kawamura, and Wilkes 2010).

Despite the fact that the WMtk can solve common tests of
working memory performance, the DE/SE distinction is still
problematic for the WMtk. DE/SE conversion still needs to
be programmed directly by the user and tuned specifically to
each learning task. A technique called holographic reduced
representation (HRR) may provide the technical assistance
needed to overcome this limitation (Plate 1995). HRRs pro-
vide a framework for creating and combining symbolic con-
cepts using a distributed formalism that is compatible with
ANNs. Our aim is to create a software engine for encoding
and manipulating concept representations using HRRs and
integrate it into the WMtk. The newly integrated HRR En-
gine (HRRE) would greatly simplify the user interface by
automating DE/SE conversion. We assess the performance
of the new Holographic Working Memory Toolkit (HWMtk)
on two main criteria: 1) significant improvement in the ease
of use of the toolkit with automated DE/SE conversion, and
2) robust performance on working memory tasks while using
HRRs in place of user-defined distributed representations.

Background
An example of the capabilities of the WMtk can be seen in a
robotic simulation written using the toolkit based on the de-
layed saccade task (DST) (Phillips and Noelle 2005). In the
DST, the robot is required to focus attention on a crosshair
in the center of the screen. After a variable time delay, a tar-
get object will appear in the periphery of the screen, but the
robot must continue to focus on the crosshair in the face of
this distraction. After some time, the target object disappears
and the robot must continue to focus on the crosshair. Fi-
nally, the crosshair disappears and the robot must then look
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at (or saccade to) the location where the target object ap-
peared during the task. Rather than programming the robot
to solve the DST, the WMtk allows the robot to learn how
to solve the DST by repeatedly attempting the task as a se-
ries of episodes. The robot’s WM learns to both override
automatic behaviors (such as immediate saccades) and store
task-relevant information (such as target locations) in order
to guide future actions. Importantly, the robot is given feed-
back (positive reward) only at the end of correctly performed
episodes. Even under these conditions, the WMtk learned to
correctly manage items in WM and attain proficiency on the
DST within merely hundreds of episodes.

Even though the toolkit mitigates many challenges to the
integration of a well-established model of WM into learn-
ing systems, the toolkit does not aid the user in develop-
ing reasonable representations of the environment or work-
ing memory concepts themselves. Each of these components
needs to be encoded using a sparse, distributed formalism
that support learning by the underlying neural network. Such
representations are challenging to develop and implement
for even expert users, and are limited in applicability to the
specific learning task in question. For example, a simple bi-
nary encoding of two distinct concepts for WM would re-
quire the user to write a function which takes a two-element
vector and a string concept. The function would be used to
set the appropriate element of the vector to one based on
which concept the WMtk is trying to encode. This func-
tion would need to be rewritten every time additional con-
cepts need to be encoded if they were not anticipated from
the start. Also, this framework leaves the user open to diffi-
cult debugginc concerns that might otherwise be avoided if
the encoding process was handled automatically. Additional
functions for encoding information about the current state of
the task and calculating reward based on this state informa-
tion were also needed by the original WMtk. A more flexible
encoding scheme is needed to make the toolkit more acces-
sible to end-users.

HRRs may provide all of the necessary capabilities to
solve the SE/DE conversion problem in an automated fash-
ion. In the HRR formalism, distinct concepts, each repre-
sented by unique, distributed vectors of real numbers, can
be combined and reduced to a single vector that represents
the combined knowledge of its constituent concepts. Impor-
tantly, the length of the HRR vector encodings for all con-
cepts (both constituent and combined) remains fixed since
concepts are compressed using a mathematical operation
known as circular convolution. Nevertheless, combined con-
cepts still retain information about each the constituents
which is a key property of holographic storage methods.
Additionally, HRRs are DE representations which are com-
patible with neural network architectures and other machine
learning approaches. However, since all concepts are en-
coded into unique vector representations, each HRR can be
tied to a complementary SE representation (eg. the concept
name) more commonly used in other symbolic or logic-
based learning systems (Plate 1995). By replacing the DE
interface of the WMtk with an HRR interface, DE/SE con-
version would be automated and concepts learned from one
task would naturally carry over to new tasks. Additional cog-

nitive phenomena (e.g. chunking, cross-task generalization)
may be investigated as well. Here we aim to develop and test
a holographic reduced representation engine (HRRE) for ac-
complishing automated DE/SE conversion, and integrate the
HRRE into the Working Memory Toolkit.

