
An NMF solution to the Smart Grid Case at the TTC 2017

Georg Hinkel
FZI Research Center of Information Technologies

Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany
hinkel@fzi.de

Abstract

This paper presents a solution to the Smart Grid case at the Transfor-
mation Tool Contest (TTC) 2017 using the .NET Modeling Framework
(NMF). The goal of this case was to create incremental views of multiple
models relevant in the area of smart grids. Our solution uses the in-
cremental model transformation language NMF Synchronizations and
the underlying incrementalization system NMF Expressions.

1 Introduction
Models should represent a system in a very abstract form. However, very often, the model is still too complex for
humans to understand it or make use of it. Furthermore, necessary information is split among multiple models.
Therefore, it is often beneficial for practical applications to reduce the complexity for human modelers through
the use of views that combine the information from multiple models and reduce it to those parts of a model that
are relevant for a particular task.

The Smart Grid Case of the Transformation Tool Contest (TTC) 2017 [Hin17] proposes a benchmark for such
a scenario. Here, the modeled system is a smart grid where the necessary information to detect or predict is
split among multiple models according to existing standards. The views originate from a model-based outage
management system [Mit, BMK16] implemented using existing model view technology [BHK+14].

If the source model changes, the view has to be adapted to the changed source. For large models, it becomes
very slow to recompute the entire model from scratch, in particular, since changes usually only affect small parts
of the model. Rather, it is much more efficient to only propagate the changes to the view in an incremental
manner. However, implementing such a change propagation manually can be a very laborious task that further
conceals the code intention, i.e. the view that is actually being computed.

This paper presents a solution to the proposed benchmark using the incremental model transformation lan-
guage NMF Synchronizations [HB17], integrated into the .NET Modeling Framework (NMF, [Hin16]). The
solution is publicly available on Github1. We first give a very brief introduction into synchronization blocks,
the formalism underneath NMF Synchronizations in Section 2 before Section 3 presents the solution. Section 4
evaluates the solution against the reference solution in ModelJoin and finally Section 5 concludes the paper.

2 Synchronization Blocks
Synchronization blocks are a formal tool to run model transformations in an incremental (and bidirectional) way
[HB17]. They combine a slightly modified notion of lenses [FGM+07] with incrementalization systems. Model
properties and methods are considered morphisms between objects of a category that are set-theoretic products
of a type (a set of instances) and a global state space Ω.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Garcia-Dominguez, F. Krikava and G. Hinkel (eds.): Proceedings of the 10th Transformation Tool Contest, Marburg,
Germany, 21-07-2017, published at http://ceur-ws.org

1https://github.com/georghinkel/ttc2017smartGrids

A (well-behaved) in-model lens l : A ↪→ B between types A and B consists of a side-effect free Get morphism
l ↗∈Mor(A,B) (that does not change the global state) and a morphism l ↘∈Mor(A×B,A) called the Put
function that satisfy the following conditions for all a ∈ A, b ∈ B and ω ∈ Ω:

l↘ (a, l↗ (a)) = (a, ω)

l↗ (l↘ (a, b, ω)) = (b, ω̃) for some ω̃ ∈ Ω.

The first condition is a direct translation of the original PutGet law. Meanwhile, the second line is a bit
weaker than the original GetPut because the global state may have changed. In particular, we allow the Put
function to change the global state.

An unidirectional (single-valued) synchronization block S is an octuple (A,B,C,D,ΦA−C ,ΦB−D, f, g) that
declares a synchronization action given a pair (a, c) ∈ ΦA−C : A ∼= C of corresponding elements in a base
isomorphism ΦA−C . For each such tuple in states (ωL, ωR), the synchronization block specifies that the elements
(f(a, ωL), g ↗ (b, ωR)) ∈ B × D gained by the function f and the lens g are in the dependent isomorphism
ΦB−D.

A C

B D

ΦA−C

f g

ΦB−D

Figure 1: Schematic overview of unidirectional synchronization blocks

A schematic overview of a synchronization block is depicted in Figure 1. The usage of lenses allows these
declarations to be enforced automatically2. The engine simply computes the value that the right selector should
have and enforces it using the Put operation.

A multi-valued synchronization block is a synchronization block where the lenses f and g are typed with
collections of B and D, for example f : A ↪→ B∗ and g : C ↪→ D∗ where stars denote Kleene closures.

