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Abstract—The Cancer Imaging Archive (TCIA) hosts over 11 
million de-identified medical images related to cancer for research 
reuse. These are organized around DICOM-format radiological 
collections that are grouped by disease type, modality, or research 
focus. Many collections also include diverse non-image datasets in 
a variety of formats without a common approach to representing 
the entities that the data are about. This paper describes work to 
make these diverse non-image data more accessible and usable by 
transforming them into integrated semantic representations using 
Open Biomedical Ontologies, highlights obstacles encountered in 
the data, and presents detailed representations data found in select 
collections.  
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I. INTRODUCTION  
Since 2011 the Cancer Imaging Archive [1] has been NCI’s 

primary resource for acquiring, curating, managing and 
distributing images and related data to support Cancer Research. 
TCIA hosts over 11 million de-identified medical images of 
cancer for research reuse, organized around DICOM-format 
radiological collections related by disease type, modality, or 
research focus. The PRISM (Platform for Imaging in Precision 
Medicine) initiative seeks to sustain  and expand TCIA’s 
capabilities to meet the rapidly evolving requirements of cancer 
Precision Medicine research. Through discussions with 
investigators in the imaging and cancer research communities, 
and through review of TCIA helpdesk tickets, we have identified 
a number of near-term goals and challenges. These include 
enhanced support for reproducible research and data publication 
capabilities; expanded support for additional data types, 
including pathology data, and radiomics and pathomics feature 
sets; uniform management of non-image data; semantic query 
mechanisms and enhanced data exploration; and automatic 
curation of current and new data types.  

Many TCIA collections include non-image data in a variety 
of formats, often as downloadable spreadsheet files without a 
common representation scheme. These include patient 
demographics, diagnoses, treatments, outcomes, TNM staging, 
gene assays and other test results, etc. Some collections provide 
data dictionaries or other documentation that aid the human 
reader in interpreting these data. However, these are not 
machine-interpretable, and hence are difficult to query. 
Complicating this is the use of different representations schemes 

in different collections to encode the same or similar 
information.  

This paper describes work to make these diverse non-image 
data more accessible and usable. Our immediate aims are to: 1) 
make these data sets queryable; 2) make them computer-
interpretable, and hence available for automated reasoning and 
more amenable to exploration and analysis; and 3) establish 
links between related data across collections and across data 
types.  

To support these aims we are converting these data into 
common, semantically-enhanced representations using Open 
Biomedical Ontologies Foundry [2] resources, and integrating 
the results in a single repository with this shared representation, 
to facilitate queries such as “Which patients in lung cancer 
collection have been diagnosed with metastatic colon cancer, 
and how was that diagnosis obtained?”, or “Which patients 
across multiple head and neck cancer collections have tumors 
specifically in their oropharynx, and have been diagnosed with 
human papillomavirus, and how were those diagnoses 
obtained?”  

By using ontologies and semantic web technology we are 
making these data more readily available for query, automated 
reasoning, exploration, and analysis. TCIA users in general are 
not familiar enough with biomedical ontologies and semantic 
web technology to write SPARQL queries to access data. This 
semantic repository with transformed non-image data will serve 
as the back-end data store for user-friendly tools that support 
search and exploration of the data.  

II. NON-IMAGE DATA IN TCIA COLLECTIONS  

A. Overview 
The Cancer Imaging Archive currently has 74 publicly-

available collections. We reviewed and compared the de-
identified non-image data provided with these collections as a 
first step toward crafting a semantic representation useable to 
represent the bulk of non-image data in TCIA collections.  

A large group of 18 of the public collections is provided by 
The Cancer Genome Atlas [3]. These collections, whose names 
all start with “TCGA”, structure their data using a common, 
standardized representation scheme that is published as an RDF 
file in Turtle format [4]. TCGA linked data has also been 
exposed as a SPARQL endpoint [5]. Our work to integrate non-
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image data from all TCIA collections into a single repository 
will be made much easier in the case of TCGA collections 
because of their use of a standard scheme and semantic web 
technology. Throughout this paper we discuss and describe only 
non-TCGA public collections, because those are the collections 
that best illustrate the diversity of available data and data 
representations, and the need for improved representations.  

Of the 56 non-TCGA public collections, 17 include 
downloadable non-image data (often labeled “clinical data”). 
This is in addition to, and separate from, the image metadata 
present in many collections.  We have manually reviewed each 
of the files provided with these collections. This section provides 
a summary and discussion that illustrate the richness and 
diversity of the data available, and the diversity of representation 
schemes currently used. This diversity poses significant 
challenges to integration of the non-image data, but also poses 
an unique opportunity to vastly improve the usability of this data 
with semantic web technology and biomedical ontologies.  