Methods
Work on this project was performed in 2 phases, both sep-
arated into three parts. During the first phase we created an
engine to generate and manipulate HRRs. This HRR Engine
provided us with a means of encoding, storing, and manipu-
lating representations of concepts used in the WMtk. During
the second phase, we rebuilt the WMtk around the HRRE,
replacing the original DE interface with a simple SE (string-
based) interface, and automating the encoding and manipu-
lation of concepts using HRRs. Testing of new holographic
working memory toolkit (HWMtk) was then performed us-
ing a basic memory retrieval task, and a partially observable
maze exploration task.

Phase 1: Creating an HRR Engine for Concept
Encoding
Our 3-part process for creating the HRRE consisted of (a) re-
searching holographic reduced representation, (b) develop-
ing a conjunctive encoding engine, and (c) developing a con-
junctive decoding engine. These phases were implemented
as follows:

Holographic Reduced Representation HRR is a robust
method of representing symbolic concepts in a distributed
formalism. Simple concepts can be combined to make holo-
graphic representations for complex concepts containing in-
formation from each of the constituents. Additionally, it
is possible to use HRRs in place of corresponding sym-
bolic concepts for interfacing with ANNs. HRRs are con-
structed as a vector of real values typically drawn from a
Normal/Gaussian distribution with zero mean (µ = 0), and
standard deviation, � = 1/

p

(n) where n is the length of the
vectors. Longer vectors allow the encoding of more unique
concepts as well as storage of more constituents within com-
bined representations. Therefore, n is often adjusted for ade-
quate performance on requisite tasks. Additional constraints
can be placed on the vectors as well, such as in the case
of “unitary” vectors, which exhibit some additional, useful
mathematical properties, and were the types of HRRs em-
ployed here (Plate 1995). A newly generated HRR can then
be assigned to a unique symbol for a single concept. Here
we use strings to represent symbols, where the string value
is simple the name of the concept we wanted the HRR to
represent. For example, to generated an HRR for the con-
cept red, we generated a unitary HRR, and assigned it to the
string value “red”.

The base data structure for our HRRE is a dictionary,
where the string name for the concept is the key and the HRR
representing that concept is the value. This dictionary serves
as the engines long-term concept memory. From this point
forward, the term concept will be used to refer to the entity
composed of a string value and its associated HRR. These
concepts are the key-value pairs stored in concept memory.
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Figure 1: Example of how to perform circular convolution
on two vectors (c and x), both of length n=3.

The term representation may be used interchangeably with
HRR, since HRRs are the structure we use to form the dis-
tributed representation of the concepts we will use.

Developing a Conjunctive Encoding Engine After set-
ting up the base dictionary for the engines concept mem-
ory and building the functionality for HRR generation, we
needed to add a conjunctive encoding function to the en-
gine for combining the HRRs to form complex concepts. We
combine the representations for the concepts using the cir-
cular convolution operation. This operation is what makes
holographic representations reduced, as it combines infor-
mation from two HRRs into a single HRR of the same size.
Circular convolution consists of constructing the outer prod-
uct of the two HRRs and summing the elements along the
trans-diagonals, as indicated in Figure 1. This O(n2) op-
eration results in an HRR of size n with information from
both constituent HRRs. This operation can be performed in
O(n log(n)) time, however, using fast-fourier transforms
(FFT). Therefore, we use FFTs in the HRRE for convolu-
tion operations.

Circular convolution is the key operation used in the
main part of the HRREs conjunctive encoding function-
ality: the construct function. This function takes a list of
concept names, or a string containing the concatenation of
concept names, delimited by an asterisk (“*”), and com-
bines all individual concepts into a single complex concept.
The construct function would first make sure that there is
a representation in concept memory for each given concept
name, reorder each concept by lexicographical order, and
then convolve each together to form the final representa-
tion. In this way, the construction of the concept made from
“big”, “red”, and “ball” would result in the complex con-
cept, “ball*big*red”. What makes the construct function so
powerful, however, is that in addition to constructing the fi-
nal combination of all concepts, it also constructs represen-
tations for every combination of the constituent concepts.
For example, constructing a concept using the values “big”,
“red”, and “ball”, would not only create the full combination
above, but also the combinations “ball*big”, “ball*red”, and
“big*red”. These additional operations speed up memory re-
trieval by minimizing the number of circular convolutions
that the system may need to perform in the future.

