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In this work we study the evolutionary optimization algorithms for solving the problems in structural 

bioinformatics: protein-peptide docking and prediction of three-dimensional peptide structure from 
amino acid sequence. We describe the main assumptions that reduce these tasks to the continuous 
global optimization problems. Some special features of the given problem and the difficulties of using 
evolutionary algorithms are discussed. We propose a way of using evolutionary optimization 
algorithms based on using grid-based empirical quantile function. The paper describes used schemes 
for building and using of the quantile function. We describe used scheme for parallel sampling based 

on flood fill algorithm. The GPU-accelerated approach for quantile function evaluation and the 
resulting speed-up is presented. We made a comparison with the relevant docking method within a 
particular force-field and present the results of the experiments.  
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1. Introduction 

In this study we focus on two problems in structural bioinformatics: prediction of three-
dimensional peptide structure from amino acid sequence and protein-peptide docking. The current 
approaches to peptide structure prediction and protein-peptide docking are based on Anfinsen’s 
hypothesis [1] which demonstrates that native-like conformations represent unique, low-energy, 

thermodynamically stable conformations. Therefore, the peptide structure prediction and protein-
peptide docking can be considered as global optimization problems where the objective is to find the 
conformation with the lowest energy. The optimization problem for protein-peptide docking is 
formulated as the minimization of the binding energy. 

Problems solving typically involves the use of combined methods which require a number of 
various steps and special techniques. However, such approaches are beyond the scope of the current 
study. The main motivation of this study is to create a platform base for comparison of different 
evolutionary algorithms within a certain force-field. The Rosetta [2] framework was used for full-atom 

complex structure representation and scoring (energy evaluation). A detailed description of solution 
encoding for given problems and Rosetta force-field can be found in [2, 3]. 

Here we focused on a protein-peptide docking with the following features. Firstly, the peptide 

binding site is known. Secondly, the protein interface has a linear structure (e.g. 2-Helix channel). 
Thirdly, peptide structure is also linear. The set of these properties is shown in Figure 1. The main 
feature of this task is to demonstrate that there is no need in searching of peptide beyond the borders of 
a particular spot (restricted by two spheres) and looking over different peptide conformations. There is 
also another condition since we study evolutionary optimization algorithms. We must save simple box 
constraints for continuous search space (i.e. lower and upper limit for each component). 

We propose an approach that takes the conditions above into account and avoids rough penalty 

method. The main idea of this approach is to transform components values responsible for peptide 
backbone dihedral angles, translation, and rotation by multivariate empirical quantile function [4] into 
values that correspond to the position of the peptide at the proper binding site. This kind of 
transformation involves two steps. First of all, we need to know the proper values of each used 
component, in other words, “sample”. Secondly, we need to transform values from unit hypercube to 
proper component values with a certain procedure that works on a given sample. Thus, the empirical 
quantile d-dimensional function is F:[0,1]d → R

d which may be defined recursively by using 

univariate quantile transform [4]. 

2. Multidimensional Flood Fill Algorithm 

As illustrated in the example in Figure 1, it is possible to cover the continuous area by the 
sample (red and blue points) based on the regular grid. Since we know the binding site it is possible to 
generate a sample that includes all peptide conformations within a restricted search area. 

 

Figure 1. Protein interface and peptide structure (PDB: 1JWG). Search area, sample points and sampled values 

 (black) after quantile transform. Trie-based structure for implicit sample storage



Proceedings of the VIII International Conference "Distributed Computing and Grid-technologies in Science and 
Education" (GRID 2018), Dubna, Moscow region, Russia, September 10 - 14, 2018  

587 
 

The sampling procedure is the following. At the first step we place peptide in a search area 
and determine the first initial sample point that based on a regular grid for all selected components. 
For instance, there are two initial points (the blue one) in the example in Figure 1. Then we perform 
Flood fill [5] procedure and determine all possible peptide conformations within a connected area. For 
this purpose we implement modified parallel queue-based multidimensional Flood fill algorithm with 

Von Neumann and Moore neighborhood. There are neighborhood points for each sample point starting 
from initial. Some points may and some may not define the components that place peptide in a proper 
position. The main idea of neighborhood processing with speed-up is presented in Figure 2. It is 
important to note that when we check peptide position we do not evaluate energy. Therefore, the check 
is fast. We use Von Neumann neighborhood (2·d neighboring points) for components and Moore 
neighborhood (3d-1 neighboring points) for the translation and rotation components.  

 

Figure 2. The part of the parallel Flood fill algorithm. The resulting speed-up 

3. Multivariate Empirical Quantile Transform 

Let suppose we have a sample in explicit (real-valued) form stored in the n×d matrix, where n 
is the sample size and d is the dimension of each vector. We are using multivariate empirical quantile 

function that is defined [4] recursively. Thus, for a given d-dimensional vector from [0,1]d it is 
necessary to go d-times through the entire sample for grid-based univariate quantile transform. At this 
procedure it is necessary to compare each sample vector with upper and lower bound vectors that 
obtained on each transform iteration. It is possible to parallelize selecting procedure that depends on 
sample size. As illustrated in Figure 3, each component of the vector is compared with the boundary 
values. The additional matrix contains sign marks obtained after comparison. After sum reduction 
procedure it is possible to determine whether the current vector is suitable or not.  

