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Abstract. Data streams classification is an important problem however, poses many chal-
lenges. Since the length of the data is theoretically infinite, it is impractical to store and
process all the historical data. Data streams also experience change of its underlying dis-
tribution (concept drift), thus the classifier must adapt. Another challenge of data stream
classification is the possible emergence and disappearance of classes which is known as (con-
cept evolution) problem. On the top of these challenges, acquiring labels with such large data
is expensive. In this paper, we propose a stream-based active learning (AL) strategy (SAL)
that handles the aforementioned challenges. SAL aims at querying the labels of samples
which results in optimizing the expected future error. It handles concept drift and concept
evolution by adapting to the change in the stream. Furthermore, as a part of the error reduc-
tion process, SAL handles the sampling bias problem and queries the samples that caused the
change i.e., drifted samples or samples coming from new classes. To tackle the lack of prior
knowledge about the streaming data, non-parametric Bayesian modelling is adopted namely
the two representations of Dirichlet process; Dirichlet mixture models and stick breaking
process. Empirical results obtained on real-world benchmarks show the high performance of
the proposed SAL method compared to the state-of-the-art methods.

Keywords: Data Streams, Active Learning, Concept Drift, Concept Evolution, Novelty
detection.

1 Introduction

Classification has been the focus of a large body of research due to its key relevance to numerous
real-world applications. A classifier is trained by learning a mapping function between input and
pre-defined classes. In an offline setting, the training of a classifier assumes that the training data
is available prior to the training phase. Once this latter is exhausted, the classifier is deployed
and, cannot be trained any further even if performs poorly. This can happen if the training data
used does not exhibit the true characteristics of the underlying distribution. Moreover, for many
applications data arrives over time as a stream and therefore the offline assumptions cannot hold.
Data streams classification presents many challenges because of the continuous and evolving nature
of streams, in addition to the problem of labelling of such large data.

Data streams are assumed to be unbounded in size, which makes it infeasible to store all the
data to train the proposed model. Hence, online learning algorithms must be used [1–6].

Data streams may evolve over time so that the relationship between the input data instances
and their labels changes, leading to what is known as concept drift [7, 8]. Thus, to deal with data
streams classification efficiently, the classifier must (self-)adapt online over time [1, 9–11].

The evolving nature of data streams poses another challenge which is rarely addressed in the
literature and known as concept evolution. This occurs when a new classes emerge or existing
classes vanish. The classifier must be able to identify the new classes and incorporate them into
the decision model [12–15]. Emergence of new classes has been studied in the context of novelty
detection, where the task is to identify the outlier instances. This is seen as one-class classification,
in which a very large number of data samples describing normal condition is available while the
data samples describing the abnormalities are rare [16,17]. In contrast, Concept evolution involves
the emergence of different normal and abnormal classes.

Given the large volume and high velocity of data streams, it is impractical to acquire the label
of each instance. Active learning (AL) is a promising way to efficiently building up training sets
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with minimal supervision. AL deliberately queries particular instances to train the classifier using
as few labelled data instances as possible. AL for data streams is more challenging because both
concept drift and concept evolution can occur at any time and anywhere in the feature space.
Another challenge associated with AL, in general, is the sampling bias [18] where the sampled
training set does not reflect the underlying data distribution in a destructive way. Basically, AL
seeks to query samples which labelling them significantly improves the learning. That is instead
of sampling from the data underlying distribution, AL deliberately creates a bias training set.
However, as AL becomes increasingly confident about its sampling assessment, valuable samples
could be ignored and the bias of the training set could become harmful.

In this paper, we propose an AL algorithm, called Stream Active Learning (SAL), that over-
comes all the aforementioned challenges in a unified systematic way. In contrast to most of the
existing AL approaches which adopt heuristic AL criteria, SAL aims at directly optimizing the
expected future error [19]. Similar AL approaches are proposed in [19–21], however, they work in
offline setting and do not take into account the challenges associated with data streams. In our
previous work [22], we proposed a bi-criteria AL approach (BAL) that seeks to select data sam-
ples that reduce the future expected error. Because closed form calculation of the expected future
error is intractable, BAL approximates it by combining online classification and online clustering
models. The classification model estimates the conditional distribution of the labels given the data,
while the clustering model estimates the marginal distribution of the data. BAL only considers
binary classification and ignores concept evolution. In contrast, SAL adopts the same concept as
in [22] with some differences. Instead of using two existing classification and clustering models as
in the case of BAL, SAL uses a unified non-parametric Baysian model. Simplistically, the proposed
model is a Dirichlet process mixture model [23] with a stick breaking prior [24] attached to each
mixture component. This prior is applied over the classes of the data in the mixture components.
The model can approximate the conditional and marginal distributions. Dirichlet process mixture
model is used to approximate the marginal distribution. It allows the complexity of the model
to grow as more data is seen. Such proprieties is useful in the case of data stream as not much
prior knowledge is available. In contrast to BAL, SAL allows multi-class classification with dy-
namic number of classes and therefore capable of dealing with concept evolution. The application
of stick-breaking prior over the classes allows the potential growth of the number of classes. We
employ a particle filter method [25–30] to perform online inference.

As in [22, 31], SAL handles sampling bias problem caused by AL using importance weighted
empirical risk [32]. Such problem is more severe in online setting as the model on which AL bases
its queries has to adapt. On the other hand, the adaptation can depend on the queried data. While
techniques in [22,31] are limited to binary classification, SAL is capable of performing classification
with changing number of classes.

