
Influence of programming style in transformation
bad smells: Mining of ETL Repositories

Nicolás Bonet∗, Kelly Garcés∗, Rubby Casallas∗, Marı́a Elsa Correal†, and Ran Wei‡

∗Universidad de los Andes, Bogota D.C. Colombia, School of Engineering.
Department of Systems and Computing Engineering

{n.bonet2476, kj.garces971, rcasalla}@uniandes.edu.co
†Universidad de los Andes, Bogota D.C. Colombia, School of Engineering.

Departament of Industrial Engineering
{ mcorreal}@uniandes.edu.co

‡The University of York. UK. Department of Computer Science
{ran.wei}@cs.york.ac.uk

Abstract—Bad smells affect maintainability and performance
of model-to-model transformations. A number of studies have de-
fined a set of transformation bad smells, and proposed techniques
to recognize and —according to their complexity— fix them in
a (semi-)automated way. In education, it is necessary to make
students aware of this subject and provide them with guidelines to
improve the quality of their transformations. This paper presents
some common bad smells in model transformations written by
master students from Universidad de los Andes and compares
them with that of publicly available repositories of ETL trans-
formations, for the purpose of knowing whether programming
style affects the incidence of smells. Three contributions are
presented: i) Two new bad smell patterns enriching the existing
catalogs; ii) A process that includes the automated extraction
of transformation metrics and bad smells metrics from the
repositories, and a statistical analysis that helps in identifying
the relations between such metrics; and iii) A tool that supports
the process. By applying our approach on the datasets, we discuss
whether it is easier for students with imperative programming
language background to make use of appropriate declarative
constructs of a transformation language compared to imperative
ones. We conclude that students must be encouraged and guided
to use declarative constructs whereas possible when developing
declarative transformations, that results in artifacts that are more
maintainable and with a better performance.

Index Terms—Model-Driven Engineering, Model Transfor-
mation, Quality, Metric, Bad Smells, Epsilon Transformation
Language (ETL), Educational Purpose.

I. INTRODUCTION

Model-Driven Engineering (MDE) has gained some popu-
larity in industry because companies and developers are begin-
ning to adopt MDE approaches to reduce software complexity
and improve its maintainability. In this context, universities
play a major role since they teach MDE to students, who
become software developers after they graduate. It is essential
to teach and students about the best practice of MDE for them
to become better software developers/architects in the future.

Whilst MDE becomes popular, it has pointed out that
measuring the quality of model management programs, es-
pecially model-to-model (M2M) transformations, is crucial.

We have identified several studies [1]–[6] aiming to find a
relation between traditional software quality attributes and
M2M transformations, in effort to determine which aspects
of the languages have a direct impact on these attributes.
Additionally, we have found research that studies how bad
smells (bad software practices) can affect the maintainability
and performance of transformations [7]–[11]. Most of the
available studies target transformations written in ATL, but
a few tackle other languages such as Epsilon Transformation
Language (ETL)1, QVT and Henshin.

To the best of our knowledge, there has been no research
that studies how coding styles (either imperative or declarative)
may affect the number of bad smells found in transformations.
Thus, we propose an approach (Section II) that: i) statically
analyzes repositories of transformations; ii) extracts transfor-
mation metrics (metrics of the language constructs); iii) detects
bad smells based on a pre-defined catalog; and iv) establishes a
relation between these two kind-of metrics, based on statistical
techniques (Section IV). Other contributions of our work are:
two new bad smells that enrich the existing catalog found in
the literature and a tool that operationalizes the process and is
built on top of the Epsilon languages and Haetae2.

We have applied the approach to a case study (Section
III) that includes ETL transformations developed by students
from Universidad de los Andes and by other stakeholders (the
contributors of ETL from University of York and Github users)
for the sake of comparison. From the results (Section V), we
were able to identify the quality of the transformations made
by our students, and code styles to increase such a quality.
Section VI introduces the implications that the analysis has
for instructors and students, and summaries future work.

1Epsilon Transformation Language (ETL). URL: https://www.eclipse.org/
epsilon/doc/etl/. July 13, 2017.

