
Statistics of Software Package Usage in
Supercomputer Complexes

Pavel Shvets, Vadim Voevodin, and Sergey Zhumatiy

Research Computing Center of Lomonosov Moscow State University, Moscow, Russia
vadim@parallel.ru

Abstract. Any modern high-performance computing system is a very
sophisticated complex that contains a variety of hardware and software
components. Performance of such systems can be high, but it reaches its
maximum only if all components work consistently and parallel applica-
tions efficiently use provided computational resources. The steady trend
of all recent years concerning large supercomputing centers – constant
growth of the share of supercomputer applications that use off-the-shelf
application packages. From this point of view, supercomputer software
infrastructure starts to play a significant role in the efficient supercom-
puter management as a whole. In this paper we will show why the analysis
of software package efficiency should be taken seriously, what is worth
paying attention to, and how this type of analysis can be conducted
within the supercomputer complex.

Keywords: parallel computing · high-performance computing · super-
computer · efficiency · efficiency analysis · software package · job flow ·
monitoring data

1 Introduction

Low efficiency of supercomputer system functioning has been an actual problem
in high-performance computing field for many years. Over the years, many pos-
sible approaches and methods have been developed for analysis and optimization
of both individual supercomputer applications and entire supercomputer func-
tioning as a whole. Due to increasing large-scale use of this area, i.e. growing
number of users of supercomputer systems, as well as the progress in the develop-
ment of HPC packages, off-the-shelf software packages are more and more often
used for solving different scientific problems. For example, around 500-1000 ap-
plications are run on Lomonosov and Lomonosov-2 supercomputers daily. Part
of these applications is written by the users themselves with traditional parallel
programming techniques: MPI, OpenMP, OpenCL, CUDA, TBB, etc. The other
part is based on ready-to-use packages from different subject areas: Gromacs,
Gaussian, FireFly, CP2K, Amber, VASP, OpenFOAM and many others, and the
share of such applications is steadily growing. This being said, the vast majority
of users also rely on the other types of program packages – system software, for
example, various versions of compilers. And the peculiarities of their usage can
also greatly affect the performance of user applications.



Software in Supercomputer Complexes 21

This leads to the fact that the task of studying the performance of applied
application packages becomes more and more important, since both the speed
of conducting particular scientific experiments and the overall efficiency of su-
percomputer system functioning depend on it. The experience of supporting
and maintaining such systems accumulated in Research Computing Center of
Lomonosov Moscow State University (RCC MSU) shows that such efficiency in
many cases is unfortunately really low, which leads to computational resources
being idle [1, 2]. It is necessary to develop and implement special software tools
aimed at analyzing this particular aspect of supercomputer functioning. It is
worth noting that similar researches were conducted earlier (for example, [3]),
but they were originally intended to study only specific computing systems and
were not portable.

Therefore, RCC MSU decided to study the statistics of software package
usage in MSU Supercomputing Center. The main goal of this study is to un-
derstand how efficient and in-demand different software packages are on each
machine. Using the examples of Lomonosov and Lomonosov-2 supercomputers,
in this paper we show what information can be collected and how it can be
obtained. First of all, this is of interest to management and administrators of
supercomputer complexes, since it allows analyzing and improving the efficiency
of the whole supercomputer. In particular, this helps to make a decision whether
a particular package should be further used (e.g. if nobody uses it, there is no
need to renew the license) or whether there is a need of more fine tuning or more
detailed analysis of a particular package with very low usage efficiency. But such
kind of information can be useful for common users as well, since it allows to
make a choice in favor of more efficient package. For example, a user can compare
the performance of two linear algebra packages installed on a particular cluster
and choose a more suitable one, or check the performance of locally deployed
proprietary solution.

The results shown in this paper were obtained in this Center, but the overall
approach can be quite easily implemented in other supercomputing centers as
well, which is a part of our plans for future.

