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Abstract. Given the complexity of biological systems, modelling the immune 

response to the spread of infectious disease is non-trivial and has been the subject 

of considerable computational efforts. HIV infection, if untreated, leads to a slow 

depletion of the immune system over many years, resulting in terminal AIDS 

disease and death. Despite decades of research, the biological mechanisms un-

derpinning the immune system response and implicit in its impairment remain a 

subject of discussion. Recent biological findings indicate the importance of func-

tional lymphatic tissue in maintaining homoeostasis of the immune system, 

which is vital for stability. HIV infection-related immune activation leads to 

chronic inflammation of this tissue and formation of non-functional scar tissue 

with detrimental effects on homeostasis. We propose a computational model 

based on the Cellular Automata formalism to quantify these effects in a simulated 

fraction of a lymphatic tissue. We also include effects of antiretroviral treatment 

and highlight implications for system representation through larger-scale simu-

lations, as well as optimizations of treatment schedules. 
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1 Introduction 

1.1 HIV infection 

Acquired Human Immunodeficiency Syndrome (AIDS) remains a global health con-

cern even three decades or more after the discovery of the Human Immunodeficiency 

Virus as its root cause, [1]. The virus preferentially infects white blood cells of a certain 

type (CD4+), which are a crucial part of the immune response, leading to failure of the 

immune system approximately 10 years after initial infection. Potent drugs, termed An-

tiretroviral Therapy (ART), have been developed, which aim at the suppression of viral 

activities. However, these medications do not provide a cure for the disease, due to the 

persistence of impermeable viral reservoirs in the body; instead they have to be admin-

istered life-long to maintain sufficient viral suppression, [2]. Daily administration of 



multiple drugs can become a problem and interruptions are common, especially in re-

source-limited settings, where drug availability is not guaranteed or social factors in-

terfere with adherence, [3].  

Moreover, Structured Treatment Interruptions (STIs) have been suggested to enable 

recovery from drug toxicities, to promote resilience of the immune system and to reduce 

drug costs, [4].  Though initial clinical studies on STIs provided encouraging evidence 

regarding safety of interrupted treatment, [5, 6], a subsequent large-scale study 

(SMART) indicated potential harmful effects, [7]. Despite these effects have not been 

characterized in detail and may have been related to study design, [8], the results led to 

a general loss of interest in assessing treatment interruptions in a clinical setting. Ques-

tions regarding safe margins of interruption regimen and the nature of detrimental ef-

fects thus remain open. 

1.2 Lymphatic tissue involvement 

It is well-known that viral replication occurs predominantly in lymphatic tissue, where 

most of the susceptible cells are located, [9]. The lymphatic system is a widespread 

network of nodes and ducts which is crucial for immune response but also for the spread 

of infected cells throughout the body.  

Recent advances in in-vivo microscopy have enabled determination of the detailed 

structure of a certain kind of lymphatic tissue, the Fibroblastic Reticular Cell Network 

(FRCn). Its mesh-like structure has been reported to mimic a small world topology with 

lattice-like properties, [10]. This view is complemented by histological imaging show-

ing that the Fibroblastic Reticular Cells (FRCs) are fixed to a scaffolding of collagen 

fibers. During inflammation, this formation of collagen fibers is greatly increased, [11], 

leading to collagen deposits (see Fig. 1) which block off FRCs from the chemical sig-

nals (cytokines) which maintain their viability, leading to depletion of these cells and 

formation of non-functional collagen tissue. Antiretroviral treatment has been shown 

to stop the formation of the scar tissue but not to enable its reversal, [12]. The formation 

of FRCn has not yet been observed in vivo due to the long timescales involved (weeks 

to years), however.  

 

 

Fig. 1. Distinct stages of collagenation of lymphatic tissue for uninfected, early, and late stage 

HIV infection (from left). Green staining denotes functional tissue, red non-functional collagen. 

Image source: [12]. 



 

1.3 Modelling approaches 

Various models have been proposed in the HIV context to help understanding the 

spread of the virus between, [13], and within hosts, [14]. The majority of these models 

have found to be based on systems of Ordinary Differential Equations (ODEs), [15], 

representing a variant of the SIR model originally used to model spread of communi-

cable diseases throughout populations. In context of within-host models, each DE de-

notes the change of a quantitative property related to HIV like viral load, healthy and 

infected cell concentrations over time. Starting from basic forms with two or three equa-

tions, models have been extended to cover additional features, like effects of antiretro-

viral treatment or immune response (resulting in systems of 20 or more equations). 