To motivate the proposed approach, consider the example of activity recognition in the smart-
home setting. Instead of collecting a static set of data from the deployed sensors then training a
learner offline, considering the data as a stream and continuously training a learner online is more
realistic. Firstly, the online learner can be fed with streaming data where it adapts to different
static settings such as different house settings and various sensors layout. Such learning can also
adapt to dynamic change within the same scenario concept drift while processing an infinite data
length. For example, change in the individual activity patterns (e.g., the individual’s walk style
depends on his/her health). Furthermore, for offline learner, the number of classes are fixed while
in reality, it can change concept evolution; for example, the different activities of an individual
can not be counted and he/her may come up with new ones over time. Secondly, employing AL
can lead to more autonomous learning as the algorithm can be plugged in with no knowledge
about the potential activities (labels). Instead of monitoring the individual activities, AL can
query the individual about his/her own activities when necessary. However, it is not practical to
keep asking the person about his activities all the time. To summarize, this application example
includes following data streams challenges: infinite length, concept drift, concept drift and labelling
expense.

2 Active Learning Approach

Many active learning approaches seek to minimize an approximation of the expected error of the
learner Eq. (1) [19–21]. SAL follows the same methodology but with more challenging setting where



the data comes as a stream.

R =

∫
x

L(p̂(y|x), p(y|x))p(x)dx (1)

Where (x, y) is a pair of random variables, such that x represents the data instance (observation)
and y is its class label. p(y|x)) and p(x) are the true conditional and marginal distributions
respectively. p̂(y|x) is the learner conditional distribution used to classify the data. The learner
receives observations drawn from p(x) with latent labels y unless they are queried by the AL
algorithm. We denote the labelled observations up to time t as XLt

and their labels as YLt
. The

unlabelled observations up to time t are denoted as XUt . We also use Xt to denote the sequence
(x1,x2, ...,xt). We separate the learner algorithm or the hypothesis class from the AL strategy so
that we can simply plug in any learner to test the AL. Let p(y|x,φ) refer to the learner conditional
distribution p̂(y|x), where φ is the parameter vector that governs the learner distribution.

In the following, we discuss the offline AL approaches used to minimize an approximation of
Eq. (1) as a closed form solution is not available. Then we present our online AL approach. Authors
in [20] approximate the expected error using the empirical risk over the unlabelled data:

R̂PU
(φPL

) =
1

|PU |
∑
x∈PU

L(p(y|x,φPL
), p(y|x)) (2)

where PU and PL are pools of unlabled and labled samples. We refer to the classifier parameters
after being trained on PL as φPL

. Different types of loss functions can be adopted according to
the classification model. Active learning seeks to optimize Eq.(2) by asking for the labels of the
samples that, once incorporated in the training set, the empirical risk drops the most. Ideally,
the selection should depend on how many queries can be made. However, the solution of such
optimization problem is NP hard. Hence, most commonly used AL strategies greedily select one
example at a time [20,21,31].

x̃ = arg min
x∈PU

R̂PU−(x,y)
(φPL+(x,y)

) (3)

The empirical risk over the labelled and unlabelled samples are considered in [21]:

R̂PL∪PU
(φPL

) =
1

|PL ∪ PU |
∑

x∈PL∪PU

L(p(y|x,φPL
), p(y|x)) (4)

Let q ∼ Ber(a) a random variable distributed according to a Bernoulli distribution with pa-
rameter a. It indicates if the data instance x is queried. The risk incurred when training the learner
is the one related to the labelled data:

R̂PL
(φPL

) =
1

|PL|
∑
x∈PL

L(p(y|x,φPL
), p(y|x)) (5)

In active learning, a subset of unlabled samples is selected for labelling. Thus, the data instances
used to train the model are sampled from a distribution induced by the AL queries instead of the
data underlying distribution. That is, the distribution of the queried data p(x|q = 1) is different
from the original one p(x). Hence, Equation (5) is a biased estimator of (1) and the learned
classifier may be less accurate than when learned without using AL. Similar to [22,31], we use the
importance weighting technique [32] in order to come up with unbiased estimator. Thus, Equation
(5) can be written as follows:

R̂′PL
(φPL

) =
1

|PL|
∑
x∈PL

1

p(q = 1|x)
L(p(y|x,φPL

), p(y|x)) (6)

Thus, the unbiaseness of the estimator above can be shown as:

Ex∼p(x|q=1)

[
R̂′PL

(φPL
)
]

= Ex∼p(x)
[
R̂PL

(φPL
)
]

(7)

So far, we assumed that the underlining conditional distribution p(y|x) is known, but in reality
it is not. Thus, we need to estimate it. Furthermore, in online setting, comparing the effect of
labelling certain data instance against that of other data instances (as done in Eq.(3)) is not
possible. Thus, storing pools of data seen so far might be a choice; however, it will break the online



learning principle. We, instead, estimate the probability of unlabled and labled data at time t.
Consider p(y|x, Dt), p(x|XUt

) and p(x|XLt
) as estimators for the true conditional distribution,

the unlabled data distribution and the labled data distribution at time t, where Dt represents the
set of the previously seen data instances including the labels of the queried ones. Thus, Equation
(4) with the importance weighting on the labelled data can be written as the sum of the following
equations:

R̂Dt,XUt
(φt) =

∫
x

L(p(y|x,φt), p(y|x, Dt))p(x|XUt)dx (8)

R̂′Dt,XLt
(φt) =

∫
x

L(p(y|x,φt), p(y|x, Dt))

p(q = 1|x)
p(x|XLt)dx (9)

where φt denotes the classifier parameters after being trained on {XLt , YLt} . Based on Equa-
tions (8) and (9), we can develop an online querying strategy similar to the one proposed in Eq. (3).
The data instance can be assessed on-the-fly by comparing the error reduction incurred by labelling
it against the highest error reduction. To compute the highest error reduction, we can generate a
pool of unlabed data at each time step from p(x|XUt

). Then we search for the sample that labelling
it incurred the highest error reduction. More direct approach is to use a non-convex optimizer to
find the highest error reduction then take it as a reference. Both approaches are computationally
expensive (time-consuming) as they involve integrals estimation. Further, we need to compute the
expectation of the error reduction as the labels are unknown which makes the computation more
expensive.