We ensured that the HRRE always sorts concepts into
lexicographical order before working with them in order
toeliminate duplicate representations made for the same
concept. For example, we do not want the engine to cre-
ate a new representation for “big*red*ball”, if the analo-
gous concept, “ball*big*red” exists. Generating a new rep-
resentation for “big*red*ball” would be redundant. There is
an additional safeguard built into the engine that protects
against generating redundant constituent subconcepts this
as well (eg. “ball*red” and “red*ball”). Beyond these con-
straints, whenever a concept is requested from the HRRE
that it does not currently have in memory, it constructs
the new representations. Constituent concepts are split apart
by name, and combinations are constructed using the pro-
cess described above. In this way, the user can pass in
“ball*big*red”, “red*ball*big”, or any other permutation of
these concepts, and the HRRE will always construct or per-
ceive it as “ball*big*red”.

Developing a Conjunctive Decoding Engine The final
piece added to the HRRE was the conjunctive decoding
function. Whereas conjunctive encoding is the combination
of two representations through circular convolution, con-
junctive decoding is the extraction of a constituent concept
from a complex concept using circular involution (i.e. the
inverse operation of circular convolution). Using circular
involution, we can take the representation for the concept,
“red*ball” and probe it using the representation for the con-
cept, “ball”. The resulting HRR would be the representa-
tion of the alternative constituent concept, “red”. Identifica-
tion of “red” is performed by calculating the dot product be-
tween the resulting HRR from the involution operation and
all other concepts currently stored in the HRRE. The con-
cept with the highest dot product similarity will be “red” in
this case. Therefore, the HRRE can infer that the HRR for
“red*ball” consists of both the probe concept “ball”, and the
response concept, “red”.

Similar to the encoding part of the engines construct func-
tion, the decoding part of the engine has an unpack function
that deconstructs a complex concept into all combinations
of its constituent parts. Whereas the construct function is
merely encoding each combination to ensure that they are
all recognizable concepts for the HRRE, the unpack function
serves to find all combinations and return them as a list of
concepts. This is useful to the WMtk, as it will be the means
by which a list of concepts will be constructed as candidates
for WM contents.

By combining the encoding and decoding function, the
HRRE is capable of 1) generating HRRs for new concepts,
2) storing concepts as key-value pairs of names and rep-
resentations in the concept memory dictionary, 3) combin-
ing concepts through circular convolution, 4) extracting con-
cepts through circular involution, 5) constructing and encod-
ing all combinations of a list of concepts, and 6) unpack-
ing all combinations of constituent concepts from a complex
concept, and returning the resulting list to the user.
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Phase 2: Building the Holographic Working
Memory Toolkit
Our three-part process for building the HWMtk comprised
of (a) researching the specifications of the original WMtk
and making a development plan for the augmented toolkit,
(b) rebuilding the WMtk around the HRRE, and (c) testing
the augmented toolkit to ensure that it still learns using the
new HRR interface.

Original WMtk Architecture The Working Memory
toolkit implements a working memory model inspired by the
interactions between the human pre-frontal cortex (PFC) and
mesolimbic dopamine system (MDS). In this working mem-
ory model, the PFC maintains task-relevant information, and
the DMS decides when such information should be gated
into or out of PFC storage. The WMtk implements the PFC
as a fixed set of slots for storing task-relevant concept rep-
resentations. However, the MDS is implemented as a single-
layer neural network, or critic network, which evaluates the
utility of storing concepts in the slots. The network is passed
an HRR representation consisting of representations (poten-
tially) stored in working memory slots convolved with the
HRR representation of the current task state. The value pro-
duced by the critic network determines how valuable that
particular set of working memory contents is under the cur-
rent task state. All states and combinations of WM contents
are equally valuable at first, but the critic network employs
temporal difference (TD) learning (Sutton and Barto 1998;
O’Reilly et al. 2007) to learn the correct value of each WM-
state combination by experiencing repeated episodes of the
learning task. In this way, the working memory learns what
information is the most valuable to retain for future process-
ing given what it is currently experiencing. At this point, the
user designs their learning task in such a way that the agent
decides to make an action according to what is currently held
in working memory.

