
Automated COSMIC Measurement of Java Swing

Applications throughout their Development Life Cycle

Nadia Chamkha
1
, Asma Sellami

1
, and Alain Abran

2

1 Mir@cl Laboratory, University of Sfax, Tunisia.

nadia.chamkha@gmail.com, asma.sellami@isims.usf.tn
2 Department of Software Engineering and I.T., ETS –University of Quebec, Canada

alain.abran@etsmtl.ca

Abstract. In highly competitive organizations, measurement is crucial to con-

trol projects to meet customer requirements. Despite some successes in soft-

ware, there are few mechanisms for the developers to rapidly and objectively

verify and track the amount of functionality to be delivered. COSMIC – ISO

19761 functional size measurement can be used to keep track of software

through its development life cycle. In this paper, we propose a “JavaCFP”

plugin tool for measuring the COSMIC functional size of java source code be-

ing developed. This JavaCFP tool can be used for controlling the completeness

of implemented functionality against specified requirements, for identifying de-

viations and for generating progress reports on the implementation of new func-

tions. JavaCFP was developed in NetBeans IDE and the “C-REG” case study is

used as an example to illustrate this plugin.

Keywords: COSMIC method, Functional size measurement, Java swing appli-

cation, Automated measurement, Plugin, ISO 19761.

1 Introduction

A crucial task for software project management is to evaluate what percent of the

promised functionality has been completed or, while the code is being written, how

much functionality remains to be developed. A timely and objective evaluation is a

key factor for tracking project progress, decision making, monitoring, and so on. A

project might appear to be successful if it is within the ‘approved’ budget but, without

the ability to verify that all the promised functions have been delivered, there is al-

ways a possibility that only a portion of the corresponding promised functions has

indeed been delivered for the budget approved for the full set of functions: therefore,

when less functions are delivered within the initially estimated budget, it is then im-

proper to claim that the budget estimates were correct [1]. Many software projects

have been canceled after large investments of effort, time, and money because of both

inadequate initial estimating and no objective determination of the status of the work

products leading to a credible re-estimation of a completion date or the cost to com-

plete the project for its approved scope [2].

20

mailto:nadia.chamkha@gmail.com

Thus, software developers need a rapid mean to objectively measure the amount of

work done. Such a measurement mean would provide all stakeholders (developers,

managers, suppliers, customers, etc.) with an objective basis to monitor and control

the completeness of functional requirements.

For the measurement of functional requirements, many researchers have proposed

to automate the COSMIC Function Points (ISO 19761) method for the sake of less

human involvement, such as in [3] [4] [5] [6], and high accuracy for the measurement

tool proposed by Soubra [7] [8] in the context of software requirements documented

in a specification tool format, such as in [9] [10] [11] [12] [13] [14] [15] [16] [17]

[18]. However, these studies did not tackle the on-going monitoring of projects

throughout the development lifecycle.

This paper proposes a tool for sizing java swing applications while they are being

developed, and its use throughout the software development life cycle. This tool is

mainly based on the COSMIC measurement process. The remaining of this paper is

structured as follows. Section 2 presents an overview of the COSMIC method and

some related works on COSMIC automation. Section 3 presents the COSMIC meas-

urement process for sizing Java Swing applications. Section 4 illustrates our meas-

urement through the case study “C-REG” source code. Section 5 illustrates the im-

plementation of “JavaCFP” with a comparison among tools based on metrology con-

cepts. Finally, section 6 presents some conclusions and suggestions for further works.

2 Background

2.1 Overview of the COSMIC Method

The COSMIC – ISO 19761 method offers a standard way of sizing the functional user

requirements (FUR) of all types of software developed in any type of environment. It

can be applied in any of the software life-cycle phases, from the requirements to their

implementation in code. Basically, COSMIC measures the software functional size

from the FUR representing the “user practices and procedures that the software must

perform” as mandated by ISO 14143 [19]. COSMIC defines a three-phase process for

measuring the functional size of software: the measurement strategy phase, the map-

ping phase, and the measurement phase [20].

