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ABSTRACT
Processing large graphs has become commonplace across
many academic and industrial applications. We address the
computational challenge of analyzing large networks on a
single consumer-grade machine. Our strategy involves ar-
ranging networks into layers of smaller, increasingly cohe-
sive subgraphs, which is motivated by the observation that
real-world networks exhibit a hierarchical organization. We
decompose large networks to reveal the underlying hierar-
chy and extract signals from this hierarchical topology to
solve three network analysis problems viz., network compar-
ison, determining influential spreaders, and centrality com-
putation. Empirical investigation reveals that our approach
is effective and faster than state-of-the-art competing algo-
rithms.

1. INTRODUCTION
Complex networks have attracted immense attention be-

cause of their ability to model a wide variety of associations
between entities in social networks, power-grids, transporta-
tion, biological systems etc. Many of these networks contain
millions of nodes and billions of edges, and the data is easily
available on the world wide web. Several distributed as well
as disk-based frameworks [3] have been specifically designed
to analyze such large networks. However, developing algo-
rithms for these frameworks requires expertise in the use of
highly specialized programming paradigms.

In this study, we explore the question: Is graph decompo-
sition a viable strategy for effective network analysis using
a single consumer-grade machine? We address this ques-
tion by decomposing graphs into increasingly cohesive parts
using two well-known hierarchical graph decomposition al-
gorithms [6, 17]. The choice of this strategy is emboldened
by the fact that it is viable to compute graph decomposi-
tion for networks of billions of edges on a consumer-grade
PC [9]. Our approach is simple, intuitive and motivated by
the observation that real-world networks from a wide vari-
ety of domains have an inherently hierarchical organization
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[13]. Hierarchy has been recognized as a critical organi-
zational property for many complex systems, ranging from
biological networks, societies, to road networks and the In-
ternet [7]. Massive networks of the current technology era
have been analyzed, visualized and understood better after
hierarchical decomposition [1, 10].

My Ph.D. dissertation focuses on developing effective and
fast algorithms for network analysis using a single PC by
leveraging signals acquired from hierarchically decomposed
networks. The approach is to decompose the given graph
into a nested hierarchy of increasingly cohesive subgraphs.
The hierarchy imparts a natural ordering to the vertices, and
the cohesive regions revealed by the decomposition mimic
community structures.

We leverage hierarchy and approximated community struc-
ture to develop algorithms for three common problems in
network analysis, namely, network comparison, finding in-
fluential spreaders and computing node centrality. The ef-
fectiveness of these algorithms establishes that i) hierarchy
in networks is a potent property for network discrimination
ii) links between levels of the hierarchy are a fair approxi-
mation of intra- and inter-community ties iii) vertices at the
same level have similar importance and similar capability
to diffuse information. In summary, we find that hierarchi-
cal decomposition of networks is a meritorious approach for
three network analysis tasks.
Organization: Sec. 2 introduces two graph decomposition
methods. Sec. 3 presents three algorithms for network anal-
ysis. Sec. 4 delineates directions for future research.

2. HIERARCHICAL GRAPH DECOMPOSI-
TION METHODS

In this section, we introduce k-core [17] and k-truss [6]
decomposition methods that we use for eliciting network hi-
erarchy.

Let G = (V,E) be a simple, connected, undirected graph,
where V represents the set of vertices and E ⊆ V × V rep-
resents the set of edges1. An edge eij ∈ E iff it connects
vertices vi, vj ∈ V . Set Ni = {vj ∈ V |eij ∈ E} denotes
the set of neighbours of vertex vi. The degree of a vertex
δi = |Ni| denotes the number of neighbours of vi.

2.1 k-core Decomposition
The k-core decomposition organizes the graph into a hier-

archy of subgraphs (called k-cores) such that the degree of

1We use terms network/graph, node/vertex, and edge/link
interchangeably.

1



(a) k-core Decomposition (b) k-truss Decomposition

Figure 1: Hierarchical decomposition of a toy network.

Nodes with the same coreness/trussness have the same color.