 

The current submission process for TCIA non-image data 
does not specify the use of any common data model or schema, 
or require adherence to any specified semantics. This leads to 
some of the submitted data being ambiguous, or difficult to 
interpret. The semantically-rich representations that we are 
designing for this data, as presented in this paper, will become 
part of new submission tools TCIA that automate this curation 
as much as possible.  

The non-image data contained in these 17 collections can be 
placed into 7 major categories: diagnosis, histology, genetic 
testing, demographics, treatment, morbidity, and neurological 
testing. The latter is a category only found in one of the 
collections that currently provide non-imaging data. Most of 
those categories are already broken down into subcategories. 
E.g. “treatment” is broken down into “primary: chemo”, 
“primary: surgery”, and “primary: radiation”, and “adjuvant”. 
Table I below indicates for each of these 17 collections the 
presence or absence of data in each category and subcategory. 
The types of non-imaging data that exist for a collection is 

TABLE I.        DIVERSITY OF NON-IMAGE DATA IN PUBLIC TCIA COLLECTIONS 
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marked green in the table. Types of non-imaging data that do not 
exist in a collection are represented by blank cells. If a collection 
provides data for at least one subtype of data, the major category 
is marked as existing. In very few cases a major category is 
represented as existing, when none of their subtypes are part of 
the collection’s non-imaging data, but some data that of that 
category exists. The diagonally striped cells signify data that was 
not described or identified sufficiently and they are represented 
based on an assumption of the authors. One example for this is 
“laterality”. In the “BREAST_DIAGNOSIS” collection we find 
both laterality applied to the diagnosis (on which side the tumor 
is located) and laterality for MRI, which specified for which side 
an MRI was taken. Other collections did provide laterality 
information, but didn’t specify whether that was tumor 
localization information or imaging localization information. 
We did assume that this data represented the localization of the 
tumor, since that was most consistent with the context.  

The following sections describe three of these collections 
that we have examined in more detail, highlighting specific 
hurdles presented by the representation schemes used. We then 
present ontology-based representations we have designed for 
use in our transformation of these data into a semantic 
repository. 

B. LIDC-IDRI Collection 
The Lung Image Database Consortium image collection 

(LIDC-IDRI)1 [6, 7] contains non-image data for patients, many 
of whose lung cancers are the result of metastasis of other cancer 
types from locations other than their lungs. The data is provided 
as a spreadsheet labeled as “patient diagnoses”. The sheet has 
columns for a de-identified patient ID linking it to other data 
about this person (including images), a patient-level diagnosis, 
diagnosis method, a primary tumor site for metastatic disease, 
and similar diagnosis information about lung nodules. We use 
this sheet as a running example throughout this section, focusing 
on the patient level diagnosis, including diagnosis method, and 
the primary metastatic tumor site. 

An immediate obstacle to querying these data is the use of a 
terse coding system to indicate values. This system is presented 
as a key within column headers in the sheet itself (shown in Fig 
2), making it available to a human reader, though not necessarily 
easy to interpret. This key is not computer-interpretable, making 
the data difficult to query even if it were extracted from the 
spreadsheet and used to populate a database table in this form. 

 For example, in this representation scheme, a 3 in the patient 
level diagnosis column indicates malignant metastatic disease, 
while a 3 in the diagnosis method column indicates that the 
relevant diagnosis was determined by surgical resection. Similar 
information is provided in separate columns for each identified 
lung nodule. To make matters worse, files with the same type of 
information in other collections use different encoding schemes, 
further complicating integrated querying and use of the data. 

Even fields in this file with more explicit entries can be 
unclear or ambiguous. For instance, the tumor site column in this 
file consists of short, free text (non-standardized) descriptions, 
as illustrated in the excerpt in Table III, which shows three 
 

1 http://dx.doi.org/10.7937/K9/TCIA.2015.LO9QL9SX 
 

consecutive entries (ID8 - ID10) that indicate metastatic colon 
cancer by using three different values in the tumor site column: 
“colon cancer,” “colon,” and “metastatic colon cancer.” In this 
case, all three contain the word “colon”, so a string-based text 
search for that term would locate these records. However, query 
and integration of these data will obviously benefit from 
translation to a computer-interpretable, shared representation 
that is explicit about which entities are involved. 