2 Collecting Statistics on the Usage of Software Packages

To perform the analysis of package usage, it is necessary to collect information
on all jobs running on the supercomputer; that is, we need to constantly monitor
the overall supercomputer job flow. And it is necessary to collect, integrate and
analyze different types of data:

1. general information on the job flow;
2. data on the efficiency of each particular job;
3. detailed information on the job itself that allows to classify used package

and associate it with obtained efficiency data.

Information on the job flow describes when and on which nodes each job was
launched. Such information can be easily collected from the resource manager;



22 Pavel Shvets et al.

this process is already well known and implemented. In MSU Supercomputing
Center the Slurm manager [4] is being used.

The data on job execution efficiency is collected via different monitoring sys-
tems. These systems provide information on the dynamics of job execution as a
set of characteristics which describe CPU load, intensity of communication net-
work usage, number of active processes on the node, presence of GPU activity,
etc. This set of required data can differ and depends on the desired criteria of
package usage efficiency. Depending on this, different monitoring systems (Col-
lectd [5], Zabbix, Nagios, Zenoss, Cacti or DiMMon system [6] being developed
in RCC MSU) may be more appropriate. A set of proprietary tools is currently
used in MSU Supercomputing Center for collecting needed monitoring data.
Since these are the first steps in this study, for now we are interested only in the
most general indicators of computational resource usage – CPU and GPU user
load as well as average system load (loadavg), but in the future we also plan to
analyze such characteristics as the intensity of memory subsystem and network
usage.

Note that in order to collect statistics on the package usage, it is sufficient to
collect and store only integral characteristics for each launch, and this task can
be successfully solved by existing monitoring systems. Moreover, this information
was being stored for a while in MSU Supercomputing Center for other purposes
[2], so this data was already available for our research.

Thus, in this study the main difficulty in collecting the required data was to
solve the last issue – to collect detailed information on each running job about
the packages used. We were interested in information about used compilers,
application packages, linked libraries, etc. It was decided to use XALT tool [7, 8]
developed by Texas Advanced Computing Center (TACC) for solving this issue.
This tool was chosen due to several reasons:

1. it is an off-the-shelf system software product that is ready for use;
2. it has all the functionality needed for our purposes;
3. it is open source.

This tool collects the data by intercepting calls to the linker and job launcher.
For this purpose, wrappers are created that override standard front-end scripts.
Each time a user links or launches his program, XALT stores all necessary in-
formation on performed actions in user home directory in JSON format. In
particular, used compiler and its options, list of linked static libraries, full path
to the compiled file and compilation time are stored during linking operation.
When the job launcher is used, XALT stores the name on executed file, the way
it was launched, used MPI library version, linked dynamic libraries, values of
environmental variables and many other useful information. Other ways of stor-
ing the data (besides writing JSON files in home user directories) are possible –
using syslog or direct connection to the database.

The collected data periodically (or by administrator request) is stored in a
single MySQL database which accumulates all statistics on the executed jobs.
After that, all that needed is to compose correct SQL query in order to obtain
corresponding data slice required for analysis. Though it is necessary to learn



Software in Supercomputer Complexes 23

the (quite simple) database format in order to manually create needed SQL
queries, many ready-to-use examples of such queries enough to perform first
quick analysis are provided in the XALT manual. This MySQL database is built
to aggregate data from different clusters, so it is quite easy to analyze the data
about the whole supercomputer complex as well as about one particular machine.

3 Analysis of Results Obtained in MSU Supercomputing
Center

The specified XALT tool was installed in MSU Center in June 2017, so some
information is available only from that moment. However, during XALT instal-
lation and testing it was discovered that XALT scripts for defining software
packages can be applied to all previously collected data for executed jobs, so the
results presented in Chapters 3.1 and 3.2 are based on data since the beginning
of year 2017. Below are the main interesting results that were obtained in this
study.