Simpler forms allow further mathematical analysis, [16], whereas more complex forms 

may be used for numerical simulation studies, [17]. For a more detailed review on ODE 

based HIV-modelling see [14] and references therein. 

In general, ODE-based approaches assume virus und susceptible cells being in an 

environment satisfying the conditions of well-mixed. That assumption fits loosely best 

to the bloodstream, which initially has been considered a main source of viral replica-

tion, [14]. However, following the increasing availability of data on tissue involvement, 

the suitability of the well-mixed assumption has been questioned recently, [18]. 

Treatment interruptions and optimizations have also been subject to modelling stud-

ies using ODEs, [15]. A popular approach, besides pure simulation studies, [19], con-

siders an optimal control problem, [20–22], to obtain treatment regimen which keep 

biological properties, like viral load or healthy cell count within predefined bounds 

which are considered to be non-critical. This view of the biological system as a kind of 

thermostat was especially useful with only limited data on anatomical compartments 

other than the bloodstream available. However, as clinical studies have indicated the 

complexity of HIV infection progression, consideration of alternative modelling ap-

proaches might be worthwhile. 

We therefore propose a computational model, which considers both spatial structure 

of lymphatic tissue and the effects of inflammation, to examine long-term development 

and to allow predictions to be made on effects of treatment interruptions, where clinical 

data is not available for reasons mentioned in section 1. Our model presents an exten-

sion of the approach reported in [15] with improved biological realism obtained from 

drawing upon recent studies. 

2 Methods - Numerical simulations 

2.1 Surrounding conditions 

For our model we assume two effects to be responsible for the depletion of CD4+ cells, 

as reported by clinical studies, [11].  

• HIV-induced direct killing of susceptible CD4+ cells 

• Impairment of survival through depletion of FRCs 



Both factors influence the concentration of CD4+ cells in the body, with the time-scale 

of the former relatively short (days to weeks) while the latter is effective at longer time-

scales (months to years). However due to regenerative capabilities of CD4+ cells, the 

first effect is reversible under antiretroviral treatment, while only minimal regeneration 

has been observed, [12], for the second. 

We apply a bottom-up modelling approach, by using the Stochastic Cellular Autom-

ata (SCA) formalism, i.e. a stochastic extension of  Cellular Automata (CA), [23]. The 

CA formalism has successfully been applied for modelling environments involving 

fixed matrices, including HIV, [24]. It utilizes a regular grid or lattice structure, where 

each site represents a single cell and its neighborhood the cell-to-cell contacts. We fur-

ther assume that each cell has a connection to its 4 immediate neighbors as suggested 

from analysis of in-vivo imaging data, [10]. In terms of Cellular Automata computation, 

this corresponds to a von Neumann neighborhood.  

An average lymph node measures about 1 cm in diameter and is of approximately 

spherical shape. From murine experiments, it is known that in FRCn, mean separation 

of the centers of mass of single cells is ~ 23 µm, [10]. A human lymph node, would 

therefore consist of around 40 Million FRCs. For our simulations, however, we con-

sider a smaller fraction, namely a 2-dimensional slice through a lymph node, consisting 

approximately of 250,000 single cells. This slice represents less than 1% of the total 

volume, however this simplified view is acceptable in this case since we do not aim at 

reproducing an anatomically correct representation of the organ (see e.g. [25]). 

From clinical data, we know that collagenation mainly starts from connections in the 

blood circulation (High Endothelial Venules). These connections appear to be scattered 

randomly throughout the tissue, [12]. We assume that collagenation increase occurs 

predominantly through elongation of existing collagen fibers as suggested by those data 

available to date on this aspect.  

2.2 Model rules 

Before simulated infection occurs, the lattice is populated with both healthy FRCs and 

co-located CD4+ cells. The CD4+ cells are assumed to maintain equilibrium (homeo-

stasis) and their concentrations in lymphatic tissue to be stable, [26]. However, HIV 

infection has a two-fold effect in our model: destroying CD4+ cells through viral infec-

tion and mechanisms of cellular apoptosis and pyroptosis, and through upregulation of 

the immune system, [26]. The upregulated immune response in turn causes increased 

collagenation of lymphatic tissue.  

The fraction of CD4+ cells which is co-located with collagenated tissue, tends to 

exhibit poorer survival than usual (in healthy tissue), in addition to the depletion due to 

HIV infection. Treatment, however reduces the latter, as well as inflammation stimula-

tion, since viral load is reduced. CD4+ cells are therefore regenerated and the colla-

genation processes in lymphatic tissue are slowed down. Upon reinstatement of upreg-

ulation of the immune system due to a treatment interruption, however, homeostasis 

disruption occurs again.  

