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1 MOTIVATION AND GOALS
Under the light of current developments in AI it appears the time
is ripe for a shared partnership with machines, whereby humans
can benefit from augmented reasoning and information manage-
ment capabilities provided that machines are endowed with the
necessary intelligence to assist with such tasks. This seems to be
particularly the case of the scientific domain, where some envision
the development of an AI that can make major scientific discover-
ies and that eventually becomes worthy of a Nobel Prize [9]. This
vision may still be far from realization, but it is not completely new
nevertheless.

NLP technologies based on well-formed, logically sound struc-
tured knowledge representations (knowledge graphs, ontologies)
leverage expressive and actionable descriptions of the domain of
interest through logical deduction and inference, and can provide
logical explanations of reasoning outcomes. Closely related to this
family of approaches, project Halo [7] aimed to develop a Digi-
tal Aristotle able to answer novel questions in scientific domains
with expertise equivalent to Advanced Placement competence level.
Halo enabled subject matter experts (SMEs) to model complex sci-
entific knowledge from textbooks and related questions, based on
an underlying logical formalism and a knowledge modeling work-
bench to assist SMEs in the task. The resulting system achieved
an unprecedented question answering performance level for SME-
entered knowledge, but it also had a number of severe drawbacks,
including brittleness (coverage, precision or granularity gaps), scal-
ability issues, and the need for a considerable force of well trained
human labor to manually encode large amounts of scientific knowl-
edge.

On the other hand, the last decade has witnessed a shift towards
statistical methods due to the increasing availability of raw data
and cheap computing power. These have proved to be powerful and
convenient in many linguistic tasks, such as part-of-speech tagging
or dependency parsing. However, they are also limited, e.g. humans
seek causal explanations, which are hard to provide based on statis-
tical induction rather than logical deduction. Recent results in the
field of distributional semantics [10] have shown promising ways
to learn features from text that can complement the knowledge
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already captured explicitly in structured representations. Embed-
dings provide a compact and portable representation of words and
their meaning that stems directly from a document corpus. In this
scenario, a notion of semantic portability [3] emerges that refers to
the capability to capture as an information artifact (a vector) the
semantics of a linguistic unit (a word) from its occurrences in the
corpus and how such artifact enables that meaning to be merged
with other forms of knowledge representation.

Furthermore, scientific knowledge is heterogeneous and can
present itself in many forms. During its analysis phase, Halo pro-
duced an inventory of the different types of knowledge identified.
Such knowledge types include among others: factual knowledge,
procedural, classification, mathematical, diagrammatic, tabular and
experimental. It is therefore clear that successfully reading and un-
derstanding scientific knowledge (either by humans or machines)
requires addressing the different knowledge types in a holistic way,
which remains a challenging task. We argue that addressing such
challenge requires generalizing the notion of semantic portability
from a text understanding scenario to a broader one where other
modalities, such as diagrams, processes, experiments and related
artifacts like scientific workflows and their execution provenance,
are also involved. This can be achieved by learning individual mod-
els for each modality in the form of concept embeddings following
a distributional semantics [8, 12] and learning the corresponding
transformations between each vector space. The result will be a
shared, hybrid formalism that encompasses the different modalities
involved in scientific knowledge. Using embeddings to represent
not only words but arbitrary features has been recently popularized
by Chen and Manning in [2].

At this point, the question remains where to obtain the cross-
modal data required to learn such models and the necessary trans-
formations between them. We argue that the growing collections
of research objects from different scientific disciplines available
in repositories like ROHub.org [11] will play a key role in this re-
gard. Conceptually speaking, a research object [1] is a container
of scientific knowledge, a semantically rich aggregation of all the
materials involved in a scientific investigation, such as papers and
bibliography, numerical data, hypotheses, methods, experiments,
workflows encoding such experiments and the provenance of their
executions. A research object thus becomes the carrier of the sci-
entific knowledge associated to a specific investigation. They also
bring together all the necessary information to preserve scientific
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work against potential decay [13] and can be shared, reused and
cited in scholarly communications. As scholars move away from
paper towards digital content, research objects have a key role to
play in the way scientific results are communicated and validated
by the communities, given the need for mechanisms that support
the production of self-contained publications involving not only
text but also data, methods and software implementations.

In [6], we show how research objects are key pieces of a human-
machine scientific partnership. Building on that, we aim at fur-
thering the role of research objects in such partnership, leveraging
research object corpora of cross-modal scientific knowledge to
develop hybrid models for scientific reasoning and question an-
swering. During the workshop, we aim at sharing and discussing
these ideas, explore related lines of work and establish areas of com-
mon interest and collaboration with the participants. Key topics
and research questions we wish to address include: approaches for
hybrid reasoning, question answering and explanation, methods
to build portable knowledge representations of multimodal data,
how to combine the knowledge extracted from each modality in
the research objects to recompose a coherent, more complete view
of the scientific facts documented by them, and how each modality
interplay with each other in doing so.
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