─ The measurement Strategy Phase: it includes the identification of a number of

measurement context parameters to ensure that the measurement results can be cor-

rectly interpreted in the future. These parameters involve the Purpose of measure-

ment and the Scope of the software to be measured. The output of the strategy

phase is the “Software Context Model” including the identification of the software

Layers, their Functional users, the level of granularity of the documentation and the

identification of the Persistent storage of the piece of software to be measured.

─ The mapping phase: in this phase, the FUR are mapped to the COSMIC “Generic

Software Model”. Each FUR involves a number of functional processes (FP) where

each consists of a set of functional sub-processes that move data or manipulate da-

ta. For instance, a data movement moves a single data group from/to a user (re-

N. Chamkha, A. Sellami, A. Abran

21

spectively Entry and eXit data movement) or from/to a persistent storage (respec-

tively Read and Write data movement).

─ The Measurement phase: In this ISO standard, each data movement of a single data

group is assigned a measurement unit of 1 CFP (COSMIC Function Point). The

software functional size is computed by adding all data movements identified for

every functional process.

2.2 Related work on COSMIC automation with Java

The automation of COSMIC method has gained interest in managing software pro-

jects: automation can help practitioners to measure objectively and quickly the size of

their software through the software life-cycle, from early development phase [9] [3]

[4] [10] [5] [12] [7] [6] to the late coding phase ([13], [14], [15], [16], [18]). The

focus of this related work section is on FSM automation in the coding phase. For

instance:

─ Akca et al. [13] proposed a semi-automated functional size measurement of the

source code in "three_tier java business application" using COSMIC version 3.0.1.

This measurement is achieved by the use of a self-developed "measurement li-

brary" of functional processes that are triggered via the GUI of the application. The

measurement results led to 92% accuracy as compared to the manual measurement.

─ Akca et al. [21] proposed to compare the costs of semi-automatic and manual

measurements of three case studies. The results showed that the automatic process

can reduce measurement costs by up to 280% compared to the manual measure-

ment when integrated at the beginning of the coding phase.

─ Sag et al. [14] [15] proposed a COSMIC measurement tool (‘Cosmic Solver’) of

source or binary code. They proposed a number of rules to derive UML Sequence

Diagrams from the software execution at runtime with AspectJ technology. ‘Cos-

mic Solver’ was demonstrated using a three-tier Java business application sample.

The functional size extracted by the prototype was 96,8% convergent to the one

obtained by manual measurement.

─ Gonultas et al. [16] proposed to automate COSMIC for GUI Web Java business

applications based on a three-tier architecture. Like [13], the automation was lim-

ited to developing a “Measurement Library” requiring the installation of Java ap-

plication code. The library can be used only for applications with a specific archi-

tecture that use technologies of JSF, Spring and Hibernate. The automated meas-

urement converged by 94% to the manual measurement and also reduced meas-

urement duration by about 97% (e.g., 1/34 of manual measurement effort). Small

accuracy deviations were related to the technology and to the parsing method.

Table 1 presents a summary of the tools in these related studies, including the authors,

the automation context and the automation tool.

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

22

Table 1. Automation Tools for COSMIC and Java Language in the Coding Phase

Authors Context Tool

Akca et al.

[13] [21]

Business application at run-time,

software based on three-tier

architecture in Java

Run-time measurement, Semi-automated

Measurement Library by being imported

and by making small code additions

Sag, M.A

et al. [14]

[15]

Three-tier Java business applica-

tion at run-time for java

source/object code

Automated measurement by the “Cosmic

Solver” tool

Gonultas

et al. [16]

Run-time Java business applica-

tions and web-based GUI with a

specific architecture using JSF,

Spring and Hibernate

Run-time measurement

Automated Measurement

Measurement Library for Java Application

by “Static Code Installer” Component

3 COSMIC Process for Java Swing Applications

This section presents the COSMIC automated measurement process designed for

sizing Java Swing applications.

3.1 The measurement strategy phase

─ Purpose of measurement: to measure precisely the size of Java Swing applications

being implemented in NetBeans through the proposed JavaCFP tool.

─ Measurement Scope: all the functionality allocated to software as specified in the

java source code, i.e. all files having the extension « .java ».