We can conclude from Eq. (8), (9) that the error can be reduced by labelling the samples that
have the largest contribution to the current error. This contribution can be expressed through the
following equations:

R̂Dt−1,XUt−1
(φt−1,xt) = L(p(yt|xt,φt−1), p(yt|xt, Dt−1))p(xt|XUt−1

) (10)

R̂′Dt−1,XLt−1
(φt−1,xt) = L(p(yt|xt,φt−1), p(yt|xt, Dt−1))p̃(xt|XLt−1) (11)

Once xt is queried, SAL integrates the weigh effect of p(qt = 1|xt) into the current labled data
marginal distribution by updating it with xt ( 1

p(qt=1|xt)
) times. Hence, p̃(xt|XLt−1

) represents

the labled data marginal distribution involved the weight effect of the previously queried samples.
Equation (10) encourages querying samples that have strong representativeness among the unlabled
data and that are expected to be wrongly classified; while Eq.(11) encourages querying those which
have strong representativeness among the labelled data, but, still wrongly classified. Such samples
are rare. However Eq. (11) allows the learner to be completely independent from the sampling
approach, as it integrates the sampling bias independently from the learner algorithm. Thus, as
the learner proceeds, Eq. (11) also helps to switch the focus from only representative samples to
samples which are underestimated.

The querying probability is computed by comparing the samples with the one that has the
largest contribution to the error. A solution can be devised by trying to optimize Eq.(10) and
Eq.(11). However, to avoid time-consuming computation and keeping the AL algorithm indepen-
dent of the learner, we take the comparator sample from the already seen ones. A forgetting factor
β empirically set to 0.9 is used to consider the dynamic nature of the data:

At = max
(
(R̂Dt−1,XUt−1

(φt−1,xt) + R̂′Dt−1,XLt−1
(φt−1,xt)), βAt−1

)
(12)

p(qt = 1|xt, Dt−1,φt−1) =
1

At

(
R̂Dt−1,XUt−1

(φt−1,xt) + R̂′Dt−1,XLt−1
(φt−1,xt)

)
(13)

The number of classes evolves over time such that new classes may emerge and old ones may
vanish. Thus, p(yt|xt, Dt−1)) in Equations (10) and (11) must account for all the classes that may
appear in the data stream. Theoretically, the length of the stream is infinite, which means that the
probability of receiving infinite different classes is not zero. Hence, the support of the distribution
over the classes must be infinite. To allow that stick-braking distribution is imposed as a prior
over the class. Intuitively, this prior allows foresee a probability on the creation of new classes.
As for forgetting old irrelevant classes, we propose an online estimator of p(yt|xt, Dt−1)) equipped
with forgetting factor to handle the evolving nature of data. The same model estimates online



Figure. 1 General scheme of SAL

p(xt|XLt−1) and p(xt|XUt−1). More details are found in the next section. The steps of SAL are
portrayed in Fig.1 (the variables are defined in Sec. 3).

Under limited labelling resources, a rationale querying strategy to optimally use those resources
needs to be applied. To this end, the notion of budget was introduced in [33] in order to estimate
the labelling budget. Two counters were maintained: the number of labelled instances ft = |XLt |
and the budget spent so far: bt = ft

|data seen so far| = ft
|x1:t| .

As data arrives, we do not query unless the budget is less than a constant Bd and querying
is granted by the sampling model. However, over infinite time horizon this approach will not be
effective. The contribution of every query to the budget will diminish over the infinite time and a
single labelling action will become less and less sensitive. Authors in [33] propose to compute the
budget over fixed memory windows w. To avoid storing the query decisions within the windows,
an estimation of ft and bt were proposed:

b̂t =
f̂t
w

(14)

where f̂t is an estimate of how many instances were queried within the last w incoming data
examples.

f̂t = (1− 1/w)f̂t−1 + labellingt−1 (15)

where labellingt−1 = 1 if instance xt−1 is labelled, and 0 otherwise. Using the forgetting factor
(1− (1/w)), the authors showed that b̂t is unbiased estimate of bt.

In the present paper, this notion of budget will be adopted in SAL so that we can assess it
against the active learning proposed in [33]. Note that in our experiments in relation to the budget,
we set w = 100 as in [33].

3 Estimator Model

In this section, we develop the model that will be used to estimate the distributions (in Eq. (10) and
(11)) needed for SAL to work online. First, we give a brief background on Dirichlet process (DP)
which is the core of our model. DP is used as a non-parametric prior in Dirichlet process mixture
model (DPMM) which, in contrast to parametric model, allows the number of components to vary
during inference. Second, we describe the proposed estimator model and develop an online particle
inference algorithm for it. While DPMM estimates the marginal distributions, the conditional
distribution is estimated by an upgrade of DPMM. It accommodates labelled data using a stick-
breaking process [34] over the classes. These estimations are done on-fly by performing online
inference using the particle inference algorithm.



(a) DP mixture
model

(b) Finite mixture model

Figure. 2 Graphical model

3.1 Dirichlet process

DP is one of the most popular prior used in the Bayesian non-parametric model. Its first use by the
machine learning community dates back to [35,36]. In general, a stochastic process is a probability
distribution over a space of paths which describe the evolution of some random value over time.
DP is a family of stochastic processes whose paths are probability distributions. It can be seen as
an infinite-dimensional generalization of Dirichlet distribution, where it is a prior over the space of
countably infinite distributions. In the literature, DP has been constructed in different ways, the
most well-known constructions are: infinite mixture model [36], distribution over distributions [37],
Polya-urn scheme [38] and stick-breaking [34]. For more details, the interested reader is referred
to [39].