2Epsilon Labs, haetae. URL: https://github.com/epsilonlabs/haetae. July 13,
2017.

https://www.eclipse.org/epsilon/doc/etl/
https://www.eclipse.org/epsilon/doc/etl/
https://github.com/epsilonlabs/haetae


II. MINING ETL REPOSITORIES: PROCESS OVERVIEW

The repository mining consists of three steps. In the first
step, a set of transformation metrics are calculated and bad
smells are identified on an available corpus of files. In the
second step, a report is automatically generated discriminating
the information obtained for each transformation of the corpus.
Finally, the collected data is analyzed to identify relations
between transformation metrics and bad smells to advise
instructors about which could be the weakest points with
respect to quality on their students work. In the remaining
sections of this paper, we present how this process has been
instantiated in a case study.

III. THE CASE STUDY SETUP

A. Case study context

This study is part of a research which aims at improving
the programming skills of masters-degree students that attend
MDE lectures, a vast majority of the students (20 in average
each semester since 2014) have no experiences on MDE. This
lecture has been part of the MSc Software Engineering course
and we are constantly looking for better ways of improving the
teaching methodologies to increase the quality of the software
produced by students. In this context, the following research
questions were asked:

• RQ1: What is the distribution of bad smells across
datasets?

• RQ2: What is the variety of code smells in the model
transformations involved in the case study?

• RQ3: How the total number of bad smells are influenced
by programming style (i.e., declarative or imperative)?

The transformation metrics used as the base line of the
study are the following: the number of: matched/lazy rules,
operations with/without context, calls to lazy rules per rule,
calls to operations per rule, variables per rule, if, loops,
unused operations and unused parameters3.

These metrics were chosen as we wanted to identify how
the transformation strategy was relevant to the amount of bad
smells that could be found on the dataset. Based on [12] and
our own experience, we have identified that transformations
developed using an imperative programming style tend to
majorly use operations, if, and loops. This also involves
transformations that have few matched rules, but the body of
those rules is built using plenty of imperative constructs. On
the other hand, transformations that contain matched rules,
guards, and OCL queries show a more declarative approach.

B. Characteristics of the dataset

To perform the study we extracted a total of 286 ETL
transformations from multiple sources, they were grouped in
three different datasets referred to as Uniandes, York, and
Github. In the Uniandes dataset, the transformations are used

3Both matched and lazy rules specify the way in which target model
elements must be generated from source model elements. The execution of
matched rule is scheduled by the engine depending on the type of elements
that are applicable, whereas the execution of lazy rules is determined by the
programmer.

in reverse and forward MDE projects. This dataset is publicly
available4 and can be used for further investigation. In the
York dataset, transformations are built by developers with
vast experience in ETL, they were retrieved from the official
Epsilon Website.

Finally, the transformations of the Github dataset are the
ones found in public GitHub repositories. The metamodels
involved in these transformations are unknown as well as the
experience of developers. With respect to the datasets’ size,
Uniandes has 191 files and 27526 LOC, York 23 files and
1550 LOC, and Github 72 files and 26948 LOC.

IV. BAD SMELLS DETECTION

A. Catalog of bad smells

We followed 4 steps to build our bad smells catalog: i) Re-
view the literature that categorizes transformation bad smells,
i.e., [7], [8], [13] ; ii) Adapt bad smells in related works to
ETL, since there are few differences between ETL constructs
and the ones from other M2M transformation languages (e.g.
ATL); iii) Perform code review of the dataset to identify
new smells out of the scope of previous work; iv) Build a
consolidated catalog.

Reviewing previous catalogs of bad smells [7], [8], [13]
generates 27 bad smells (overlapped smells are omitted). In our
work, we consider 6 of these previously categorized bad smells
and contribute 2 new bad smells observed in our datasets. The
reason for including just 6 of 27 is that these can be discovered
via static analysis, in a fully automatic way. In contrast, for the
discovery of the rest of bad smells, it is necessary to have more
information such as execution traces (e.g., that indicate when
an operation is computational intensive) or some knowledge
about the transformation context (e.g., to know if rules have
meaningful names).