─ Functional user: two main types are identified (e.g., external user and soft-

ware/system components). An external user can be an individual (e.g., user of the

application being measured) who interacts manually and directly with the java

swing application to be measured. An external software/system component (e.g.,

another program such as the proposed tool “JavaCFP”, services, etc.) is in a direct

relation with the application being measured. Note that the automation tool user

(e.g., developers) interacts with the application being measured only via the Ja-

vaCFP.

─ Level of granularity: the level of the invoked methods implemented in a listener

interface (e.g., event handling code). The Level of the GUI without its associated

Documentation (FUR) does not allow the usage of the COSMIC.

3.2 The mapping phase

─ Triggering events: in java source code, the event listener interfaces (e.g., Ac-

tionListener, MouseListener, etc.) attached to a “Swing control” (e.g.,

JButton, JTextField, etc.) written in a general way as

<source_object>.add<Evt_type>Listener(<Listener_object>

) can be identified as the triggering events, where:

N. Chamkha, A. Sellami, A. Abran

23

 Source_object is a “Swing Control”

 Evt_type ≡ Xxx is an event type attached to “Swing Control” (Action,

Item, Text, Menu etc.)

 Listner_object is an instance of the class implementing XxxListener

─ Functional process: corresponds to the invoked event-handler or the invoked

callback method (e.g. NameOfMethodActionPerformed(), NameOf-

MethodWindowClosing()). Once an event occurs for which there is a listener,

the source event calls the method which is provided in the listener. Such a method

is known as a callback method or event-handler method written as follows:

public void <callback_method> (<Evt_type>Event event)

{ <invoked_callback_method>(event); }

─ Object of interest: An object of interest could not have only one corresponding

object in Java. Assuming that each event listener interface is associated to an in-

voked callback method (i.e. one FP), the object of interest will correspond to the

java object class. Else, it will correspond to a set of attributes derived from two or

more object classes. In Java Swing the object-class is declared as public class:

public class <NameOfObject> extends Object

─ Data Group: corresponds to the data fields (TextField, List, Password-

Field, radioButton, etc.) describing the same object of interest.

─ Data attribute: corresponds to each data field of each object class (such as simple

object, inheritance, composition, aggregation) or derived attributes from two or

more object classes.

Table 2. The Mapping Rules “Java Swing Application”/COSMIC

Rule

RP1 All java source codes having the extension ".java" and placed in the "src" folder should

correspond to all FUR.

RP2

The body of Method corresponding to java instructions (detail of each called procedure)

refers to the level of decomposition.

RP3 NetBeans platform corresponds to the layers according to the scope of the code to be

measured.

RP4 The interface between functional users and the Java application refers to the boundary.

RP5 Each invoked callback_method that is the method triggered by a java event corresponds

to a FP.

RP6 Level of the invoked methods implemented in a “listener interface” (e.g., ActionListner,

etc.) refers to the level of granularity.

RP7 Event listener interfaces (e.g., ActionListener, MouseListener, etc.) attached to a

“Swing control” (e.g., JButton, JTextField, etc.) corresponds to the triggering event

RP8 Java object class or the set of derived attributes from more than one object classes corre-

sponds to an object of interest.

RP9 Data fields corresponding to the attributes of either simple Object or a set of attributes

derived from two or more object classes (such as simple object, inheritance, composi-

tion, aggregation) are referred to as data group.

RP10 Each data field of each object-class or derived attributes corresponds to a data attribute.

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

24

about:blank*1

The alignment of the COSMIC concepts with those of java swing applications as

described above is crucial for identifying a set of mapping rules (RP1 to RP10) in

Table 2. These rules could be applied in general and used to generate the measure-

ment rules (RM1 to RM 4) in Table 3 and (RM5 and RM6) in Table 4, and their cor-

responding measurement formulae.

3.3 The Measurement Phase

Table 3 presents the rules (RM1 to RM4) for identifying the data movement types.

For each data movement the value of 1 CFP is assigned. The rules (RM5 and RM6)

are used to provide the functional size of each functional process and that of the

source code as a whole (Table 4).

Table 3. Rules for Identifying Each Data Movement

Rule

RM1 Each java method such as getText(), getSelectedItem(), show-

InputDialog(), getValueAt() should be classified as Entry data movement

when triggered by the same event listener.