Figure 2 shows two graphical models, DP mixture model and the finite mixture model with
number of clusters L which becomes an infinite mixture model when L goes to∞. Infinite mixture
model is simply a generalization of the finite mixture model, where DP prior with infinite param-
eters is used instead of Dirichlet distribution prior with fixed number of parameters. The finite
mixture model can be represented by the following equations:

π|α0 ∼ Dirichlet(α0/L, ..., α0/L)

zi|π ∼ Discrete(π1, ..., πL)

θk|G0 ∼ G0

xi|zi,θ ∼ F (θzi) (16)

F (θzi) denotes the distribution of the observation xi given θzi, where θzi is the parameter vector
associated with component zi. Here zi indicates which latent cluster is associated with observation
xi. Indicator zi is drawn from a discrete distribution governed by parameter π drawn from dirichlet
distribution parametrized by α0. We can simply say that xi is distributed according to a mixture
of components drawn from prior distribution G0 and picked with probability given by the vector
of mixing proportions π. The model represented by Eq.(16) above is a finite mixture model, where
L is the fixed number of parameters (components). The infinite mixture model can be derived by
letting L → ∞, then π can be represented as an infinite mixing proportion distributed according
to stick-breaking process GEM(α) [34]. Thus, Eq.(16) can be equivalently expressed according to
the graphical representation as:

G|α,G0 ∼ DP (α,G0)

θi|G ∼ G
xi|θi ∼ F (θi) (17)

where G =
∑∞
k=1 πkδθi is drawn from DP prior, δθi is a Dirac delta function centred at θi. Tech-

nically, DP is a distribution over distribution [37], where DP (G0, α), is parametrized by the base
distribution G0, and the concentration parameter α. Since DP is distribution over distributions, a



Figure. 3 Infinite mixture model

draw G from it is a distribution. Thus, we can sample θi from G. Back to Eq.(16), by integrat-
ing over the mixing proportion π, we can write the prior for zi as conditional probability of the
following form [40]:

p(zi = c|z1, ..., zi−1) =
n−ic + α0/L

i− 1 + α0
(18)

where n−ic is the number of zi for j < i that are equal to c. By letting L goes to infinity we get the
following equations:

P (zi = c|z1, ..., zi−1)→ n−ic
i− 1 + α0

P (zi 6= zj for all j < i|z1, ..., zi−1)→ α0

i− 1 + α0
(19)

For an observation xi with zi 6= zj for all j < i, a new component gets created with indicator
zi = cnew. For more details about the process of obtaining the prior distribution, reader is referred
to [40].

3.2 Proposed Model

For the sake of simplification, we start with an unsupervised clustering model, then we add a new
ingredient to the model in order to accommodate labelled data.

Unsupervised clustering Figure 3 shows the infinite mixture model where π is drawn from a
stick-breaking processGEM(α) andG0 is a Normal-Inverse-Wishart distributionNIW (.|µ0,Σ0, k0, v0).
Where µ0 is the prior of the clusters’ means, Σ0 controls the variance among their means, k0 scales
the diffusion of the clusters means and v0 is the degree of freedom of the Inverse-Wishart distribu-
tion. Given the concentration parameter α0 and the prior distribution parameters {µ0,Σ0, k0, v0},
we aim at computing online the probability of the current data assignment to the existing clusters
p(zt|xt,x1:t−1) without the need for saving all data x1:t−1.

p(zt|xt,x1:t−1) =
∑
z1:t−1

p(zt|z1:t−1,xt,x1:t−1)p(z1:t−1|xt,x1:t−1)

p(zt|z1:t−1,xt,x1:t−1) ∝ p(xt|zt, z1:t−1,x1:t−1)p(zt|z1:t−1)

p(z1:t−1|xt,x1:t−1) ∝ p(xt|z1:t−1,x1:t−1)p(z1:t−1|x1:t−1) (20)

Following [27], we define a state vector Ht that summarizes the data seen up to time t. Ht =
{zt,mt,nt, st} where mt is the number of components, nt is the number of data assigned to each
component and st is the sufficient statistics for each mixture component. The data x1:t−1 along
with their assignments z1:t−1 in the first term of the second Equ. in (20) can be replaced by Ht−1:

p(xt|zt, z1:t−1,x1:t−1) = p(xt|zt, Ht−1) =

∫
θ

p(xt|θ)p(θ|zt, Ht−1) (21)



If zt refers to a new component, p(θ|zt, Ht−1) becomes equivalent to the prior G0. Otherwise, zt
refers to an already existing component. Then p(θ|zt, Ht−1) becomes equivalent to p(θ|szt,t−1).
The sufficient statistics (mean, covariance) szt,t−1 = {suzt,t−1, sczt,t−1}, where

suzt,t−1 =

∑
zi=zt,i<t

xi

nzt,t−1

sczt,t−1 =
∑

zi=zt,i<t

(xi − suzt,t−1)(xi − suzt,t−1)T (22)

Thus, Eq.21 can be solved given Ht−1 and G0. More details can be found in the Appendix. The
first term of the third Equation in (20) can be written as follows:

p(xt|z1:t−1,x1:t−1) =
∑
zt

p(xt|zt, z1:t−1,x1:t−1)p(zt|z1:t−1) (23)

The assignment z1:t−1 in the rest of Eq.(20) can be replaced by Ht−1.

p(zt|z1:t−1) = p(zt|Ht−1) (24)

p(z1:t−1|x1:t−1) = p(Ht−1|x1:t−1) (25)

Equation (24) has the same solution as Eq.(19). Equation (25) is the posterior of the state vector
Ht−1 which must be inferred online. Thus, the task is to track the posterior of Ht online. Assume
that the posterior p(Ht−1|x1:t−1) is known, we need to find the updated posterior p(Ht|x1:t).
As the number of assignments configurations grows exponentially, it is impossible to compute the
distribution over all possibleHt−1. To solve this problem, we resort to particle filters to approximate
the posterior by a set of N weighted particles.

p(Ht|x1:t) =

N∑
i=1

w
(i)
t δ(Ht −H(i)

t ) (26)

where each H
(i)
t represents the state vector with different assignments z1:t of the data seen so far.