3.1 Statistics on the Popularity of Application Packages

To ensure the efficiency of supercomputing centers we need to move from “our
feelings what is needed” to real facts. From this point of view, even a simple
general statistics on the frequency of using application packages is already very
useful. Figure 1a and 1b show the distribution of the frequency of running certain
packages on Lomonosov and Lomonosov-2 supercomputers. The frequency of
package usage is shown as a share (in percents) of the total number of runs on
a supercomputer. It can be seen that in both cases top 3 places in total provide
more than 50% of all package launches, but there is only one package that is
in both top 3 lists – Firefly package for quantum chemical calculations. In the
whole list some overlaps can be seen: for example, packages like VASP, Gromacs,
NAMD and DL POLY are frequently used on both systems.

In general statistics on both supercomputers is quite different, and this illus-
trates the fact that there is no big reason to compare such results on different
machines. This is because the architecture of supercomputers, as well as the over-
all research interest of users (and therefore the package usage) can vary greatly
in each case. The main goal of analyzing such kind of information is to get the
basic understanding of package usage on each particular cluster independently.

Now let’s look at the use of packages from the other point of view and evaluate
the CPU hours consumed by various packages (Fig. 2a and 2b for Lomonosov
and Lomonosov-2 supercomputers correspondingly). The picture changes sig-
nificantly; for example, the leading position has changed – in both cases the
first place is now occupied by the Gromacs package, which is used to model
physicochemical processes in molecular dynamics. It can also be noted that the
DL POLY package is not represented on these charts, although it was in top
lists in Fig. 1. This indicates that this package is launched very often, but on
average it requires not so many computational resources.



24 Pavel Shvets et al.

Taking into account that dozens of packages are installed and used on su-
percomputers, such analysis helps to prioritize their installation, updating and
fine-tuning. Together with similar data, but specified for certain users, this in-
formation shows the actual demand for particular packages.

Fig. 1. The distribution of the frequency of running certain packages on Lomonosov
(a) and Lomonosov-2 (b) supercomputers (a share of total number of runs is shown)

Fig. 2. The distribution of the CPU hours consumed by various packages on Lomonosov
(a) and Lomonosov-2 (b) supercomputers (a share of total amount of consumed CPU
hours is shown)

3.2 Studying the Efficiency of Application Package Usage

Another huge part of information is provided by the binding of dynamic char-
acteristics describing the efficiency of parallel job execution to specific software
packages. Figures 3a and 3b describe average value of loadavg for jobs that use
different packages on Lomonosov and Lomonosov-2 supercomputers. Loadavg



Software in Supercomputer Complexes 25

parameter estimates the number of processes on a node that are ready for ex-
ecution, which describes degree of parallelism in an application from a system
point of view. If an application makes the best use of hardware platform ca-
pabilities, this value is usually equal to the number of cores on a node. Nodes
of Lomonosov supercomputer have two 4-core or 6-core processors, nodes of
Lomonosov-2 – one 14-core processor. The corresponding optimal loadavg val-
ues based on the number of physical cores are shown with horizontal lines in
Fig. 3. Note that processors in both systems have Hyper-Threading technol-
ogy enabled, which doubles the number of logical cores, so potentially optimal
loadavg value can be twice as high.

It can be seen in Fig. 3 that many packages show high loadavg values mean-
ing that they use available resources quite actively, although there are notable
exceptions like Molpro package used on Lomonosov or VASP used on Lomonosov-
2. It is also interesting to note that Gromacs package on Lomonosov seems to
use Hyper-Threading quite often (its loadavg value is higher than the number
of physical cores on a node), since apparently this allows further performance
increase.

Such data is very important: it reflects the accumulated experience and helps
to understand the way the packets are used by the computing community. This
is necessary as well for evaluating the performance of the package on a partic-
ular supercomputer, and this also helps to make adjustments to the use of the
particular package by individual users.