RM2 Each java method such as setText(), showOptionDialog(),

showInternalMessageDialog(), showInternalOptionDi-

alog(),showInternalConfirmDialog(), showMessageDialog(),

NotifyDescriptor.Message(), addItem(), Append(), Sys-

tem.out.println() should be classified as eXit data movement and triggered by

the same event listener.

RM3 Each java syntax [SELECT…executeQuery] should be classified as Read data

movement and triggered by the same event listener.

RM4 Each java syntax such as INSERT…executeUpdate, delete from … exe-

cuteUpdate, update… executeUpdate should be classified as Write data

movement and triggered by the same event listener.

Table 4. Measurement Rules for determining the functional size of the swing application and

each functional process derived from the source code.

Rule

RM5 The FS of the java Source code (or GUI with its FUR documentation) is equal to the

sum of the sizes of its functional processes (FP).

RM6 For each Invoked Callback_Method (i.e. FP), the FS of the Invoked Callback_Method

is equal to the number of its data movements.

N. Chamkha, A. Sellami, A. Abran

25

Based on the measurement rules RM1 to RM6, we propose the following set of

measurement formulae (1) to (7) associated with java concepts for the design of the

“JavaCFP” tool.

𝐹𝑆(𝑆𝑤𝑖𝑛𝑔𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛) =∑ 𝐹𝑆(𝐼𝑛𝑣𝑜𝑘𝑒𝑑_𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘_𝑀𝑒𝑡ℎ𝑜𝑑
𝑖
)

n

𝑖=1

 (1)

Where:

─ FS(Swing Application): Functional size of the Java Swing Application or GUI.

─ N: number of methods triggered by an event (i.e. number of invoked_Callback_Method) in

the Java Swing application.

𝐹𝑆(𝐼𝑛𝑣𝑜𝑘𝑒𝑑_𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘_𝑀𝑒𝑡ℎ𝑜𝑑𝑖) = ∑𝑥𝑖𝑗

4

𝑗=1

 (2)

─ FS(𝐼𝑛𝑣𝑜𝑘𝑒𝑑_𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘_𝑀𝑒𝑡ℎ𝑜𝑑𝑖): Functional size of the Invoked_Callback_Methodi writ-

ten in java language

─ 𝑗 = 1 ⟺ 𝐸 𝑖𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 𝑖 ; 𝑥𝑖1 = 𝑛1 × 𝐸 ∀ 𝑥𝑖1 ∈

{

𝑔𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐼𝑡𝑒𝑚()𝑖
𝑠ℎ𝑜𝑤𝐼𝑛𝑝𝑢𝑡𝐷𝑖𝑎𝑙𝑜𝑔𝑖

𝑠ℎ𝑜𝑤𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝐷𝑖𝑎𝑙𝑜𝑔𝑖
𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑡𝑖
𝑔𝑒𝑡𝑋𝑥𝑥𝑖

 (3)

𝑤ℎ𝑒𝑟𝑒 𝑛1 = {
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝐸𝑛𝑡𝑟𝑖𝑒𝑠

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

─ 𝑗 = 2 ⟺ 𝑋 𝑖𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 𝑖 ; 𝑥𝑖2 = 𝑛2 × 𝑋 ∀ 𝑥𝑖2 ∈

{

𝑠ℎ𝑜𝑤𝑂𝑝𝑡𝑖𝑜𝑛𝐷𝑖𝑎𝑙𝑜𝑔𝑖
𝑠ℎ𝑜𝑤𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐷𝑖𝑎𝑙𝑜𝑔𝑖
𝑠ℎ𝑜𝑤𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑂𝑝𝑡𝑖𝑜𝑛𝐷𝑖𝑎𝑙𝑜𝑔𝑖

𝑠ℎ𝑜𝑤𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐷𝑖𝑎𝑙𝑜𝑔𝑖
𝑁𝑜𝑡𝑖𝑓𝑦𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟.𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖

𝑎𝑑𝑑𝐼𝑡𝑒𝑚𝑖

𝑠𝑒𝑡𝑋𝑥𝑥𝑖
𝑆𝑦𝑠𝑡𝑒𝑚. 𝑜𝑢𝑡. 𝑝𝑟𝑖𝑛𝑡𝑙𝑛𝑖

 (4)