In terms of model rules, no direct death and/or inflammation takes place other than 

by viral infection. This context gives rise to the state transition model shown in Fig. 1, 



 

which contains the four possible combinations of CD4+ cells and collagen status as 

well as permitted changes. 

 

Fig. 2. Block diagram of state changes of the SCA with probabilities of transitions, where appli-

cable (for details see Table 1.). H: healthy CD4+ cell; HC: healthy CD4+ cell co-located with 

collagen; D: dead CD4+ cell (empty); C: empty site co-located with collagen. 

As mentioned in the previous section, collagenation originates from the High Endothe-

lial Venules, where CD4+ cells enter the lymph nodes from the blood circulatory sys-

tem. The assumption, that the blood circulation acts as a means to spread infection 

throughout the body, allows us to calibrate the model using available clinical data on 

CD4+ cell long-term degradation under HIV infection, obtained from blood samples, 

[27]. Table 1 lists the model parameters together with values obtained by calibration. 

Table 1. Model parameter value selection 

Parameter Description Default value 

PT Treatment effectiveness 0.9 

PINF Infection induced inflammation, drives collagenation 0.1 

PREG CD4+ cell regeneration 0.3 

PCYT CD4+ cell death due to signaling (cytokines) 0.9 

PAP CD4+ cell death through infection (apoptosis) 0.1 

N Collagenated neighbors 1 - 4 

2.3 Simulation setup 

Using the model parametrization in this table, we aim to test the effect of different 

patterns of unstructured interrupted treatment in the long term on collagenation (and 



thus immune system degradation). To simulate interrupted treatment, we assume ‘av-

erage’ adherence (the probability that the simulated patient takes the medication each 

week).  As the treatment initiation timing has also been deemed to be important in clin-

ical studies, [28], we allow for this in the simulations as well. Table 2. summarizes the 

parameter values chosen for the simulation runs. After the treatment period (corre-

sponding to ~ 5 years), the increase in collagenation compared to that evident at the 

start of treatment is determined. 

Table 2. Simulation parameters 

Description  Value range 

Time step  1 week 

Treatment initiation  0, 50, 100, 150, 200 time steps 

Treatment adherence  0%, 20%, 40%, 60%, 80% 100% 

Treatment period duration  250 time steps 

Total simulation length  500 time steps (~ 10 years) 

 

In a second experiment, we aim to investigate the effects of structured treatment inter-

ruptions. Thus, we adopt the approach of CD4+ guidance, which has been pursued in 

recent clinical trials, [4].This approach uses a threshold value of CD4+ cell count in a 

patient as a surrogate marker to decide on interruption or (re-)initiation of antiretroviral 

treatment. For our simulations, we apply the limits used in two major clinical trials, [7, 

29] and again observe the outcomes after 500 time steps. 

3 Results and Discussion 

3.1 Unstructured interruptions 

An example model run is depicted in Fig. 3, exhibiting unstructured treatment inter-

ruptions due to incomplete adherence. In general, the model runs demonstrate good 

correspondence to clinical results, [6]. For an infection simulated to occur at time step 

0, the count of CD4+ cells drops rapidly, (characteristic of the acute phase). The cell 

count continues to drop at a slower rate until initiation of simulated treatment, which 

leads to a significant recovery in number of CD4+ cells. Incomplete adherence to the 

treatment regime causes temporary drops in cell numbers (signified by the irregular saw 

tooth pattern), as well as an overall decline in the long term. This decline accelerates 

once the treatment period concludes. Collagenation, however, exhibits a constant in-

crease, albeit with less-pronounced slope during treatment.  

In Fig. 4 we show the loss of CD4+ cells and the increase in collagenation during 

treatment periods. The results illustrate the influence of treatment initiation timing and 

of adherence to the regimen. We observe that the latter has a fundamental impact on 

long-term progression of collagenation and, consequently, on immune system fitness.  

 



 

 

Fig. 3. Time course of collagenation (blue line) and population of CD4+ cells (red line) during a 

period of interrupted treatment (100 to 350 time steps; 0.8 adherence) 

 

Fig. 4. Effect of different adherence levels (lines) and treatment initiation on collagenation in-

crease at end of treatment period. 