We decided to start with a minimal design for our aug-
mented toolkit since our aim was to improve ease of use
for researchers using the toolkit. Therefore, here we utilize
the HRRE to provide a simple interface for automating the
concept encoding process. Additional functionality will be
added to the toolkit in future work.

Rebuilding the WMtk Around the HRRE We deter-
mined that the two main components of the toolkit would be
the Working Memory (WM) and the Critic Network (CN).
We created both components under the following specifica-
tions:

Working Memory The WM component is the workhorse
of the toolkit. It houses the HRRE, which serves to store all
basic concepts, as well as the processor for the representa-
tions of all combinations of combined concepts. First, WM
receives a string representation of the current state. The state
is set up as a string containing a concatenation of the con-
cepts describing the state, delimited by the addition symbol
(“+”). An example of a state containing a cross in the center
of the environment and a target in the north position of the
environment could be denoted “center*cross+north*target”.
WM parses the state string for the list of concepts it con-

tains, splitting each by the addition delimiter. These con-
cepts are then passed to the HRRE, which returns a list of
all the unpacked combinations of concepts. Following the
cross-target example, the list of candidate chunks would be
“center”, “center*cross”, “cross”, “north”, “north*target”,
and “target”. This list of concepts becomes our list of can-
didate chunks: all are candidates for retention in WM. It
is important to note that the previous contents of WM are
also included in the list of candidates for retention. This
process allows WM to potentially store task-relevant infor-
mation for long-term. WM then goes through every combi-
nation of all candidate chunks that can fit in its WM slots.
The value of WM candidates is determined by convolving
them with the representation of the state, and feeding each
combination into the critic network. Element-wise addition
is used to combine vectors separated by the addition opera-
tor within the state representation before convolution. When
passed into the critic, the set of WM contents that returns the
highest value in the given state is chosen for retention, and
the control is returned to the user until WM is passed a new
state on the next step of the task.

Critic Network The CN component is the neural network
that drives learning in the WMtk. It is passed representations
from WM in order to compute the value function. The value
function for the CN is a dot product calculation of the WM-
state combination with a weight vector that is retained for the
duration of the simulation. The weight vector is initialized
with small random values. Therefore, initial values for each
representation will be quite low. However, the CN employs
TD-learning over many repeated task episodes, which will
update the values in the weight vector. The value function
eventually converges to the correct values for each WM-state
combination, according to their effectiveness at determining
task outcomes.

TD learning is implemented through 3 functions in the
toolkit: Initialize Episode, Step, and Absorb Reward. Each
function is passed the string representation of the state and
the reward for that state. These functions are implemented
and called through the WM object, but are closely tied to the
CN for TD calculations. Initialize episode resets all episodic
variables, clears and chooses the initial contents for WM,
and stores reward and value information about the initial
state for later use. Step chooses the current contents of WM,
calculates reward and value information for the current state,
and uses those values along with those stored from the pre-
vious state to update the weight vector using the CNs TD
learning functions. Step then stores the current states value
and reward for use in the next step of the episode. Step is
called on each time step of the simulation to update work-
ing memory and drive learning. Finally, Absorb Reward is
called at the end of the episode, which takes the state string
for the final state, and computes the TD update for the previ-
ous state as well as the final state. Typically, a scalar reward
of zero is provided throughout all steps of the task. On the fi-
nal step, a reward value of 1 is provided if the agent success-
fully completes the task and zero for task failure. However,
other reward schedules are permissible. When a new episode
begins, these functions are called again, in the same order:
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Architecture of the Original
Working Memory Toolkit

Architecture of the Holographic
Working Memory Toolkit

Figure 2: Comparison of the original WMtk architecture
(left) to the architecture of the HWMtk (right).