𝑤ℎ𝑒𝑟𝑒 𝑛2 = {
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 eXits

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

─ 𝑗 = 3 ⟺ 𝑅 𝑖𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 𝑖 ; 𝑥𝑖3 = 𝑛3 × 𝑅 ∀ 𝑥𝑖3 = [𝑆𝐸𝐿𝐸𝐶𝑇…𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑄𝑢𝑒𝑟𝑦𝑖] (5)

𝑤ℎ𝑒𝑟𝑒 𝑛3 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 (n3 >= 0)

─ 𝑗 = 4 ⟺ 𝑊 𝑖𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 𝑖; 𝑥𝑖4 = 𝑛4 × 𝑊 ∀ 𝑥𝑖4 ∈ {

[𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 …𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒𝑖]

[𝑑𝑒𝑙𝑒𝑡𝑒 𝑓𝑟𝑜𝑚…𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒𝑖]

[𝑢𝑝𝑑𝑎𝑡𝑒 … 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒𝑖]
 (6)

𝑤ℎ𝑒𝑟𝑒 𝑛4 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑖𝑡𝑒𝑠 (n4 >= 0)
─ ∀ 𝑗 ∈ {1, 2, 3, 4} 𝑖𝑓(𝑥𝑖𝑗 = ∅) 𝑡ℎ𝑒𝑛 𝑛𝑖 = 0 (7)

4 Illustrative Example: Execution of the Proposed Formulae

To illustrate the application of these proposed measurement formulae and show how

measurement results can be provided, we use the Course Registration (‘C-REG’ V2.0)

System Case Study [22]:

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

26

─ First, we implemented the FUR (Maintain Student Data) of “C-REG” in NetBeans.

Due to space limitation, we present here only the GUI of the Functional Process

“Add Student’s details” (Fig. 1) and its corresponding piece of code (Fig. 2) in

which the extracted data movement types are presented.

─ Second, we present in details how to measure the Functional Size of the functional

process (FP) “Add Student’s details” manually from the code.

Fig. 1. GUI to add a new student

Fig. 2. Source code associate to « ADD » button

By applying formula (2), the functional size of the FUR ‘Add student’s details is

equal to 4 CFP - see below formula (2) for FS(“ADD Student’s details”). This meas-

urement result is the same as provided in [22].

1E

1X

1W

1X

N. Chamkha, A. Sellami, A. Abran

27

𝐹𝑆(𝐴𝑑𝑑_𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑()) = ∑ 𝑥1𝑗
4
𝑗=1

= 𝑥11 + 𝑥12 + 𝑥13 + 𝑥14

= 𝑛1 × 𝐸 + 𝑛2 × 𝑋 + 𝑛3 × 𝑅 + 𝑛4 × 𝑊

= 1𝐸 + 2𝑋 + 0𝑅 + 1 𝑊

= 4 𝐶𝐹𝑃
𝑛1 = 1 (four similar functions getText())

𝑛2 = 2 (one setText() and two similar functions showMessageDilog())

𝑛3 = 0 (no function associated to Read data movement)

𝑛4 = 1 (one function insert into…executeUpdate)

5 Sizing Automatically Java Swing Application

5.1 Implementation

This section illustrates the implementation of “JavaCFP” with a comparison among

tools based on metrology concepts. This tool is called “JavaCFP” which is a Net-

Beans plugin that implements our proposed measurement formulae (section 3.3). By

using this tool, software developers will be able to generate:

─ The functional size of Java Swing applications being written and after their devel-

opment in the NetBeans environment (e.g., the functional sizes of each Entry, eXit,

Read and Write of any java Method triggered by an event).

─ The functional size of Java Swing applications after making a functional change

(i.e., the added/modified method).

─ Useful information to verify if the implemented functionality meets the COSMIC

rules. Examples:

 detection of missing Entry data movement in a functional process.;

 information on the development progress reflecting the development of a

new/modified functional process.