The 8 bad smells of our catalog can be classified into
two categories, defined in [7]: i) Restructuring (these bad
smells are related with how the transformation is built and
structured); and ii) OCL Optimization (As ETL is an OCL-
based language, optimization of those queries is extremely
important to improve the transformation performance). For
each bad smell we give an abbreviation, a description, and
how it is discovered. In addition, for existing bad smells we
mention the identifier managed in the original source [7] for
cross-referencing purposes, and for new bad smells we give
an example. We summarized bad smells taken from previous
work in a Table available in this link5, this section focuses on
new smells.

B. New bad smells

1) Restructuring: Imperative filtering:

• Abbreviation: IEO.
• Description: A for statement has an if to prevent the

logic being applied to all elements, this is less efficient

4GITHUB, ETLMetrics. URL: https://github.com/NicolasBonet/
ETLMetrics/. July 13, 2017.

https://github.com/NicolasBonet/ETLMetrics/
https://github.com/NicolasBonet/ETLMetrics/


than an OCL first-order logic expression and is also
harder to understand.

• Discover Algorithm: The discoverer checks each for
statement made on the transformation and if the for logic
is wrapped inside an if, then it increases the count for
this bad smell.

• Example: An example is available at this link6.
2) OCL Optimization: Imperative element creation in

loops:
• Abbreviation: CNL.
• Description: Creating elements inside loops are discour-

aged as the creation of multiple elements can be achieved
by rules, the use of guards is useful to prevent it from
happening over all elements if necessary.

• Discovery Algorithm: The discoverer checks each loop
statement (i.e., while and for) and verifies if at least
one occurrence of the reserved word ”new” —which is
intended to create new elements— is found in the block.

• Example: An example is available at this link6.

V. STATISTICS AND DATA ANALYSIS

In this chapter, we present the results of our case study
taking into account the stated research questions.

A. Distribution of bad smells

RQ1: What is the distribution of bad smells across the
datasets?. We found that 118 out of 286, or 41.26% of the
transformations, have no bad smells, while 13.64% present
more than 10 occurrences. We also established the occurrence-
rate of bad smells by transformation (λt), which is defined as
follows:
λt =

∑I

i=0
badSmells(i)

i ; I = Transformations
We saw that Uniandes presents rates lower than Github and

higher than York. From these results, and taking into account
that the main promoters of ETL are at the University of York,
it is worth to define patterns that favor quality in conjunction
with them (Section VI describes three patterns as a starting
point).

B. Variety of bad smells

RQ2: What is the variety of smells found in the transfor-
mations involved in the case study?. The discoverer detected
the occurrences of the bad smells in the datasets and the
results follow: There are three types of bad smells with the
highest occurrences across all datasets (see Table7 for a brief
list of these smells): i) CSF (a chain of select/first in OCL
is less efficient than using selectFirst); ii) IEO (if statements
embedded into a for are less efficient than OCL filters), and iii)
CNL (creation of new elements in loops). Each of these bad
smells with more than 200 occurrences found in the entire set
of transformations. On the other hand, the bad smells referred

5GITHUB, Bad smell catalog. URL: https://github.com/phillipus85/
ETLMetrics/blob/master/EduSymp2017/resources/Catalog.pdf. July 13, 2017.

6GITHUB, IEO and CNL code. URL: https://github.com/phillipus85/
ETLMetrics/blob/master/EduSymp2017/resources/IEOandCNL.pdf. July 13,
2017.

to as TOC (trivial operations called once) and REB (rule body
is embedded into if blocks) were the less common ones, each
one with less than 60 occurrences. When the data is interpreted
dataset by dataset, it can be seen that for Uniandes the error
DOE (duplicated and complex OCL expressions) is the most
common one. For York, the most common smell is TOC (trivial
operations called once). Note that the discoverer allows one
to configure the number of lines that an operation should have
to be considered are trivial. For this experiment, we set this
threshold to 1-3 lines based on what we have observed in the
developed code. Finally, in Github the occurrences are quite
similar to the overall result.

C. Influence of programming style on bad smells incidence

RQ3: How the total number of bad smells are influenced
by the programming style (declarative or imperative)?. To
answer this question we made a Negative Binomial Regression
between the transformation metrics defined in Section III
(matched/lazy rules, operations, etc.) and bad smells metrics.
This regression helps us to measure the influence of a particu-
lar construct on the occurrence-rate of bad smells (i.e., λt) by
means of a Relative Risk (RR). In our context, a RR is a way to
compare occurrence-rate of bad smells in transformations that
uses a certain language construct with that of transformations
not using it. We calculated RR values for each construct, one at
a time, based on a Negative Binomial Regression Model. Since
RR is a quotient, an RR of 1.20 for a construct means that
using that particular construct increases bad smells by 20%,
while a RR of 1 means that the construct has not influence in
bad smells. The influence is assessed testing if RR is equal to
1, significantly.