Fig. 3. Average loadavg value for different packages on Lomonosov (a) and Lomonosov-
2 (b) supercomputers

The degree of parallelism is defined not only by the number of used cores
on a node, but also by an overall number of used nodes. Our practice shows
that, in an attempt to reduce the running time of applications, users increase
the number of nodes, not always paying attention to the limited scalability of
applications. As a result – part of supercomputer resources is wasted. A good
method for evaluating efficiency is to analyze how CPU cores are loaded by each
package. An example showing average core load for Lomonosov and Lomonosov-2
supercomputers is shown in Fig. 4.



26 Pavel Shvets et al.

Comparison of Fig. 3 and 4 shows that loadavg and core load characteristics
correlate well enough – relative change of loadavg for different packages is similar
to corresponding change in the values of the core load. This indicates that on
average each packet equally loads each active process. However, there are excep-
tions – the loadavg value for WRF package on Lomonosov-2 supercomputer is
much higher than the values for other packages, but its core load is at average
level. Perhaps this is due to very active memory usage or data transfer using
communication network, but it is also likely that this package uses resources
rather inefficiently. We should notice that this is true only for this particular
system; the behavior of WRF package on other systems can differ.

Fig. 4. Average core load for different packages on Lomonosov (a) and Lomonosov-2
(b) supercomputers

In general, low core load can be explained by different reasons: bad pack-
age scalability, errors made by user or his desire to allocate more memory per
process on a node. There are many possible reasons, and each case must be con-
sidered separately. In any case, such information should be available to system
administrators to control the situation.

Similarly, package usage efficiency can be analyzed using other monitoring
data, for example, GPU usage load (also shown in Fig. 4). The package can be
optimized for GPU usage, but only real-life statistics can show, how effectively
someone actually uses it and whether he forgot to specify the “use the GPU”
option. In particular, Fig. 4b explains low loadavg value for VASP package:
the graph shows that this package uses GPU very actively, and apparently the
computations are almost not performed on the CPU side, so it does not need to
start a lot of CPU of processes.

Many packages are sensitive to hardware parameters, and the analysis of
dynamic characteristic values helps to optimize both overall functioning of su-
percomputer complex and behavior of particular user applications. In this re-
gard, it is very important to detect anomalous values of dynamic characteristics
in time, which again may happen due to different reasons like incorrect pack-
age installation by the system administrator or incorrect package usage by the
common user. There are many examples of anomalies: excessively high or low
loadavg value, high core idle value, large number of cache misses, low GPU load,



Software in Supercomputer Complexes 27

high intensity of I/O operations, high fluctuation of dynamic characteristics, etc,
but all of them indicate potential problems with the efficiency of supercomputer
complex. In this research it is planned to develop a methodology for detecting
such anomalies in future.

3.3 Distribution of Used Compilers

Results shown earlier relate directly to the job launch process. But linking pro-
cess is also of interest. In particular, one of the main questions – which compilers
are most in demand? Figure 5 shows the distribution of compilers based on the
number of uses on Lomonosov-2 supercomputer. It can be seen that GNU com-
pilers are used much more often than Intel compilers. For instance, GNU C
compiler is used in almost half the cases. Interestingly, Fortran language, ac-
cording to this statistics, is used almost as often as C language (44% vs 50%),
and C++ language is far less common (only 6%).

Fig. 5. The frequency of using different compilers on Lomonosov-2 supercomputer (a
share of total number of launches is shown)

4 Conclusion and Future Work

This paper describes the research being conducted in RCC MSU aimed at study-
ing the efficiency of software package usage in supercomputer systems. This re-
search on the given examples shows how such analysis can be conducted within
the majority of modern supercomputers, and what information can be obtained
on its basis. We engage the management and system administrators of different
supercomputer centers to perform such study, since this helps to improve the
efficiency of the supercomputer in general, and also help users to select more
suitable software packages for their tasks.