The weight w
(i)
t reflects the importance of the particle and δ is the dirac delta function. So, given

a set of N particles and their normalized weights at time t− 1, we can approximate the posterior
at time t in two steps:

Updating:

p(Ht|x1:t) ∝
∫
Ht−1

p(Ht|Ht−1,xt)p(xt|Ht−1)p(Ht−1|x1:t−1) (27)

Given a particle H
(i)
t−1 along with its weight w

(i)
t−1, the update can be written as follow.

p(Ht|x1:t) ∝
N∑
i=1

p(Ht|H(i)
t−1,xt)p(xt|H

(i)
t−1)w

(i)
t−1 (28)

Following the update step, the number of resulting particles for each H
(i)
t−1 equals to the number

of existing components m
(i)
t−1 + 1. The new assignments zt expresses the different configurations of

the new particles. Therefore,

p(H
(j)
t |H

(i)
t−1,xt) = p(zt = j|H(i)

t−1,xt)

∝ p(xt|zt = j,H
(i)
t−1)p(zt = j|H(i)

t−1) (29)



Equation (29) can be solved in the same way as we did in Eq. (21) and (24). The elements of new

state vector H
(j)
t are updated as folows

Hj
t =



zt = j j is an old component

nj,t = λnj,t−1 + 1

nk,t = λnk,t−1 ∀k 6= j, k ≤ mt

suj,t =
λnj,t−1suj,t−1+xt

nj,t

scj,t = λscj,t−1 + nj,t−1suj,t−1su
T
j,t−1

−nj,tsuj,tsuTj,t + xtx
T
t

zt = mt−1 + 1 j is a new component

mt = mt−1 + 1

nj,t = 1

nk,t = λnk,t−1 ∀k ≤ mt−1

suj,t = xt

scj,t = 0

(30)

The second term of Eq.(28) can be written as follows

p(xt|H(i)
t−1) =

∑
zt

p(xt|zt, H(i)
t−1)p(zt|H(i)

t−1) (31)

where λ is a forgetting factor which allows the components to adapt with change. Equation (31)
can be solved in the same way as Eq.(29). Having approximated all the terms of Eq.(28), we end

up with M =
∑N
i=1(mi

t−1 + 1) new particles along with their weight wjt . So, we move to the next
step which reduces the number of created particles to a fix number N .

Re-sampling:
We follow the resampling technique proposed in [28] which discourages the less-likely particles

(configurations) and improves the particles that explain the data better. It keeps the particles
whose weight is greater than 1/c, and re-samples from the remaining particles. The variable c is
the solution of the following equation:

M∑
j=1

min{cwjt , 1} = N (32)

The weight of re-sampled particles is set to 1/c and the weight of the particles greater than 1/c is
kept unchanged.

Next, we consider the labels by proposing stick-breaking prior over the classes.

Semi-supervised clustering The stick-breaking component assignment is the same as the Gaus-
sian component assignment. That is, every Gaussian component is associated with a stick-breaking
one GEM(α1) and the variable zt controls the component selection (see Fig.4).

Assume that at time t, we need to predict the distribution over yt given all the data and their
labels seen so far.

p(yt|xt, Dt−1) =
∑
zt

p(yt|zt, Dt−1)p(zt|Dt−1,xt) (33)

The first term of Eq.(33) can be computed in a similar way as Eq.(19), where zt selects the stick-
breaking component generating yt. Hence, the probability of yt depends only on the data assigned
to component zt. More details can be found in the appendix

p(yt|zt, Dt−1) ∝

{
n′zt,yt,t yt is an existing class

α1 yt is a new class
(34)

where n′zt,yt,t refers to the number of the data which are assigned to component zt and have label yt
at time t. So, to compute (34), the distribution of the labels to the data in each component must be



Figure. 4 Proposed semi-supervised clustering model

memorized. The second term of Eq.(33) is similar to (20) but with additional observation y1:t−1. We
propose to include the label information in the state vector Ht so that it becomes H ′t = {Ht,n

′
t},

where n′t is the label distribution over the data in each component. Hence, p(zt|Dt−1,xt) is solved
in the same way as in Eq.(19) after replacing Ht−1 by H ′t−1. Similar to what we did in Eq.(25),
the posterior of the state vector H ′t−1 must be tracked online. Similar to the previous unsupervised
model, we resort to particle filters to approximate the posterior by a set of N weighted particles.

p(H ′t|Dt) =
N∑
i=1

w
′(i)
t δ(H ′t −H

′(i)
t ) (35)

We can approximate the posterior at time t using two steps; updating and re-sampling. The re-
sampling step is the same as in the unsupervised clustering; we just replace the old weights with
the new ones. The updating step follows the same way as in the unsupervised clustering.