Edges colored red connect nodes in different hierarchy layers.

every vertex in a k-core is at least k. A vertex that belongs
to a k-core but not to a k+1 core has coreness k. Definitions
adapted from [17] follow.

Definition 2.1. A subgraph, Ck = (Vk, Ek|Vk) of G is
a k-core iff ∀vi ∈ Vk : δi >= k and Ck is the maximal
subgraph with this property. �

Definition 2.2. Coreness (κi) of vertex vi is k i.e. κi =
k iff vi ∈ Ck ∧ vi /∈ Ck+1. �

Fig. 1a illustrates the k-core decomposition of a toy net-
work with 16 nodes and 34 edges. We use an efficient O(|E|)
k-core decomposition algorithm as proposed in [2].

2.2 k-truss Decomposition
The k-truss decomposition organizes a given graph into

a hierarchy of subgraphs (called k-trusses) such that every
edge in a k-truss is part of at least (k − 2) triangles [6]. An
edge that belongs to a k-truss but not to a (k+1)-truss has
trussness k. Definitions adapted from [18] follow.

Definition 2.3. Support (σij) of edge eij is |Ni ∩Nj | �

Definition 2.4. Subgraph, Tk = (Vk, Ek|Vk) of G is a k-
truss iff ∀eij ∈ Ek : σij >= (k − 2), and Tk is the maximal
subgraph with this property. �

Definition 2.5. Trussness (>ij) of edge eij is k i.e. >ij =
k iff eij ∈ Tk ∧ eij /∈ Tk+1 �

We define trussness of nodes in the graph. A node that
belongs to the k-truss but not to the (k+1)-truss has truss-
ness k. Formally,

Definition 2.6. Trussness (τi) of node vi is k iff vi ∈
Tk ∧ vi /∈ Tk+1 �

Fig. 1b illustrates the k-truss decomposition of a toy net-
work. We use the elegant in-memory O(m1.5) k-truss de-
composition algorithm proposed in [18] so that large network
decomposition is feasible on a consumer-grade machine.

3. NETWORK ANALYSIS ALGORITHMS
Next, we outline the solutions to the three network anal-

ysis tasks mentioned in Sec. 1.

Algorithm Purity Precision Recall Accuracy NMI
NSD-C 1.0 1.0 1.0 1.0 1.0
NSD-T 1.0 1.0 1.0 1.0 1.0
NCKD 0.67 0.51 0.87 0.73 0.67

Table 1: Quality metrics for hierarchical clustering of 15

large real-world networks.

3.1 Network Comparison
The task of network comparison is encountered in several

domains such as pattern recognition, analyses of the func-
tionality of biological networks, and study of the temporal
evolution of networks. Graph comparison entails computa-
tion of distance between a pair of networks to measure the
extent of similarity between them. State-of-the-art network
comparison methods extract network features and the dis-
tance between features quantifies network similarity.

Existing algorithms make use of features extracted from
either local neighborhood of vertices [4, 20] or global net-
work topology [12]. Both k-core and k-truss algorithms pro-
mote local (node/edge level) features to obtain global (graph
level) feature (i.e. hierarchy) of the network, which forms
the basis of characterizing networks. In this way our ap-
proach plugs the gap between the use of myopic local fea-
tures, and non-scalable global features.

We first experimented with network signatures extracted
from simple but efficient features from k-core decomposition
[16]. Encouraged by the results, we extended the study to
improve effectiveness by using sophisticated aggregation of
features derived from k-core and k-truss decompositions [14].

Algorithm NCKD uses probability distribution of nodes
at each level of the hierarchy, and the distribution of edges
within the level and between different levels [16]. Jensen-
Shannon distance between two probability distributions ex-
tracted from a given pair of networks quantifies structural
differences between them. Empirical investigations estab-
lish that these two distributions are capable of capturing
structural differences between networks and discriminating
between different genres of networks reasonably well.

Next, we use more expressive methods of distribution ag-
gregation and additionally examine truss based decompo-
sition for extracting network signatures [14]. NSD-C and
NSD-T algorithms examine core-based and truss-based de-
composition respectively, to asses node-level assortativity
(propensity to connect with other nodes at the same level)
in addition to hierarchy levels of the nodes. Quantiles of the
distributions of the two features are used as network signa-
ture and Canberra distance between signatures is computed.