This research is based on the analysis of different types of information: data
on the overall job flow that helps to determine when and on which nodes each



28 Pavel Shvets et al.

job was launched; data on the efficiency of each particular job; detailed data on
the package usage. The task of collecting first two types of data is easy enough
and was already implemented in MSU Supercomputing Center, so only the last
question was to be solved. XALT package developed in TACC was used for
this purpose. This package intercepts calls to the linker and job launcher, which
allows to save required information each time they are used.

As a result, various statistics on package usage on Lomonosov and Lomonosov-
2 supercomputers were collected. In particular, the distribution of packages by
the number of launches, consumed CPU hours, average CPU load and loadavg,
as well as the frequency of using different compilers was analyzed. Such analysis
allows to perform holistic estimation of the popularity and usage efficiency of
different software packages.

The analysis of the results described in this paper is just the first step in
this direction. A variety of services intended to help common users and system
administrators to optimize their work can be developed based on this data, which
will be the focus of further work in this study.

The data on average dynamic characteristics for a package will help the user
to correctly interpret the values obtained by his applications. One possible way
of implementation – automatically generated notification based on the results
of application execution, which contains a comparison of the current launch
characteristics with the average characteristics for this package. This can be a
mass service for all users with built-in analytics for each application package.
This service can also be configured to compare only with the previous launches of
the same user, so a deviation from “standard” values specific for this particular
user can be clearly seen.

System administrators also require similar services that constantly analyze
the integral characteristics of different packages. Such services can help to find
out when a package reinstallation, software update or issue of a “How to effi-
ciently use a package” guide is needed. Slightly more complex options are search-
ing for more efficient alternative packages (based on price and efficiency criteria)
or planning a software update budget for the next year.

Acknowledgments. The results described in all sections except Section 2 were
obtained in the Lomonosov Moscow State University with the financial support
of the Russian Science Foundation (agreement № 17-71-20114). The research pre-
sented in Section 2 was supported by the Russian Foundation for Basic Research
(№ 17-07-00664).

References

1. Vladimir Voevodin and Vadim Voevodin. Efficiency of Exascale Supercomputer
Centers and Supercomputing Education. In High Performance Computer Applica-
tions: Proceedings of the 6th International Supercomputing Conference in Mexico
(ISUM 2015), pages 14–23. Springer, Cham, 2016.



Software in Supercomputer Complexes 29

2. Dmitry Nikitenko, Vladimir Voevodin, Alexey Teplov, Sergey Zhumatiy, Vadim Vo-
evodin, Konstantin Stefanov, and Pavel Shvets. Supercomputer Application Integral
Characteristics Analysis for the Whole Queued Job Collection of Large-scale HPC
Systems. In Parallel Computational Technologies (PCT’2016), pages 20–30, 2016.

3. Matthew D. Jones, Joseph P. White, Martins Innus, Robert L. DeLeon, Nikolay
Simakov, Jeffrey T. Palmer, Steven M. Gallo, Thomas R. Furlani, Michael Shower-
man, Robert Brunner, Andry Kot, Gregory Bauer, Brett Bode, Jeremy Enos, and
William Kramer. Workload Analysis of Blue Waters. mar 2017.

4. Slurm Workload Manager. URL: http://slurm.schedmd.com. Cited 08 Aug 2017
5. Collectd – The system statistics collection daemon. URL: https://collectd.org. Cited

08 Aug 2017
6. Konstantin Stefanov, Vladimir Voevodin, Sergey Zhumatiy, and Vadim Voevodin.

Dynamically Reconfigurable Distributed Modular Monitoring System for Supercom-
puters (DiMMon). Procedia Computer Science, 66:625–634, 2015.

7. Kapil Agrawal, Mark R. Fahey, Robert McLay, and Doug James. User Environment
Tracking and Problem Detection with XALT. In 2014 First International Workshop
on HPC User Support Tools, pages 32–40. IEEE, nov 2014.

8. XALT tool homepage. URL: https://www.tacc.utexas.edu/research-
development/tacc-projects/xalt. Cited 08 Aug 2017