p(H ′t|Dt) ∝
N∑
i=1

p(H ′t|H
′(i)
t−1,xt, yt)p(xt, yt|H

′(i)
t−1)w

′(i)
t−1 (36)

p(H
′(j)
t |H

′(i)
t−1,xt, yt) = p(zt = j|H ′(i)t−1,xt, yt) ∝

p(xt, yt|zt = j,H
′(i)
t−1)p(zt = j|H ′(i)t−1) (37)

p(xt, yt|zt = j,H
′(i)
t−1) = p(xt|zt = j,H

′(i)
t−1)p(yt|zt = j,H

′(i)
t−1)) (38)

The second term of Eq.(37) is computed in Eq.(24). Equation (38) can be solved in the same way
as the first term in Eq.(33) and Eq.(34). The elements of the new state vector are updated in the
same way as in Eq.(30):

H ′jt =



n′j,yt,t = λ′n′j,yt,t−1 + 1 j is an old component

n′k,t = λ′n′k,t−1 ∀k 6= j, k ≤ mt

Hj
t

n′j,yt,t = 1 j is a new component

n′k,t = λ′n′k,t−1 ∀k 6= j, k ≤ mt

Hj
t

(39)

p(xt, yt|H ′(i)t−1) =
∑
zt

p(xt, yt|zt, H ′(i)t−1)p(zt|H ′(i)t−1) (40)

The estimation of p(yt+1|xt+1, Dt)) in SAL is computed in Eq.(33).

p(xt|x1:t−1) =
∑
z1:t−1

p(xt|z1:t−1,x1:t−1)p(z1:t−1|x1:t−1) (41)

where the terms of Eq.(41) are computed as in Eq.(20). The estimation of p(xt|xUt−1
) and

p(xt|xLt−1
) in SAL can be derived from Eq.(41) by simply memorizing two state vectors, one for



Table. 1 Benchmark Datasets propreties used for comparing against [33]

Datasets N d Nc S% L%

Pageblocks 5473 10 5 0.49 89.28

Forest 10000 55 7 12.6 16.2

KDD 23535 41 10 0.042 83.47

Table. 2 Benchmark datasets following [43,44]

Datasets N d Nc S% L%

Pageblocks 5473 10 5 0.49 89.28

Forest 5000 10 7 3.56 24.36

KDD 33650 41 15 0.04 51.46

the unlabelled data Hu
t and one for the labelled data H l

t . To sum up, three estimator model repre-
sented by state vectors associated with their weights: {(H ′t, w′t), (Hu

t , w
u
t ) and (H l

t , w
l
t)} and their

hyper-parameters: {(α0, α1,µ0,Σ0, k0, v0), (αu0 , α
u
1 ,µ

u
0 ,Σ

u
0 , k

u
0 , v

u
0 ) and (αl0, α

l
1,µ

l
0,Σ

l
0, k

l
0, v

l
0)} are

maintained.

4 Experiments

We evaluate SAL on three real-world benchmark datasets widely used in the AL area: Page-
blocks, Covertype (Forest) and KDDCup 99 network intrusion detection (KDD). These datasets
are downloaded from UCI repository [41]. SAL is compared against two types of stream-based
AL approaches. The first type of approaches [33] does consider challenges of data stream namely
the infinite length of the data and concept drift, but ignore concept evolution. The methods based
on [33] are as follows:

- VarUn: Variable Uncertainty, stream-based AL.
- RanVarUn: Variable Randomized Uncertainty, stream-based AL.

We also consider A baseline random sampling: Rand. The aim of this comparison is to show how
SAL performs against these methods just cited (with restricted budget). Fortunately, these methods
are integrated in the MOA data stream software suite [42] which helps carry out the experiments
without the need to implementing them.

The second type of stream-based AL approaches are developed to cope with concept evolu-
tion [43, 44]. However, they do not explicitly handle concept drift and avoid the sampling bias
problem. More details about these methods are discussed in Sec. ??. We consider the following

- lowlik : Low-likelihood criterion specialized for quick unknown class discovery [44]
- qbc: Query-by-Commitee, a stream-based verion is used in [43]
- qbc-pyp: Stream-based joint exploration-explotation AL proposed in [44]

These methods have shown good class discovery performance on unbalanced data including the
datasets that we use in this study. Hence, by comparing against them, we highlight the efficiency
of SAL in handling the concept evolution in challenging setting where the class of the datasets are
highly unbalanced. We set up the same settings described in [43].

For all the experiments, the number of particles N is set to 5. Normally, as we increase the
number of particles, the estimator model gives better estimation, but the computation becomes
heavier.

All experiments are repeated 30 times and the results are averaged in order to capture the real
performance of SAL.

4.1 datasets

The three datasets Pageblocks, Forest and KDD show multiple classes in naturally unbalanced
proportions. Such property will help manifest the capability of SAL to efficiently discover the
unknown classes while querying data samples that result in good classification performance. The
datasets are presented in Tab.1 and Tab.2, where where N is the number of instances, d is the



Table. 3 SAL hyper-parameters setting for comparing against [33]

Hyper-parameters α0 α
u
0 α

l
0 µ0 µ

u
0 µ

l
0 Σ0 Σ

u
0 Σl

0

Values 1 0 Eq. (42)

Hyper-parameters v0 v
u
0 vl0 α1 k0 k

u
0 k

l
0

Values d+ 2 0.01

number of features/attributes, Nc is the number of classes, S% and L% are proportions of smallest
and largest classes, respectively.

Pageblocks dataset: the task is to separate text from graphic area of the page layout docu-
ment. Thus, the classifier has to classify the blocks of the page detected by a segmentation process.
The blocks classes are text, horizontal line, picture, vertical line and graphic.

Forest dataset: this dataset is often used as a benchmark for evaluating stream classifiers.
The task is to predict forest cover type from cartographic variables.

KDD dataset: This dataset contains TCP connection records extracted from LAN network
traffic at MIT Lincoln Labs over a period of two weeks. Each record refers either to a normal
connection or attack.