Initialize Episode, a sequence of calls to Step, and finishing
the episode with Absorb Reward. We do also use eligibility
traces in our TD calculations, and an ✏-soft policy is imple-
mented by generating random WM contents, ✏ percent of the
time.

A visual comparison between the architectures of the
original and augmented toolkit is shown in Figure 2. The
main difference between the two architectures is in the
amount of code the user needs to provide in the form of
functions/methods. Many of these user-defined functions are
now completely performed within the HWMtk. Sensory in-
formation can now be provided in a symbolic, English-like
syntax. Symbols are automatically converted to appropriate
vectors by the HRRE for presentation to the CN. The selec-
tion of task-relevant concepts for storage in working mem-
ory is learned over time, enabling the agent to override pre-
potent responses with task-relevant behaviors. Also, while
the function calculating reward information still needs to be
specified by the user, the augmented toolkit does not need to
call this function directly. This simplifies the user’s imple-
mentation since it no longer needs to be concerned with the
inner-workings of the toolkit to perform reward calculations.

Testing the Toolkit to Ensure Learning Capabilities We
developed two tasks for the HWMtk to determine if the user
interface is indeed easier for developing new tasks compared
to the original toolkit. Additionally, the tasks test the basic
components of working memory function: learning to store
task-relevant information and ignore task-irrelevant infor-
mation (distractors). For the first task, the agent is shown
7 colors in random order, and is rewarded if it remembers
the color “red” at the end of the simulation. This task would
be equivalent to shuffling 7 cards of different colors, and
showing them all to the agent, one at a time, and asking at
the end which color we were thinking of. The task is simple,
but not trivial, as the toolkit can choose to remember noth-
ing or any of the other colors as well. Also, the presentation
order is randomized, so the agent cannot anticipate when the
relevant color is being presented. The agent must decide to
hold onto the color “red” and retain this concept in working
memory even while other colors (distractors) are being pre-

sented to the agent until the end of the episode is reached.
We repeat this process many times (each repetition being
a single episode). The agent must learn that it is only re-
warded upon remembering “red”, regardless of presentation
order or the number of distractors encountered. This ability
to retain task-relevant information in the face of competing
distractions is one of the core mechanism of focused atten-
tion needed to perform all working memory tasks.

Learning parameters for the task were set to similar values
as the defaults for the standard WMtk: CN learning rate pa-
rameter, ↵=0.1; future reward discounting factor, �=0.9; past
action eligibility factor, �=0.1; ✏-soft random working mem-
ory selection probability, ✏=0.01; number of working mem-
ory slots, s=1; and HRR vector length, n=64. The HRR vec-
tor length (n) is the only new parameter on this list, and must
be set to a value large enough that the dot products between
base HRR concept vectors remain close to zero. A value of
64 was the minimum size needed to run 100 successful trials
(described below), but larger values did not show any noti-
cable difference in learning behavior.

A second task was developed which provided a more rig-
orous test of working memory function. We simply reward
the agent for remembering a specific item in the first task.
However, in the second task, the agent must also learn to uti-
lize stored WM representations to make decisions which im-
pact future reward. Contextual information is provided early
in this task that is then needed for proper action selection
later in the task. We created a simple reinforcement learning
agent which utilized temporal difference learning to solve
a 1D maze task consisting of 20 independent states. Each
state has two immediately accessible neighbors to the left
and right. For example state 4 is located to the left of state
5 and state 6 is located to the right of state 5. The maze is
periodic such that state 20 is the left neighbor of state 1, and
1 is the right neighbor of state 20. A reward value of 1 is
provided to the agent upon reaching the goal, and each each
episode consists of starting in a random state and proceeding
for no more than 100 steps (early termination if the goal was
not reached).

To make the above task partially observable, and there-
fore a good test of WM performance, we also provided a
“signal” (S1 or S2) on only the first step of each episode
which was correlated with the location of the goal for that
episode. For example, a presentation of S1 indicated that the
goal would be at state 1, but for S2 the goal would be at state
10. This information would be provided to the toolkit on the
first step of an episode, but never again for the remainder of
the episode. Therefore, only retention of this contextual sig-
naling cue would allow for optimal performance since fail-
ure to remember the context signal would make selecting the
optimal action an ambiguous decision. The task type (S1 or
S2) was chosen at random at the start of each episode, so that
there were no predictable performance correlations between
tasks.