To illustrate how our “JavaCFP” plug-in tool works, we use as an example the

piece of code associated with the “Maintain Student Data” in “C-REG” case study

[22]. Fig. 3 shows the screen where the GUI functional size is generated. Note that the

measurement results provided by “JavaCFP” tool are the same as those provided

manually in [22].

Fig. 3. Sizing the “Maintain Student Data” with “JavaCFP” tool

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

28

Fig. 4 gives some snapshots of the “JavaCFP” tool. Only four interfaces are pre-

sented.

2

1

3

4

Fig. 4. Snapshot of “JavaCFP” Tool with Case Study “C-REG”

Interface 1 is used to select the piece of code to be measured. Of course, the code

should be implemented in NetBeans IDE. By clicking the icon “JavaCFP” plugin in

the toolbar, a dialog box appears in interface 2 asking whether the tool user wishes to

keep track or not of the previous measurement results (e.g., the software functional

size can be generated while the coding is in progress and after the coding is complet-

ed). In interface 3, “JavaCFP” automatically generates the functional size of the piece

of code in terms of CFP units at a point in time during its development. Interface 3

also provides detailed information about the functional size of each data movement

type (E, X, R, and W). Note that the real execution time (processing time) per second

is provided as the program is executed. For instance, interface 3 exhibits the pro-

cessing time which is about 46 seconds for 15 CFP developed including 997 LOC.

These measurement results can be documented into Microsoft Excel format through

Interface 4.

N. Chamkha, A. Sellami, A. Abran

29

5.2 Comparison

In this section, we use some of the concepts from the ISO International Vocabulary

on Metrology (e.g., measurement method, measurement procedure, devices

for measurement, accuracy of measuring devices, and indicating measuring instru-

ment) [23] [24] [25] as criteria for comparison among the proposed COSMIC-based

tools.

─ Measurement method: since the COSMIC method behind the tool is well-designed,

all the proposed tools [13] [14] [16] should provide the adequate functional size of

swing applications.

─ Measurement procedure: it is necessary to run GUI for all the proposals [13] [16]

[14].

 In [13], the measurement procedure is divided into three steps. The first step

consists of recording the data movement. The second one includes the discov-

ery of functional processes. The third step consists of counting the data

movements in each functional process to provide the code functional size.

 In [16] the authors start with creating notifications for COSMIC data move-

ment sub-types. After that, they identify the functional processes and calculate

their CFP sizes.

 In [14] four steps are proposed: (1) generate sequence diagrams from code

(Java source or binary), (2) get its text version to (3) capture data movements

and data manipulation through AspectJ, (4) extract the functional execution

traces from user execution.

 Our JavaCFP tool identifies the FUR of the selected Java Swing application

(without any execution) directly from the source code in the "Source Packag-

es". Then, for each .java file (JFrame form), we identify the triggering event

from Event listener attached to "Swing Controls". Then, we identify the func-

tional process (FP) from invoked callback_methods. For each FP, we identify

the different data attributes belonging to the data groups where each data

group describes the same object class. Finally, the details of measuring the

functional size of each FP are provided by using measurement formulae (1)

and (2).

─ Devices for measurement

 [13] proposed a semi-automated measurement library for GUI Java applica-

tion.

 [16] proposed an automated tool “static code installer” that used a library

component.

 [14] proposed an automated instrument named “Cosmic Solver”.

 we proposed an automated JavaCFP tool that can be used directly either when

the code is being developed or after code completion.

─ Measurement accuracy: a measurement is said to be more accurate when it has a

smaller measurement error.

 In [13], the authors reported that the use of the library from a “student registra-

tion” system led to a corresponding ratio of 92% between the code functional

sizes calculated automatically against those calculated manually.

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

30

 In [16] the automatic measurement converges by 94% compared to the manual

one.

 In [14] numbers are quite similar with 96,8% convergence.

 In our proposal, the measurement results obtained manually and automatically

by “JavaCFP” are similar: it gives the details with 100% of measurement ac-

curacy, including the same functional processes with their detailed descrip-

tions. It guarantees the accuracy of measurement at any time during the code

implementation..

─ Indicating measuring instrument: compared to the other proposed tools in [13] [14]

[16], our JavaCFP tool provides an indication of deviations (e.g., programming de-

fects) when there is a “COSMIC rules violation” illustrating the part of the code

not yet completed, and the “development progress” that indicates the current de-

velopment of a new or modified functional process.