In this paper, we use the full Pageblocks but only portions of Forest and KDD datasets. When
comparing against the first type of competitors [33], We use 10000 instances from the forest dataset
and 23535 instances from KDD dataset. As for the second type of competitors [43,44], we follows
the setting in [43] where 5000 and 33650 instances are used from Forest and KDD respectively.

4.2 Classification performance

In this section, we evaluate SAL against the methods in [33] in order to study classification effi-
ciency.

Settings As we have shown previously, SAL is flexible and any learner (classifier) can be simply
plugged in. Here, we use Naive Bayes as a learner as in [33].

The evaluation of the algorithms is based on a prequential methodology: each time we get
an instance, first we compute the probability of querying it. If selected, then it is used to train
the learner (classifier). Otherwise, it is used for testing the classifier given that all samples labels
are known insight. The classification performance of SAL is measured according to the average
accuracy which is the correctly classified data samples divide by the total testing data samples.

The hyper-parameters of the estimator model are fixed apriori (see Tab. 3). However, changing
their values has slight effect on the final results. In order to allow obscure prior, we set α0, αu0
and αl0 to 1. The means u0, uu0 and ul0 are set to 0. The covariance matrices Σ0, Σu

0 and Σl
0 are

roughly set to be as large as the dispersion of the data. We set them to the identity matrix times
the distance between the two farest points in the data:

max
(x1,x2)∈X

(||x1x2||)I (42)

The degree of freedom of the Wishart distributions v0, vu0 , vl0 must be greater than d. We set
them to d + 2. The hyper-parameters k0, ku0 and kl0 are empirically set to 0.01. Because at this
stage, we are interested only in the classification error, the hyper-parameter α1 which controls the
prior over the classes is set to a low value. It can be seen from Eq. (34) that when α1 is low the
model tends to put low probability on the emergence of new classes. We empirically set it to 0.01.
The effect of the forgetting factors λ and λ′ in Eq.(30) and Eq.(39) on SAL classification accuracy
is studied in Fig. 6, Fig.7 and Fig8. We, first, set the forgetting factors λ′ to 0.6 and study the
effect of λ for the three datasets. Then, we set λ to the values that result in the best accuracy and
study the effect of λ′. Finally, the forgetting factors λ and λ′ are set to the values that result in
the best accuracy. However, we can notice that the accuracy is almost insensitive to the change of
the forgetting factors values.

The proposed non-parametric Bayesian model tackles the lack of prior knowledge about the
streaming data where the parameter settings of SAL estimator model are almost the same for all
the three datasets. SAL performance is almost insensitive to the parameter settings of the model.



(a) Pageblocks dataset (b) Forest dataset

(c) KDD dataset

Figure. 5 Classification performance

Performance Analysis Following similar setting in [33], we carry out the experiments on the
three datasets using different budget values [0.01; 0.4]. Figure 5 shows the classification accuracy
of SAL and the competitors for diffrent values of budget Bd.

SAL noticeably outperforms the competitors on the three datasets. While the competitors
show inconsistency especially on Pageblock dataset, SAL provides classification accuracy which
consistently increases as more data samples are queried. For example, VarUn and RanVarUnc
produce fluctuating accuracy on Pageblocks dataset for Bd = 0.05, 0.1, 0.2, 0.25, 0.3, 0.35 and
0.4. Moreover, the baseline Rand outperforms VarUn and RanVarUnc for some budget values.
When using the Forest dataset, Rand shows comparable performance to VarUn and RanVarUnc.
As for KDD dataset, even though the accuracy almost converges when using budget over 0.3, SAL
strongly beats Rand, VarUn and RanVarUnc using budget less than 0.1. Such superior accuracy
with low budget is a very strong point for SAL as it aligns with the goal of AL which is high
accuracy with low budget.

The reasons why SAL outperforms the competitors are rooted from the fact that SAL tries
to directly minimize the expected future error instead of employing heuristic AL criteria as the
competitors do. We can intuitively highlight two main differences between SAL and the competitors
AL approaches. Firstly, SAL explicitly handles sampling bias problem resulting in drift aware
AL strategy. On the other side, RanVarUn combines naive randomization with stationary online
uncertainty criterion to deal with drift. By doing so, the budget is wasted on some random queries.
VarUnc does not handle sampling bias problem. Secondly, SAL takes into account the importance
of data marginal distribution while the competitors do not.



Table. 4 Number of classes discovered by different methods

Datasets Nc lowlik qbc qbc− pyp SAL

Pageblocks 5 4.72 3.42 5 5

Forest 7 7 7 7 7

KDD 15 9.76 3.32 8.71 8

Table. 5 Average class accuracy achieved using different methods

Datasets lowlik qbc qbc− pyp SAL

Pageblocks 63.23 45.79 71.72 65.65

Forest 57.13 58.68 58.45 58.71

KDD 51.21 19.42 47.35 45.14

4.3 Class discovery performance

In order to highlight the capability of concept evolution (class discovery), SAL is compared against [43,
44], the state-of-the-art methods.

Settings The performance of SAL is measured using the average class accuracy [45]. The final
accuracy is obtained by averaging accuracies. It is worth mentioning that the final class accuracy
is fairly penalized when there are mi-classifications in small classes.