 

Figure 3. The structure of the OpenCL procedure GPU2 for parallel data processing 

In this work we implement multiple GPU-based approaches using the OpenCL framework 
with the following names: GPU1 for the procedure without the additional matrix, GPU2 for the 

procedure with additional matrix and sum reduction, GPU3 for the procedure with sum reduction and 
without the additional matrix. The obtained results for each approach are shown in Figure 4. The 
calculations were made with the usage of the Heterogeneous Platform HybriLIT [6] with NVIDIA 
Tesla K40s. 

Since a sample is generated from grid values it is possible to store it in the implicit form at the 
trie-based structure as shown in Figure 1. The implicit form means that instead of the actual real value 
the position in the grid is stored. The trie-based structure presented in Figure 1 consists of nodes with a 

position in a grid. The node index indicates a number of sample vectors in a subtree. It is important to 
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note, that the depth of the trie-based structure is equal to a vector dimension. The implicit univariate 
quantile transform procedure is similar to an explicit variant.  

The multivariate empirical quantile transform allows us to create a continuous search space 
and use evolutionary algorithms for peptide structure prediction based on fragments. Fragments are 
short sequence segments that are generated from existing PDB structures. They are a core feature of 

the Rosetta prediction protocol and are used in the assembly of proteins. This approach substantially 
cuts down conformational search space. 

4. Results and Discussion 

In this study we perform docking experiments with three different methods. First is the 
parallel Adaptive Differential Evolution with Optional External Archive [7] (JADE). The choice of the 
evolutionary algorithm is founded on the previous studies [3]. The second is the qJADE algorithm 
which is the JADE algorithm with empirical quantile transform that handles peptide in the restricted 
binding area that illustrated in Figure 1. The third is the Rosetta FlexPepDock (FPD) [8] protocol from 

the Rosetta framework. It performs a high-resolution protein-peptide docking using a Monte Carlo-
Minimization-based approach to refine all the peptide’s degrees of freedom (rigid body orientation, 
backbone, and side chain flexibility) as well as the protein receptor side chains conformations.  

The experiments were done with 1JWG:B (Protein Data Bank id) protein-peptide complex 
with peptide DLLHI (FASTA format). The problem dimension is 54 parameters. The multivariate 
quantile transform is used for 15 components. The radius of each sphere illustrated in Figure 1 is equal 
to four angstrom. It should be noted that for qJADE in the experiments the sample size was about 75 

million. Using one node at HybriLIT with two Intel Xeon twelve-core processors the calculations for 
parallel multidimensional Flood fill algorithm were made in about 5 hours. 

The obtained docking results are shown in Figure 4. The set of FPD values is achieved with 

similar to JADE and qJADE run time. There were 10 independent runs for JADE and qJADE 
algorithms. The error is specified in Angstroms. Since the Rosetta energy function includes 
knowledge-based terms [2] energy score presented in Figure 4 has an indirect conversion to physical 

energy units like kcal/mol. 
As it can be seen the FPD outperforms other approaches and achieves a satisfactory sub-

angstrom precision. It should be noted that FPD protocol requires the initial starting position of the 
peptide. Here we considered near-native initial peptide state where a turnover along one axis relative 
to the native state in the binding spot was made.  

The results of the experiments show that qJADE outperforms JADE. However, it shows poor 
results in comparison to FPD. This indicates the inability of the used evolutionary optimization 
algorithm to overcome the complex energy landscape. 

 

Figure 4. Energy score against alpha Carbon Root-Mean-Square Deviation from the native conformation. 

Boxplot for each method. Performance of the used schemes of parallel calculations 
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5. Conclusion 

The results of this study show that it is possible to reduce search space for peptide structure 
prediction and protein-peptide docking to a unit continuous hypercube by using quantile transform. 
This takes into account the remaining parameters, which undergo a linear interpolation conversion 
procedure. This formulation of the problem allows us to create a platform for an objective comparison 

of various global optimization algorithms. 
In this study we proposed a grid-based approach for multivariate empirical quantile function 

and modified multidimensional Flood fill algorithm. We showed the performance of the quantile 
transform in an explicit form using the OpenCL framework and the speed-up of the parallel Flood fill 
algorithm. We presented a trie-based structure for implicit sample storage and a trie-based quantile 
function evaluation. 

It is important to note that the proposed approach of using quantile function can be applied to 
a wide range of tasks with a similar formulation. Implementations of the multidimensional Flood fill 

algorithm and the multivariate empirical quantile function are available [9] on publicly accessible 
GitHub repositories. 
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