6 Conclusions

This paper has presented the JavaCFP tool that can be used as a basis to assist the

developers in writing their java swing applications and generating the COSMIC func-

tional size of that application at any time during its development lifecycle. This Ja-

vaCFP tool can be used by developers having different programming styles and even

when they are not familiar with COSMIC method. A condition is that each event lis-

tener interface should be associated to only one object.

Throughout this paper, we first extracted the java concepts that can be mapped

with COSMIC concepts, and generated the mapping rules, measurement rules and

formulae that allow measuring manually the COSMIC functional size of swing appli-

cation. After that from these formulae, we proposed the “JavaCFP” tool to help de-

velopers generate automatically the COSMIC size of swing application while it is

being written. The benefits of using “JavaCFP” are not limited to generating automat-

ically the software functional size: JavaCFP also detects which functionalities are

omitted or added within a method (e.g. missing Entry), and identifies the current de-

velopment progress (new or modified functional process).

Tool users can also verify the completeness of the implemented functionality

against specified FUR for tracking project progress purposes. The COSMIC size of

java swing application can be measured very precisely when the FUR are described

without uncertainty.

In further works, we will use machine learning concepts for the identification of

the objects of interest in the swing code. We will investigate the variation of meas-

urement results when functional changes and improvements occurred in the code. We

will also investigate the benefits of the proposed tool in industry, including for meas-

uring the project productivity and the data collection for future estimation needs.

N. Chamkha, A. Sellami, A. Abran

31

References

1. A. Abran, Software Project Estimation: The Fundamentals for Providing High Quality

Information to Decision Makers, Wiley-IEEE Press, 2015, p. 261.

2. R. E. Fairley, Managing and Leading Software Projects, Wiley-IEEE Computer Society (c)

2009, ISBN 978-0470-29455-0, p510, February 2009.

3. M. S. Jenner, "Automation of Counting of Functional Size Using COSMIC-FFP in UML,"

12th International Workshop Software Measurement- IWSM, Magdeburg, Germany, 2002.

4. Z. Li, M. Nonaka, A. Kakurai and M. Azuma, "Measuring functional size of interactive

software: a support system based on XForms-format user interface specifications," Third

International Conference (QSIC’03), Dallas, Texas, 2003.

5. N. Condori-Fernandèz, S. Abrahão and O. Pastor, "On the Estimation of Software

Functional Size from Requirements Specifications," Journal of Computer science and

Technology. Vol. 22, pp. 358-370.

URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.5364&rep=rep1&typ

e=pdf, 1 Mai 2007.

6. S. Barkallah, A. Gherbi and A. Abran, "COSMIC Functional Size Measurement Using

UML Models," in Software Engineering, Business Continuity, and Education,

Communications in Computer and Information Science, International Conferences ASEA,

DRBC and EL 2011, Held as Part of the Future Generation Information Technology

Conference, FGIT 2011, Volume 257, 2011.

7. H. Soubra, A. Abran, S. Stern and A. Ramdan-Cherif, "Design of a Functional Size

Measurement Procedure for Real-Time Embedded Software Requirements Expressed

using the Simulink Model," Joint Conference of the 21st Int'l Workshop on Software

Measurement and 6th Int'l Conference on Software Process and Product Measurement -

IWSM-MENSURA, Nara, Japan, 2011.

8. H. Soubra, A. Abran and A. Ramdane-Cherif, "Verifying the Accuracy of Automation

Tools for the Measurement of Software with COSMIC -- ISO 19761 Including an

AUTOSAR-Based Example and a Case Study," Joint Conference of the International

Workshop on Software Measurement and the International Conference on Software

Process and Product Measurement, DOI: 10.1109/IWSM.Mensura.2014.26, Rotterdam,

The Netherlands, 6-8 Oct. 2014.

9. V. Bévo, G. Lévesque and A. Abran, "Application de la méthode FFP à partir d'une

spécification selon la notation UML: compte rendu des premiers essais d'application et

questions," 9th International Workshop Software Measurement - IWSM, Lac Supérieur,

Canada, 1999.