Synchronization Blocks have been implemented in NMF Synchronizations, an internal language integrated
into C# [HB17].

3 Solution
We discuss the solutions to the outage detection and the outage prevention tasks separately in Sections 3.1 and
3.2.

3.1 Outage Detection

In NMF Synchronizations, the support for multiple input pattern elements is rather limited. As a reason, we
experienced with NTL [Hin13] that multiple input elements is a rare case, but required a tremendous amount
of code to support it. At the same time, the advantages of a true support for multiple input elements over
transformation of tuples is limited.

Therefore, the easiest way to support multiple input pattern elements in NMF Synchronizations is to simply
use tuples as inputs. Then, the model matching has to be adapted to match tuples instead of elements. Therefore,
the main rule synchronizes a tuple of the CIM model and the COSEM model with the resulting view model.

CIMRoot× COSEMRoot Model

(MeterAsset× PhysicalDevice)∗ EnergyConsumer∗

ΦMainRule

(join) .RootElements.OfType < EnergyConsumer >

ΦAssetToConsumer

Figure 2: The join in the outage detection task formulated in a synchronization block

In a synchronization block, the main join of meter assets with physical devices is depicted in Figure 2, where
we abbreviated the join expression. The implementation of this matching is depicted in Listing 1.

2If f was also a lens, then the synchronization block can be enforced in both directions.

1 public class MainRule : SynchronizationRule <Tuple <CIMRoot , COSEMRoot >, Model > {
2 public override void DeclareSynchronization () {
3 SynchronizeManyLeftToRightOnly(SyncRule <AssetToConsumer >(),
4 sg => from pd in sg.Item2.PhysicalDevice
5 join ma in sg.Item1.IDobject.OfType <IMeterAsset >()
6 on pd.ID equals ma.MRID
7 select new Tuple <IMeterAsset , IPhysicalDevice >(ma , pd),
8 target => target.RootElements.OfType <IModelElement , OutageDetectionJointarget.IEnergyConsumer >());
9 }

10 }

Listing 1: The implementation of the main rule for outage the outage detection task

In particular, the definition of the synchronization block in Listing 1 is implemented in a call to the
SynchronizeManyLeftToRightOnly. The types and the base isomorphism MainRule used in the synchro-
nization block can be inferred from the context and the explicitly specified dependent synchronization rule
AssetToConsumer.

Because .NET has a hard implementation of generics3, a type filter can be easily specified by passing generic
type arguments. NMF also contains an overload of the OfType type filter that accepts two type arguments and
keeps the collection interface.

In particular, the incrementalization system NMF Expressions that is used in NMF Synchronizations does
support joins available through the query syntax of C#. A second synchronization rule then implements the
kept attributes for every such a tuple, as depicted in Listing 2.

1 public class AssetToConsumer : SynchronizationRule <Tuple <IMeterAsset , IPhysicalDevice >, IEnergyConsumer > {
2 public override void DeclareSynchronization () {
3 SynchronizeLeftToRightOnly(
4 asset => Convert.ToInt32(asset.Item2.AutoConnect.Connection), e => e.Reachability);
5 SynchronizeLeftToRightOnly(asset => asset.Item2.ElectricityValues.ApparentPowermL1 , e => e.PowerA);
6 SynchronizeLeftToRightOnly(asset => asset.Item1.ServiceDeliveryPoint.EnergyConsumer.MRID , e => e.ID);
7 SynchronizeLeftToRightOnly(
8 asset => asset.Item1.ServiceDeliveryPoint.EnergyConsumer is ConformLoad ?
9 ((ConformLoad)asset.Item1.ServiceDeliveryPoint.EnergyConsumer)

10 .LoadGroup.SubLoadArea.LoadArea.ControlArea.MRID :
11 ((NonConformLoad)asset.Item1.ServiceDeliveryPoint.EnergyConsumer)
12 .LoadGroup.SubLoadArea.LoadArea.ControlArea.MRID ,
13 e => e.ControlAreaID);
14 SynchronizeLeftToRightOnly(SyncRule <LocationToLocation >(),
15 asset => asset.Item1.Location , e => e.Location);
16 }
17 }

Listing 2: Implementation of kept attributes and references in the outage detection task

Listing 2 essentially consists of five synchronization block where each synchronization block is responsible for
the synchronization of an attribute or reference of the target model. In case no synchronization rule is provided
(like for the first four synchronization blocks), implicitly the identity of the inferred type is used. Two further
synchronization rules synchronize location and position point.