In order to evaluate, fifteen large public real-world net-
works2 from three genres were clustered with the assump-
tion that graphs belonging to the same genre are structurally
more similar and hence should be grouped together by an ef-
fective network comparison algorithm. Table 1 reports qual-
ity metrics of the resultant clustering scheme delivered by
our algorithms. Having found the performance of the three
algorithms better than the state-of-the-art algorithms, we
compared NSD-C, NSD-T and NCKD for accuracy, speed
and sensitivity to noise and missing data. Further experi-
ments lead to the following conclusions. Network compari-
son using i) network signatures based on simple probability
distributions of hierarchy levels of nodes and edges is the

2Refer to paper [16] for details of the networks.
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fastest, but relatively least accurate, ii) quantile-based ag-
gregation of core levels of nodes and their assortativity is the
best of the three measures, but is less sensitive to noise and
missing data, iii) quantile-based aggregation of truss levels
of nodes and their assortativity is the slowest of the three
methods, but most sensitive to noise and missing data.

3.2 Influential Spreader
Predicting individuals who influence the spread of infor-

mation is another important task in social network analysis.
Prerequisite for understanding the spreading dynamics in
online social networks, the task also finds applications in
product marketing, promotion of innovative ideas, restrict-
ing negative information etc.. State-of-the-art methods for
predicting influential actors use facets such as - strength of
interaction with neighbors [1], community structure [19], or
hierarchy [10] in the network.

These methods for finding influential spreaders miss out
on the advantage of the interplay of the three facets. We
address the research gap by exploiting the synergy between
the three facets, and demonstrate significant improvement
over existing methods for prediction of influential spreaders.

The proposed influence scoring method IPRI (Influence
scoring using Position, Reachability, and Interaction) [8]
uses i) position of the actor in the network hierarchy, ii)
intensity of his interactions with neighbors and iii) extent
of actor’s connectivity in different communities. The algo-
rithm uses k-truss decomposition method, which confers the
dual advantage of revealing hierarchy and homophilic groups
(approximate communities) in the network. IPRI algorithm
computes the following three indices for every vertex:

i) Positional Index (τ): Trussness of a node obtained
by decomposition of the network proxies for its relative po-
sition in network hierarchy. A higher level indicates larger
neighborhood span that aids wider spread of information.
Positional Index of node vi is same as its trussness τi.

ii) Reachability Index (ρ): A node having connections
with more truss levels has higher reachability in terms of
information propagation, compared to a node having con-
nections with fewer truss levels [19]. We quantify a node’s
reachability to diverse communities as the entropy of truss-
ness of its neighbors.

iii) Interaction Index (µ): The propagation of infor-
mation is governed by the strength of interaction not only
with neighbors but also with 2-steps neighbors [11]3. Based
on this observation, the interaction index of a node is com-
puted as the sum of the sum of weights of edges incident on
neighbors scaled by their respective positional index.

IPRI algorithm computes the influence score by integrat-
ing positional index, reachability index and interaction index
of a node using a multiplicative function. The score is indi-
cator of the power to influence other users in the network,
with higher score indicating more influence.

Experimentation with large real-world social networks es-
tablishes the validity and accuracy of the scoring method.
We evaluate effectiveness of competing methods by using
SIR epidemic model on three large real-world networks (Col-
legeMsg, WikiVote, and Epinions)4. Performance of IPRI is

3Liu et al. [11] establish that the 2-step neighborhood of
nodes is a good choice that balances cost and performance
when identifying influencers.
4Refer to paper [8] for details of the networks.

compared with four measures - degree centrality (DC), k-
core (KC), k-truss (KT), Trust-Oriented Social Influencers
(TOSI). For each competing measure, top 20% nodes are
taken as initial spreaders and 100 simulations of SIR model
are run to capture the average spreading ability (SA) of top-
rankers. SA of the initial set of infected nodes is quantified
as the percentage of nodes infected during spreading pro-
cess. Figure 2a shows that average SA of IPRI algorithm
is higher than that of competing measures for all networks
afffirming its better effectiveness.