One HRR vector (n=4096) was generated for each of the
20 states, the 2 signals (S1 and S2), and the two possible
actions (left and right). A single-layer critic network was
constructed to evaluate the value of combining any working
memory representations remembered (or not if WM did not
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store the necessary signal cue), and the current state via cir-
cular convolution. Convolving this representation with either
of the two action representations would allow critic network
to select the appropriate action using the same TD-learning
formalisms described above.

Learning parameters for the task were set to the follow-
ing values: CN learning rate parameter, ↵=0.05; future re-
ward discounting factor, �=0.9; past action eligibility fac-
tor, �=0.5; epsilon-soft random working memory selection
probability and action selection probability, ✏=0.001; num-
ber of working memory slots, s=1; and HRR vector length,
n=4096.

Results
When testing the HWMtk with the colors task, we were
looking to see if it held up to the two main criteria for suc-
cess mentioned in the introduction: 1) ease of use in setting
up a learning task using the new string-passing SE interface,
and 2) successful learning using HRRs in place of the old
distributed encodings.

Ease of Use
Setting up the colors and signal learning tasks above proved
to be more straightforward compared to setting up tasks
using the original toolkit. Had we been using the original
WMtk, we would have had to write a function to create
distributed representations of each color as a chunk of in-
formation usable to WM, as well as a similar function for
encoding the state, and a reward function to check to pro-
vide a reward value according to the agents performance.
We would have had to write each of these before writing
the logic for the task itself, but using the augmented toolkit,
none of this preparation was necessary. We simply set up an
array of n color strings, shuffled them at the beginning of
each episode, initialized episode with the first color, called
the Step function with each subsequent color less than n,
and called the Absorb Reward function with the nth color
string. The only logic for the reward was written in line with
the rest of the task, and it entailed a check to see if red was
stored in the contents of WM. If it was, Absorb Reward was
provided a reward value of 1.0 for success, else a 0.0 for
failure. Considering the simplicity and ease of setting up the
task, the HWMtk meets our first and most important crite-
rion for success: simplification of interface and ease of use
for the developer.

The C++ code for the HWMtk and colors task agent is
open source, distributed under the GPLv3, and available
online at: https://github.com/jlphillipsphd/
wmtk/.

Effective Learning Using HRRs
The colors taks test was run for 100 learning trials. We
gathered information over every trial, keeping track of the
number of episodes the agent successfully completed the
task and recording the number of successes per every 1000
episodes. We considered a 98 percent success rate per thou-
sand episodes an indication that the agent had effectively
learned the task. Over the 100 trials, we found that the agent
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Figure 3: Learned value function of the partially observable
1D maze task. The learned value, V(s), is shown for each
state (s). S1 indicates states for when the first task signal is
present, S2 indicates states for when the second task signal is
present, and SX indicates states when no signal was present.
These options are combined with possible WM contents:
WM1 means the first task signal was stored, WM2 means
the second task signal was stored, and WMX means that no
signal was stored.

learned the task to a 100 percent success rate within an aver-
age of 8000 episodes. Therefore, the HWMtk meets the re-
quirement of being capable of learning using holographic re-
duced representations instead of distributed representations
for concepts.

The 1D maze-signal task showed successful learning
within 10000 episodes, and the resulting value function
across the 20 states for the different possible WM contents
is shown in Figure 3. The toolkit was able to learn that the
signal information provided (S1,WM1 or S2,WM2) was rel-
evant for proper task discrimination. This is indicated by the
expected rise in the value function for each of the respective
subtasks as the agent approaches the goal for that subtask.
Conditions where signals were retained in WM are shown
by SX,WM1 and SX,WM2 for retention of the S1 or S2 sig-
nals, respectively. Figure 3 also shows conditions for when
the signal was observed, but not yet retained in WM (prior
to the call to Step). These are shown in conditions S1,WMX
and S2,WMX, respectively. All six of the conditions de-
scribed above fall along the optimal path to the goal(s) and
the CN has learned the correct discounted reward values in
all cases. Thus, the value function for each task was learned
independently along with learning of the proper contextual
cues needed to perform this separation of learning concerns.
The performance of the agent when signal information was
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not retained in WM memory was also learned. This sub-
problem (SX,WMX) occurs when the ✏-soft policy decides
to remove signal representations currently stored in working
memory, or early in learning when the value of this option
looks preferable to storing signal information in WM. This
subproblem is equivalent to creating a learning agent with-
out WM capabilities, and the average discounted reward for
this subproblem is significantly reduced ( 0.15 on average)
compared to the optimal values. Therefore, WM is critical
for learning this task, and indicates that the HWMtk pro-
vides the necessary capabilities for learning systems to deal
with the out-of-sight, out-of-mind problem.