SAL takes into account the data density when querying. It might then consider the data repre-
senting small classes as outliers or noise and therefore never queries them. To avoid such a scenario
and to improve the class discovery performance of SAL, we increase the importance of the small
classes by integrating online their effect in the loss function L(.). In other words, we weight the
loss according to the size of the classes seen at time t. Thus, the loss in Eq.(10) and Eq.(11) is
formulated as follows:

L′(p̂(y|x), p(y|x)) =
1

s(y)
L(p̂(y|x), p(y|x)) (43)

where s(y) represents the importance of the class. It is proportional to the number of samples from
a class y. To consider the dynamic nature of the data, we use a forgetting factor instead of counting
all the samples seen so far. If the class is new, the weight is equal to one. All the parameters of
the estimator model excluding α1 are set to the same values as in the previous section. Because
α1 controls the prior over the classes, therefore, it has impact on the class discovery performance.
As shown in Eq.(34), the model tends to put high probability on the emergence of new classes
when α1 is high. We studied its effect on each dataset. So, it is set to 0.5 for Pageblocks and KDD
and 0.4 for Forest. We can see that the value of α1 for Forest dataset is less than the others. Such
difference can be interpreted as a result of the less unbalance classes in the Forset dataset compared
to Pageblocks and KDD datasets.

Performance Analysis In these experiments, we follow the same setting as in the competitors [43,
44], where the maximun number of queries is set to 150 instances (SAL takes the budget ratio as
input).

The results of the experiments are shown in Tab.4 and Tab.5. Table 4 presents the number of
classes discovered by the different methods. Table 5 presents the average class accuracy achieved
using the different methods. The results show that SAL provides a comparable class discovery
performance compared to the competitors. SAL was able to discover all the classes for the Page-
blocks and Forest datasets and 8 out of 15 classes for the KDD data (see Tab.4). Its average class
accuracy is the best on the Forest data which can be explained by the fact that the data is less
unbalanced. That might be a result of SAL consideration of the data density which has shown
good classification performance in the previous section. As for Pageblocks and KDD, SAL has the
second and third best results among the competitors.

4.4 Discussion

While SAL shows far better classification performance than all the competitors on all datasets, its
class discovery performance is not the best on all of them. The reason can be rooted to SAL outliers



avoidance. This latter along with the sampling bias mechanism have led to strong classification
performance. Nonetheless, the class discovery performance is comparable to strong competitors
which some of them are specialized for detecting the outliers as novel classes. Furthermore, SAL
has shown better class discovery performance on the Forest data which class unbalance is less sever.

To conclude, SAL can be reliably used for novelty detection tasks, however, there might be
better alternative. On the other hand, SAL is a strong method for task requiring high classification
performance where the number of classes is unknown. In this latter, the focus is on the classification
performance, where the error for all data samples are the same and no penalization is applied or
the emergent classes are mostly normal.

5 Conclusion and future work

We proposed an active learning algorithm for data streams capable of dealing with data streams
challenges: infinite length, concept drift and concept evolution. The SAL algorithm labels the sam-
ples that reduce the future expected error in a completely online scenario. It also tackles the
sampling bias of active learning. Experimental results on real-world data showed the limitation
of the proposed approach regarding class discovery when applying to highly unbalanced datasets.
However, the main goal of the proposed algorithm is to perform classification with unknown num-
ber of classes. Furthermore, its class discovery performance is comparable to the state-of-the-art
and sometime better when the classes are not severely unbalanced.

In future investigations, we will employ the proposed method on a real world application e.g,
AR is a strong candidate. However, in such scenarios we might need to consider more challenges
such as the labelling delay.
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Appendix

Compute Equ. (21):

p(xt|zt, z1:t−1,x1:t−1) = p(xt|zt, Ht−1)

=

∫
θ

p(xt|θ)p(θ|zt, Ht−1) (44)

– If zt refers to a new component:

p(xt|zt, Ht−1) =

∫
θ

p(xt|θ)p(θ|G0) = tv1(xt|µ1,Σ1) (45)

where t refer to student’s t-distribution which we end up with as a result of using a conjugate
prior (i.e., the Normal Inverse Wishart prior) over the normal distribution parameter θ.

µ1 = µ0 (46)

Σ1 =
Σ0(k0 + 1)

k0(v0 − d+ 1)
(47)

v1 = v0 − d+ 1 (48)

where d is the dimension of the data.
– If zt refers to an already seen component:

p(xt|zt, Ht−1) =

∫
θ

p(xt|θ)p(θ|szt,t−1, nzt,t−1)

= tv2(xt|µ2,Σ2) (49)

µ2 =
k0

k0 + nzt,t−1
µ0 +

nzt,t−1
k0 + nzt,t−1

suzt,t−1 (50)

Σ2 =
1

(k0 + nzt,t−1)(v0 + nzt,t−1 − d+ 1)

(
Σ0 + sczt,t−1+

k0nzt,t−1
k0 + nzt,t−1

(suzt,t−1 − µ0)(suzt,t−1 − µ0)T
)

(k0 + nzt,t−1 + 1) (51)

v2 = v0 + nzt,t−1 − d+ 1 (52)

Compute the first term of Equ. (33):

Given zt, yt is independent of the observations x1:t−1. Hence,

p(yt|zt, Dt−1) = p(yt|zt, yt−1) (53)

As zt selects the stick breaking component generating yt, the distribution of yt depends only on
the label of the data assigned to components zt. By marginalizing the selected stick breaking
component the same way as in Eq.(19), we end up with the following equations:

p(yt|zt, Dt−1) =


nzt,yt,t

α1+n′zt,t−1
∝ n′zt,yt,t yt is an existing class

α1

α1+n′zt,t−1
∝ α1 yt is a new class

(54)



(a) Forgetting factors λ (b) Forgetting factors λ′

Figure. 6 Pageblocks data (budget 0.03)

(a) Forgetting factors λ (b) Forgetting factors λ′

Figure. 7 Forest data (budget 0.1)

(a) Forgetting factors λ (b) Forgetting factors λ′

Figure. 8 KDD data (budget 0.01)