(a) Spreading Ability of IPRI (b) SC execution time averaged
over 10 runs

Figure 2: Results of evaluation of IPRI and SC.

3.3 Social Centrality
Centrality is widely-used for identifying important nodes

in a network [5]. Existing methods for discovering impor-
tant nodes do not take cognizance of inherent hierarchy and
community structure in human-centric networks for deter-
mining centrality of actors. Since humans derive benefits
concomitant with their position in the network hierarchy,
and with the strength of their intra– and inter–community
connections, we posit that a centrality measure that takes
these aspects into account gauges the importance of individ-
uals more realistically in human-centric networks.

Based on the mature theory of social capital, the proposed
Social Centrality score (SC) emulates the real-life behavior
of social actors to bond within community and bridge be-
tween communities [15]. SC score of a node quantifies its
ability to mobilize resources in the network based on its lo-
cation in the hierarchy, embeddedness in community and
intensity of relations with neighbors. Application of k-truss
decomposition elicits network hierarchy and approximated
community structure. We posit that if two nodes and the
connecting edge all have the same trussness, they are part
of the same community, and the connecting edge is an intra-
community edge. SC score is computed by extracting fol-
lowing three nodal properties from the hierarchical decom-
position of a graph.

i) Sociability Index (ω): Sociability quantifies the ex-
tent to which an actor can leverage the resources controlled
by its immediate neighbors. It takes into consideration size
of the immediate neighborhood (ego-network) and intensity
of relationships (edge-weights). Sociability index of a node
is defined as sum of weights of edges incident on it.

ii) Bonding Potential (β): Bonding potential of an
individual is determined by his hierarchical position in G as
well as by the sociability of his intra-community neighbors.
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Bonding potential of an actor is quantified as the sum of
sociability index of its intra-community neighbors weighted
by his position in the hierarchy.

iii) Bridging Potential (γ): An actor with links in di-
verse communities can draw advantages that are not avail-
able within his community. The bridging potential of an
actor is the sum of the intensity of relationship with the
inter-community neighbors scaled by their respective posi-
tions in the hierarchy.

SC score of a node is computed by aggregating its socia-
bility index, bonding and bridging potential using a multi-
plicative function. The empirical study based on diverse,
human-centric networks vindicates the propositional basis
of the model and demonstrates its validity, effectiveness,
and superior performance compared to prevailing centrality
measures. We also performed scalability tests on synthetic
networks generated from Erdös-Rényi (ER), Watts-Strogatz
(WS) and Forest Fire (FF) models with the number of nodes
varying from 1 million to 10 million and edges ranging from
2 million to ≈60 million. The results (Figure 2b) endorse our
claim of the ability of hierarchy-based algorithms to process
large graphs on consumer-grade PC.

4. CONCLUSION AND FUTURE WORK
In this doctoral study, we find that large networks can

be analyzed effectively on a single consumer-grade machine
after hierarchical decomposition. Specifically, we explored
three network analysis problems - network comparison, iden-
tifying influence spreaders and computing centrality in human-
centric social networks. Existing efficient algorithms for k-
core and k-truss decomposition are fundamental to our so-
lutions. The hierarchy of nodes and links between levels of
the hierarchy are reasonably effective signals to quantify net-
work similarity. We also observe that the cohesive regions
of the network revealed by the decomposition make a good
approximation of community structure. Integrating hier-
archy, and the resulting approximate community structure
is superior to the state-of-the-art algorithms for computing
centrality and identifying influential spreaders.

The study opens few new questions - What other net-
work analysis tasks can be solved effectively and efficiently
for massive graphs using hierarchical graph decomposition
methods? Is the divide-and-conquer approach in general,
practical for analysis of large graphs? Can horizontal par-
titioning methods be leveraged for designing scalable algo-
rithms? Answering these questions demands intense involve-
ment in the theoretical underpinnings of graph decomposi-
tion methods.
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