3.2 Outage Prevention

In the implementation of the outage prevention task, the principle approach to use tuples to synchronize multiple
inputs is the very same approach as in the outage detection task.

1 public class MainRule :
2 SynchronizationRule <Tuple <CIMRoot , COSEMRoot , Substandard >, Model > {
3 public override void DeclareSynchronization () {
4 SynchronizeManyLeftToRightOnly(SyncRule <MMXUAssetToVoltageMeter >(),
5 dr => dr.Item1.IDobject.OfType <IMeterAsset >()
6 .Join(dr.Item3.LN.OfType <IMMXU >(),
7 asset => asset.MRID ,
8 mmxu => mmxu.NamePlt.IdNs ,
9 (asset , mmxu) => new Tuple <IMeterAsset , IMMXU >(asset , mmxu)),

10 model => model.RootElements.OfType <IModelElement , IPMUVoltageMeter >());
11
12 SynchronizeManyLeftToRightOnly(SyncRule <DeviceAssetToPrivateMeterVoltage >(),
13 dr => dr.Item1.IDobject.OfType <IEndDeviceAsset >()
14 .Join(dr.Item2.PhysicalDevice ,
15 asset => asset.MRID ,
16 pd => pd.ID,

3This means that the generic type arguments are still available at runtime.

17 (asset , pd) => new Tuple <IEndDeviceAsset , IPhysicalDevice >(asset , pd)),
18 model => model.RootElements.OfType <IModelElement , IPrivateMeterVoltage >());
19 }
20 }

Listing 3: The implementation of the main rule in the outage prevention task

The implementation of the main rule is depicted in Listing 3. In this listing, we used the alternative method
chaining syntax for the join. Both syntaxes are equivalent, as the compiler converts the query syntax into the
method chaining syntax.

To handle the different transformation of the various subtypes of a power system resource, we utilize the rule
instantiation feature of NMF Synchronizations. With a rule instantiation, the isomorphism represented by a
synchronization rule can be refined for a subset of model elements.

1 public class PowerSystemResource2PowerSystemResource
2 : SynchronizationRule <IPowerSystemResource , IPowerSystemResource > {
3 public override void DeclareSynchronization () {}
4 }
5 public class ConductingEquipment2ConductingEquipment
6 : SynchronizationRule <IConductingEquipment , IConductingEquipment > {
7 public override void DeclareSynchronization () {
8 SynchronizeManyLeftToRightOnly(SyncRule <Terminal2Terminal >(),
9 conductingEquipment => conductingEquipment.Terminals , equipment => equipment.Terminals);

10 MarkInstantiatingFor(SyncRule <PowerSystemResource2PowerSystemResource >());
11 }
12 }

Listing 4: Transforming power system resources

An example of synchronization rule instantiation for conducting equipment is depicted in Listing 4. This
means that whenever a power system resource is a conducting equipment, also its terminals are synchronized.

4 Evaluation
Our solution is quite concise as it only consists of 58 lines of code for the outage detection scenario and 195 lines
of code for the outage prevention scenario. Both numbers include empty lines as well as lines that only contain
braces. Another 140 lines of code actually run the benchmark.

The performance results recorded on an Intel i7-4710MQ clocked at 2.50Ghz in a system with 16GB RAM are
depicted in Figure 3 that list the time to update the view model after every iteration, each applying 10 changes.
The results are available for the NMF solution both in incremental and in batch mode, the reference solution in
ModelJoin and the solution by Peldszus et al. using eMoflon.