Treatment initiation timing has a less-pronounced effect. Results show that, if treatment 

is introduced during the early phases of infection (within the first 2 years), initiation 

time has greater impact than for later stages. However, with high adherence (80% and 
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above), collagenation can be kept within acceptable bounds even for late treatment in-

itiation. As an acceptable outcome, we take a total collagenated area of less than 75% 

at the end of the simulated 10 years. This level has been determined as a threshold from 

clinical data, [12], above which AIDS disease is imminent.  

3.2 Structured interruptions 

Example results of our second experiment concerning structured treatment interrup-

tions are shown in Fig. 5. Using the same thresholds for CD4+ guidance as two large-

scale clinical studies (SMART, LOTTI, see Table 3.), simulated data is in good corre-

spondence with clinical data. The two sets of clinical data indicate that counts of CD4+ 

cells are constantly decreasing during the course of these studies, reflected by the sim-

ulation data. Since the duration of the clinical trials was limited due to practical reasons, 

we extended simulation times to allow for an estimation of long-term effects of the 

interruption thresholds used in the studies. 

 

 

Fig. 5. Comparison of clinical data from two CD4+ guided STI studies (LOTTI, SMART; dots) 

with model output (lines) from corresponding simulation experiments.  

On this behalf, absolute values of CD4+ count limits from clinical literature were nor-

malized for use with the model by assuming an initial cell count of 1000 cells/µl.and 

results were again obtained after 500 time steps (~ 10 years). The results (see Table 3.) 

show a relatively small difference both in terms of collagenation and CD4+ counts. 

These results are remarkable in a way since the SMART study strongly indicated ad-

verse effects of interrupted treatment, whereas the LOTTI study did not find significant 

differences in this regard compared to continuous treatment. The different outcomes of 
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our simulations in terms of collagenation and CD4+ count may therefore account for 

some threshold between non-critical progression and adverse effects. 

Table 3. Experimental results for CD4+ guided structured treatment interruptions  

 CD4+ count limits [cells/µl] Simulation results (~ 10 years) 

Clinical study Interruption  Resumption Collagenation  CD4+ count 

SMART [7] 350  250 97% 260 

LOTTI [29] 700 350 81% 380 

4 Conclusion 

We have proposed a simple Stochastic Cellular Automata model, which describes the 

effects of HIV infection and antiretroviral therapy on both CD4+ cell counts and colla-

gen deposition in lymphatic tissue. Additionally, the model can predict possible out-

comes of incomplete antiretroviral treatment, both unstructured and structured (difficult 

to obtain from controlled clinical studies). Simulated adherence patterns indicated the 

importance for long-term immunological fitness, of overall adherence to medication, 

and of treatment initiation timing during the early phases of infection, with regard to 

improved management. These experiments on antiretroviral treatment timing and ad-

herence explore the implications for outcomes of Structured Treatment Interruptions, 

formerly discounted due to lack of long term predictions, despite some evident patient 

benefits.  

Further steps might include an extension of our approach to evaluate strategies for 

an improved monitoring of antiretroviral therapy by helping to identify patterns, like 

certain concentration thresholds, which may indicate a future loss of viral control given 

poor adherence by employing AI techniques. Applicability in real-life settings may fur-

therly be improved by incorporation of realistic sampling intervals to obtain biological 

properties from blood or tissue with least patient stress.  

Regarding structured interruptions, numerical simulation in conjunction with appro-

priate optimization techniques could be utilized for identifying optimal treatment regi-

men with improved biological realism compared to ODE-based approaches. A conceiv-

able way would be the use of evolutionary algorithms to optimize treatment on/off pat-

terns.  

In addition, the proposed model offers further development potential, not least as it 

represents to date only a small part of human lymphatic tissue. A realistic simulation 

size even for one lymph node requires around 100 times more lattice sites than the 

current model. This problem can be alleviated using state-of-the-art parallelization ap-

proaches, [30], to simulate different regions and this forms part of ongoing investiga-

tion. 

Unfortunately, clinical data for validation of model performance are sparse at present 

due to ethical considerations as well as measurement limitations, but recent advances 

in biological imaging and in-vivo microscopy may well provide additional insights and 

enable refinement of key parameters. 



 In summary, computational modelling of lymphatic tissue features involving cell-

to-cell connections offers considerable potential for further investigation and optimiza-

tion of long-term HIV treatment. Promising foundations using bottom-up modelling 

have already been laid for investigating infectious diseases. We think it worthwhile to 

pursue further, given growing availability of appropriate experimental and clinical data. 
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