Discussion
The HWMtk has several advantages over the WMtk by using
HRRs for SE/DE representation.
• HRRs are much more robust than the task specific, man-

ually encoded representations used in the original toolkit.
New, complex concepts can be encoded automatically
without having to alter the topology of the CN since such
concepts are constructed via new HRRs or convolved rep-
resentations of equivalent length. Thus, complex concepts
fit into the same WM slots as simple ones, allowing slots
to encode increasingly more complex concepts.

• Tasks that were previously beyond the capabilities of the
previous toolkit are now more realizable. For example,
since new concepts can be formed when needed, learn-
ing performance on a simple task might transfer to a more
complex task. More complex tasks might be more learned
in far fewer episodes by leveraging such previous knowl-
edge rather than learning the task from scratch. Also,
since HRRs provide a natural method for encoding hier-
achical structure, tasks which require paying attention to
heirachical signals will be easier to program, and possibly
easier to learn.

• The HWMtk antiquates the need for user-specified con-
cept encoding mechanisms. This greatly reduces both the
time and knowledge of ANNs needed to adequately set
up encoding functions when developing learning agents.
Specifically, the user no longer needs background knowl-
edge on how to construct sparse, distributed, conjunctive
codes. The user also does not need to rewrite encoding
functions when new concepts need to be proposed to WM
or encoded into the state descriptions. We hope that this
alone will increase the interest in the HWMtk, and will
make it a better resource for other researchers wishing to
test WM-related tasks.

• The HWMtk provides a unique cognitive framework for
solving partially observable reinforcement learning prob-
lems, by learning to store contextual information that
proves useful for later action selection by other learning
systems and illustrates the utility of WM as an attention
focusing mechanism.
The development of the HWMtk has opened up several

new avenues for future work. First, we plan to utilize the
HWMtk to create a new version of the delayed saccade task.
This task is no more complicated, in practice, than the colors

Figure 4: Example of how task-specific, sparse, dis-
tributed encoding was performed in the original WMtk.
In the HWMtk, an appropriate distributed HRR represen-
tation can be built automatically without the users aid
from a symbolic description of the environment: “cen-
ter*cross+northeast*target”.

task presented earlier, but it would provide a more intuitive
comparison of how the distributed encoding process is sim-
plified by the HRRE component of the HWMtk as shown in
Figure 4. Second, the ability to rehearse and group items us-
ing convolution might be added to tackle tasks which require
memorizing long sequences of information quickly. Such
functionality might be used to study how limits on cogni-
tive faculties arise from a small set of WM slots. Addition-
ally, the TD learning element of the toolkit is currently be-
ing used to learn internal actions (selecting working mem-
ory contents), but has traditionally been used to learn ex-
ternal actions. It seems likely that the toolkit could be pro-
vided with a list of symbolic actions to choose from and
the TD learning element could then learn to select appro-
priate actions given the current state and working memory
concepts. This avenue would further reduce the program-
ming burden placed on the user, but would also complicate
the learning process by needing to learn both internal ac-
tions and external actions simultaneously. However, our 1D
maze task results indicate that this hurdle was easily over-
come by utilizing the same HRR approach to encode each
of the possible actions and provides a clear path forward in
this regard. More complex tasks involving hierarchical struc-
ture and role-filler generalization will also be explored in
the future, but may require additional changes to the current
generic “slot” approach used by the HWMtk since slots cur-
rently all have equal precedence. This assumption may not
hold for such tasks.
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