We applied the statistical model to metrics coming from
the three datasets —as a whole set— and from each dataset,
separately. Table I shows the results for the entire set and
they are similar to the results of each particular dataset. The
table consists of the following three columns: the language
construct, RR and significant effect. In fact, it is the latter
that indicates a strong relation between the number of bad
smells and the use of variables per rules, control statements
like while, for, if and calls to operations per rule. There is
a trade-off between the transformations quality and the time
to produce a fully functional MDE code generator. For the
students, it is easier to use an imperative style (which is
the their background programming style) than a declarative
approach that they do not manage to master in 4 months
(duration of the course).

Table I also shows a strong relation between unused pa-
rameters/operations and bad smells, this is due to the project
of the course is developed in an incremental way and the
students were going through the learning curve. Therefore,
early versions of the transformation includes operations and
parameters that become unused in the subsequent versions,
however, these operations remain in the code resulting an
increase of bad smells which hampers maintainability.

We have the following metrics which are not related with
bad smells: matched rules, lazy rules, operations without

https://github.com/phillipus85/ETLMetrics/blob/master/EduSymp2017/resources/Catalog.pdf
https://github.com/phillipus85/ETLMetrics/blob/master/EduSymp2017/resources/Catalog.pdf
https://github.com/phillipus85/ETLMetrics/blob/master/EduSymp2017/resources/IEOandCNL.pdf
https://github.com/phillipus85/ETLMetrics/blob/master/EduSymp2017/resources/IEOandCNL.pdf


TABLE I
INFLUENCE OF LANGUAGE CONSTRUCTS ON BAD SMELLS

Metric IRR Significant Effect
Matched rules 1.0093 No

Lazy rules 1.0130 No
Operations With Context 1.1219 Yes

Operations Without Context 1.0236 No
Ifs 1.0427 Yes

Loops 1.1631 Yes
Variables per rule 1.1989 Yes

Calls to operations per rule 1.0788 Yes
Calls to lazy rules per rule 1.0035 No

Unused operations 1.1527 Yes
Unused parameters 2.4112 Yes

context, and calls to lazy rules per rule. In the case of matched
rules, this should not come as a surprise since transformation
languages are built to be used with this declarative construct.
In addition, it was interesting to notice that lazy rules have
no significant impact on smells either, this could be because
lazy rules are being invoked from matched rules and the lazy
code is not necessarily imperative. The latter is necessary
in some contexts, for example, when an input element has
to be transformed into several output elements that share no
references. Finally, the influence of OWC (operations without
context) on smell incidence does come as an interesting fact. In
principal, the use of context should lead to a proper invocation
of the operation to avoid errors. However, some students abuse
this kind-of operation to create output elements, instead of
using matched/lazy rules.

VI. CONCLUSIONS AND FUTURE WORK

It is important that instructors sensitize students about tak-
ing into consideration not only transformations functionality
but also the quality of transformations for maintenance and
performance whilst they develope model management pro-
grams. This work gives empirical evidence that a declarative
programming style influences positively the quality because
the transformations are less bad-smell-prone. In this context,
instructors should present the catalog of bad smells to stu-
dents and explain them how the imperative style increase
the probability of smells occurrences in code. In addition,
instructors should consider the quality in the evaluation criteria
of practical work to motivate students to avoid bad smells.
Finally, the following concrete tips can be given to students:
i) Favor lazy rules compared to operations if matched rules do
not allow to express certain mappings (e.g., a source element
that have to be transformed to different target elements that
share no references); ii) Prefer guards and declarative rules
instead of if, loops, and creation of new elements in the
statement block of rules; and iii) Keep the code updated and
avoid dead code (such as unused operations/parameters).