●

●

●●●●●●●●
●

●●●●
●●●●●●●●

●

●●●
●●

●
●

●
●●●●●●

●●
●●●

●●
●

●
●

●
●

●

●
●

●
●●●

●
●

●
●●

●●

●●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.1

1

10

100

Iteration

T
im

e
(m

s)

Tool ● ModelJoin NMF NMF (batch) RGSEeMoflonTGG

OutageDetection, ChangeSet: changeSequence1, Function: Update

(a) Outage Detection Task

●

●

●

●

●●●

●
●

●●
●

●

●●

●●
●

●●●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●●●●●●

●

●●

●●
●

●●

●

●
●

●●●

●
●

●●

●
●●

●
●

●●

●
●

●●●

●
●

●●

●

●

●●
●

●●
●●

●
●

●●●
●

●
●

●
●

●●
●●

●●

1

10

100

Iteration

T
im

e
(m

s)

Tool ● NMF NMF (batch) RGSEeMoflonTGG

OutagePrevention, ChangeSet: changeSequence1, Function: Update

(b) Outage Prevention Task

Figure 3: Update times for change sequence 1

For the Outage Prevention task, unfortunately the reference solution in ModelJoin ran out of memory and
hence, it is not shown on the plot in Figure 3b.

The results indicate that the NMF solution in batch mode is the fastest among the batch implementations.
Furthermore, if one switches the execution mode to incremental, then this yields another speedup of roughly
more than a magnitude.

The performance curve for the incremental change propagation is more rough than the performance for the
batch execution. This is because propagating the change depends much more on the actual changes than

rerunning the view computation on the entire (changed) model. However, interestingly, we see some spikes in
the otherwise smooth curve for the batch execution. We think that this is due to garbage collection.

● ●
100

1000

changeSequence1 changeSequence2
ChangeSet

M
em

or
y

(M
by

te
)

Tool ● ModelJoin NMF NMF (batch) RGSEeMoflonTGG

OutageDetection, working set

(a) Outage Detection Task

● ●

100

1000

changeSequence1 changeSequence2
ChangeSet

M
em

or
y

(M
by

te
)

Tool ● ModelJoin NMF NMF (batch) RGSEeMoflonTGG

OutagePrevention, working set

(b) Outage Prevention Task

Figure 4: Memory consumption (Work space size)

Interestingly, we noted that the incremental execution mode of NMF has the least memory consumption
compared to the other solutions. Incremental tools usually have a memory overhead but the advantage of the
incremental execution here is that only the changes of the models have to be loaded and not all of the entire
models in each iteration.

5 Conclusion
In this paper, we presented the NMF solution to the Smart Grid case at the TTC 2017. The solution shows how
synchronization blocks, in particular their implementation in NMF Synchronizations can be used to perform
incremental view computations. The resulting solution is faster than the reference implementation by multiple
orders of magnitude. In particular, the ability of NMF to run the solution incrementally yields a very good
performance.

References
[BHK+14] Erik Burger, Jörg Henß, Martin Küster, Steffen Kruse, and Lucia Happe. View-Based Model-Driven

Software Development with ModelJoin. Software & Systems Modeling, 15(2):472–496, 2014.

[BMK16] Erik Burger, Victoria Mittelbach, and Anne Koziolek. Model-driven consistency preservation in
cyber-physical systems. In Proceedings of the 11th Workshop on Models@run.time. CEUR Workshop
Proceedings, October 2016.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt.
Combinators for bidirectional tree transformations: A linguistic approach to the view-update prob-
lem. ACM Transactions on Programming Languages and Systems (TOPLAS), 29(3), May 2007.

[HB17] Georg Hinkel and Erik Burger. Change Propagation and Bidirectionality in Internal Transformation
DSLs. Software & Systems Modeling, 2017.

[Hin13] Georg Hinkel. An approach to maintainable model transformations using an internal DSL. Master’s
thesis, Karlsruhe Institute of Technology, October 2013.

[Hin16] Georg Hinkel. NMF: A Modeling Framework for the .NET Platform. Technical report, Karlsruhe
Institute of Technology, Karlsruhe, 2016.

[Hin17] Georg Hinkel. The TTC 2017 Outage System Case for Incremental Model Views. In Antonio Garcia-
Dominguez, Georg Hinkel, and Filip Krikava, editors, Proceedings of the 10th Transformation Tool
Contest, a part of the Software Technologies: Applications and Foundations (STAF 2017) federation
of conferences, CEUR Workshop Proceedings. CEUR-WS.org, July 2017.

[Mit] Victoria Mittelbach. Model-driven Consistency Preservation in Cyber-Physical Systems. Master’s
thesis, Karlsruhe Institute of Technology (KIT), Germany.