Some of these tumor site entries do explicitly denote 
anatomical locations, containing only short words like ‘colon’ 
and ‘bladder.’ Others are descriptions that mention cancer types 
mixed with information that indicates locations (‘non small cell 
lung left lower lobe’, ‘uterine cancer’, ‘granular cell tumor of 
the trachea’). Some only name a disease type (‘lymphoma’, 
‘adenocarcinoma’), or use an abbreviation that may allow a 
person with domain knowledge to infer the location, such as  
‘HCC’ -- hepatocellular carcinoma, which occurs in the liver, or 
‘NSCLC’ -- non-small cell lung cancer. As discussed more in 
the Methods section below, we found necessary to manually 
curate an intermediate spreadsheet with location-denoting terms 
before this data could be converted to an OWL representation. 

C. Two Head and Neck Cancer Collections 
The Head-Neck-PET-CT collection2 [8] contains non-image 

data, including diagnostic and treatment information for patients 
with head and neck cancer. The HNSCC (Head and Neck 
Squamous Cell Carcinoma)[9, 10] collection3 contains much of 
the same information. These collections overlap significantly in 
their contents, though with some notational differences. This 
section compares a subset of the non-image data provided with 
these two collections, focusing on a few key data types in these 

2 http://doi.org/10.7937/K9/TCIA.2017.8oje5q00 
3 http://doi.org/10.7937/K9/TCIA.2017.umz8dv6s 

TABLE II.        LIDC-IDRI PATIENT-LEVEL DIAGNOSIS  KEY 

 
 

TABLE III.        TEN ENTRIES FOR DIAGNOSIS, METHOD, AND TUMOR SITE 

 
Fig. 1. TABLE III.      

 
 

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 3

ICBO 2018 August 7-10, 2018 3



collections for which we have  implemented ontology-based 
representations, as discussed more in the Methods section. 

Both of these head and neck cancer collections contain 
additional types of data not discussed here, many of which we 
also will transform into semantic representations for our 
integrated repository as this project progresses. As shown in 
Tables IV and V below, both collections include the biological 
sex of the patient, among other demographic data, as well as 
tumor staging information, HPV status, and an indication of the 
primary tumor location.  

III. METHODS  
We designed and built representations for these data using 

OBO Foundry ontologies, including the Human Disease 
Ontology [11] and The Uber Anatomy Ontology, Uberon [12]. 
Instances for individual entries are linked to ontology classes to 
explicitly represent locations, disease types, and diagnosis 
methods. These representations are used to transform data from 
spreadsheets from these three collection into OWL/RDF files 
that are loaded into a triple store database for reasoning and 
query. This section presents the details of these representations, 
and of the translation process. 

A. Ontology-based Representation 
Fig. 1 shows how we represent a patient’s positive HPV 

diagnosis in the head and neck collections. In this figure the 
labeled ovals stand for ontology classes. The smaller circles 
stand for anonymous instances, which are linked to their classes 
through rdf:type assertions. The rectangle stands for a labeled 
instance. HPV status is provided in these sheets without specific 
information about how it was determined, so we can assert only 

TABLE V.        EXCERPT FROM HEAD-NECK-PET-CT COLLECTION 

 

 
Fig. 2.   Disease and diagnosis for a lung cancer patient 

 

 
Fig. 1.   Representing positive HPV status for a head and neck cancer patient 

 

TABLE IV.        EXCERPT FROM HEAD AND NECK SQUAMOUS CELL 
CARCINOMA COLLECTION 
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that an ‘OGMS: diagnostic process’ with some ‘OBI: assay’ has 
occurred (this includes physical examinations or other methods 
that are not strictly lab tests), and that the output was an ‘OGMS: 
diagnosis’ about an instance of ‘DO: papillomavirus infectious 
disease’ that inheres in the patient. Not shown in Fig. 1 is 
information about the patient’s cancer, though a link exists, both 
in reality and in our representation of this data, via the patient. 
The representation of this information of head and neck 
collection data is nearly identical to the representation used for 
the lung collection, as shown in Fig. 4. 

Fig. 2 shows our representation for a patient’s disease and 
diagnosis using data from the LIDC collection as an example. 
The patient record shown here is for a person whose colon 
cancer has spread to their lungs, as determined by a biopsy. This 
patient has two instances of ‘DO: cancer’, one that inheres in 
the patient’s ‘UBERON: colon’ and one that inheres in the 
‘UBERON: lung’. An ‘OGMS: diagnostic process’ with some 
‘OBIB: biopsy’ as part has produced as output an ‘OGMS: 
diagnosis’ that is about the patient. The biopsy evaluated an 
‘UBERON: portion of tissue’ that was derived from an ‘EFO: 
neoplasm’ that was located in the patient’s lung. In this case the 
dataset does not contain more specific information about which 
type of cancer inheres in each location. Note that an OWL 
reasoner could infer more specific types for these instances from 
the assertions in Figure 2, and from logical definitions in the 
Disease Ontology, concluding e.g. that the instance of cancer 
inhering in the patient’s lung is an instance of lung cancer. 