The proposed discoverer is able to found occurrences of 8
types of bad smells. It would be worth to extend our discoverer
to cover the remaining 21 bad smells categorized in the state-
of-art [7], [8], [13]. In addition, our discoverer could also be

7GITHUB, Bad smell metrics. URL: https://github.com/phillipus85/
ETLMetrics/blob/master/EduSymp2017/resources/Metrics.pdf. July 13, 2017.

generalized to identify bad smells in transformations written in
other languages such as QvT, ATL, ASF+SDF. Finally, since
most of transformation developers use specific IDEs, it would
be useful to integrate the discoverer to these IDEs in order to
provide feedback to the programmers at implementation time.
In addition, it would be useful to integrate the previous work
made around (semi-)automated refactoring.

REFERENCES

[1] L. Kapová, T. Goldschmidt, S. Becker, and J. Henss, Evaluating
Maintainability with Code Metrics for Model-to-Model Transformations.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 151–166.

[2] A. Rentschler, Q. Noorshams, L. Happe, and R. Reussner, Interactive
Visual Analytics for Efficient Maintenance of Model Transformations.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 141–157.

[3] M. F. van Amstel, C. F. Lange, and M. G. van den Brand, “Using metrics
for assessing the quality of asf+ sdf model transformations,” in Inter-
national Conference on Theory and Practice of Model Transformations.
Springer, 2009, pp. 239–248.

[4] M. F. van Amstel and M. van den Brand, “Using metrics for assessing
the quality of atl model transformations,” in Workshop on Model
Transformation with ATL. Springer, 2010, pp. 19–33.

[5] A. Vignaga, “Metrics for measuring atl model transformations, tech
report,” 2009.

[6] M. F. Van Amstel and M. G. J. Van Den Brand, “Model transformation
analysis: Staying ahead of the maintenance nightmare,” in Proceedings
of the 4th International Conference on Theory and Practice of Model
Transformations, ser. ICMT’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 108–122.

[7] M. Wimmer, F. Jouault, and J. Cabot, “A catalogue of refactorings for
model-to-model transformations.” Journal of Object Technology, vol. 11,
no. 2, pp. 2–1, 2012.

[8] R. Wei and D. S. Kolovos, “Automated analysis, validation and
suboptimal code detection in model management programs.” in Big-
MDE@STAF, ser. CEUR Workshop Proceedings, vol. 1206. CEUR-
WS.org, 2014, pp. 48–57.

[9] M. Tichy, C. Krause, and G. Liebel, “Detecting performance bad smells
for henshin model transformations.” in AMT@MoDELS, ser. CEUR
Workshop Proceedings, vol. 1077. CEUR-WS.org, 2013.

[10] B. Alkhazi, T. Ruas, M. Kessentini, M. Wimmer, and W. I. Grosky,
“Automated refactoring of atl model transformations: A search-based
approach,” in Proceedings of MODELS ’16. New York, NY, USA:
ACM, 2016, pp. 295–304.

[11] J. S. Cuadrado, E. Guerra, and J. de Lara, “Static analysis of model
transformations,” IEEE Transactions on Software Engineering, vol. PP,
no. 99, pp. 1–1, 2016.

[12] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Mining
correlations of atl model transformation and metamodel metrics,” in
Proceedings of the Seventh International Workshop on Modeling in
Software Engineering, ser. MiSE ’15. Piscataway, NJ, USA: IEEE
Press, 2015, pp. 54–59.

[13] J. S. Cuadrado, F. Jouault, J. G. Molina, and J. Bézivin, “Optimization
patterns for ocl-based model transformations,” in International Confer-
ence on Model Driven Engineering Languages and Systems. Springer,
2008, pp. 273–284.

https://github.com/phillipus85/ETLMetrics/blob/master/EduSymp2017/resources/Metrics.pdf
https://github.com/phillipus85/ETLMetrics/blob/master/EduSymp2017/resources/Metrics.pdf

	Introduction
	Mining ETL Repositories: Process Overview
	The case study setup
	Case study context
	Characteristics of the dataset

	Bad smells detection
	Catalog of bad smells
	New bad smells
	Restructuring: Imperative filtering
	OCL Optimization: Imperative element creation in loops


	Statistics and data analysis
	Distribution of bad smells
	Variety of bad smells
	Influence of programming style on bad smells incidence

	Conclusions and future work
	References