10. S. Azzouz and A. Abran, "A proposed measurement role in the Rational Unified Process

(RUP) and its implementation with ISO 19761: COSMIC-FFP," Software Measurement

European Forum - SMEF, Rome, Italy, 2004.

11. G. Grau and X. Franch, "Using the PRiM method to Evaluate Requirements Models with

COSMIC-FFP," International Conference on Software Process and Product :

Measurement -IWSM-Mensura, Mallorca, Spain, 2007.

12. B. Marín, O. Pastor and G. Giachetti, "Automating the Measurement of Functional Size of

Conceptual Models in an MDA Environment," Functional Size of Conceptual Models in

IWSM/Mensura’18, September 18–20, 2018, Beijing, China

32

an MDA Environment. the international conference on Product-Focused Software Process

Improvement (PROFES '08), Andreas Jedlitschka and Outi Salo (Eds.). Springer-Verlag,

Berlin, Heidelberg, 2008.

13. A. Akca and A. Tarhan, "Run-time Measurement of COSMIC Functional Size for Java

Business Applications: Initial Results," International workshop on software Measurement

and 7th International Conference on Software Process and Product Measurement - IWSM-

MENSURA, Assisi, Italy, 17-19 Oct. 2012.

14. M. A. Sağ and A. Tarhan, "Measuring COSMIC Software Size from Functional Execution

Traces of Java Business Applications," Joint Conference of the International Workshop on

Software Measurement and the International Conference on Software Process and

Product Measurement - IWSM-MENSURA, October 2014, pp. 272-281.

15. M. A. SAĞ and A. TARHAN, "COSMIC Solver: A Tool for Functional Sizing of Java

Business Applications," Balkan Journal of Electrical and Computer Engineering, vol. 6,

pp. 1-8, 2018.

16. R. Gonultas and A. Tarhan, "Run-Time Calculation of COSMIC Functional Size via

Automatic Installment of Measurement Code into Java Business Applications," 41st

Euromicro Conference on Software Engineering and Advanced Applications, 2015.

17. S. Bagriyanik and A. Karahoka, "Automated COSMIC Function Point measurement using

a requirements engineering ontology," Information and Software Technology, 2016.

18. A. Tarhan, B. Özkan and G. C. İçöz, "A Proposal on Requirements for COSMIC FSM

Automation from Source Code," Joint Conference of the International Workshop on

Software Measurement and the International Conference on Software Process and

Product Measurement -IWSM-MENSURA, 5-7 Oct 2016, Berlin. pp. 195–200.

19. ISO/IEC 14143-1, Information technology - Software measurement - Functional size

measurement - Part 1: Definition of concepts, International Organization for

Standardization, Geneva, 2007.

20. COSMIC, The COSMIC Functtionall Size Measurementt Method: Measurementt Manuall

Version 4.0.2, C. Symons and A. Lesterhuis, Eds., The COSMIC group. URL:

www.cosmic-sizing.org, December 2017.

21. A. Akca and A. Tarhan, "Run-Time Measurement of COSMIC Functional Size for Java

Business Applications: Is It Worth the Cost?," Joint Conference of the 23rd International

Workshop on Software Measurement and Eighth International Conference on Software

Process and Product Measurement - IWSM-MENSURA, Ankara, Turkey, 2013.

22. A. Lesterhuis, A. Abran and C. Symons, "Course Registration (‘C-REG’) System Case

Study, Version 2.0.," https://cosmic-sizing.org/publications/course-registration-c-reg-

system-case-study/, December 2015.

23. A. Abran, Software Metrics and Software Metrology, J. W. &. Sons, Ed., Wiley-IEEE

Computer Society Press, 2010.

24. A. Sellami and A. Abran, "Measurement and metrology requirements for empirical studies

in software engineering," 10th International Workshop on Software Technology and

Engineering Practice, pp 185-192, doi={10.1109/STEP.2002.1267631}, 2002.

25. A. Sellami, "Processus de vérification des mesures de logiciels selon la perspective de

métrologie". Doctoral thesis, École de technologie supérieure, Montréal, Canada 2005.

N. Chamkha, A. Sellami, A. Abran

33