B. Data Transformation and Populating Repository 
As discussed above, the lung cancer collection uses some 

values that require manual interpretation by a human to identify 
which anatomical entities, if any, are specified.  To facilitate the 
transformation of this collection into OWL, we built a 
spreadsheet listing all 110 unique values from the primary tumor 
site field, and used this to record and track the extent to which 
each value in that field indicates an anatomical location. Of these 
110 primary tumor site entries, only 9 are short terms that 
precisely denote an anatomical location. 54 others explicitly 
mention an identifiable location, often as part of a description 
that also names the disease type. In total, including entries where 
the location can be inferred from use of a standard abbreviation, 
76 out of 110 indicate a clear location for the primary tumor of 
the metastatic disease. For each these, we manually located and 
recorded the matching Uberon class in the sheet for use in our 
ontology-based representation of the data. This secondary sheet 
was then used as input to a Python script to retrieve and record 
the correct anatomical classes for tumor sites even for those 
records where the literal value stored in the source sheet did not 
strictly identify a location.  

To transform the two head and neck collections, manual 
curation of a secondary sheet was unnecessary because the 
tumor site entries in those two sheets contain only one of a few 
values: 'Larynx', 'Nasopharynx', 'Hypopharynx', 'Oropharynx’,  
'Glottis', 'Sinus', 'Oral cavity’, 'unknown', ‘CUP'. A value of 
‘CUP’ indicates cancer of unknown primary, so it carries similar 
information as the value ‘unknown’. The other seven values 
clearly denote anatomical locations found in Uberon. 

These collection data sheets, including a secondary sheet for 
the lung collection, were processed with a Python script using 

the RDFLib library to build OWL individuals from the instance 
data contained in each sheet, asserting the prescribed relations 
among these individuals, and saving the results in an OWL file. 
As part of this process, the script reads the spreadsheets, 
determines which URIs are needed, and automatically generates 
OntoFox [13] requests for each external ontology used. OntoFox 
is a web-based term extraction tool that supports ontology reuse. 
Our script uses OntoFox to retrieve hierarchical information and 
select other details only for those classes and relations that are 
needed to represent the data. It invokes the ROBOT command 
line tool [14] to convert between RDF serializations, e.g. to 
convert OntoFox’s default RDF/XML output into turtle format 
for ease of use with RDFLib. The resulting OWL files are added 
to a triple store, making them available for reasoning and query. 

IV. RESULTS  
The resulting triple store contains assertions linking patient 

identifiers to RDF instances representing patients, affected body 
parts, diagnoses, relations among those, etc. OBO Foundry 
Ontologies provide the types (OWL classes) for these instances 
and define the relations (OWL object properties).  

This database can be queried using SPARQL to identify 
patient records matching criteria based on these fields that were 
previously inaccessible, as well as queries that operate across 

 
Fig. 3.    Transforming non-image data 

 

idl
HNSCC-01-0050
HNSCC-01-0054
HN-HGJ-018
HNSCC-01-0098
HNSCC-01-0116

PREFIX inheres: <http://purl.obolibrary.org/obo/RO_0000052> 
PREFIX human: <http://purl.obolibrary.org/obo/NCBITaxon_9606> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX identifier: <http://purl.obolibrary.org/obo/IAO_0020000> 
PREFIX denotes: <http://purl.obolibrary.org/obo/IAO_0000219> 
PREFIX oroph: <http://purl.obolibrary.org/obo/UBERON_0001729> 
PREFIX cancer: <http://purl.obolibrary.org/obo/DOID_162> 
PREFIX has_part: <http://purl.obolibrary.org/obo/BFO_0000051> 
PREFIX hpv: <http://purl.obolibrary.org/obo/DOID_11166> 
PREFIX disease: <http://purl.obolibrary.org/obo/DOID_4> 
select ?idl {  
    # the person and identifier 
    ?person rdf:type human: . 
    ?id denotes: ?person . 
    ?id rdf:type identifier: . 
    ?id rdfs:label ?idl . 
     
    # the person has hpv 
    ?hpv rdf:type  hpv: . 
    ?hpv inheres: ?person . 
     
    # the person's oropharynx 
    ?person has_part: ?o . 
    ?o rdf:type oroph: . 
 
    # cancer in the oropharynx 
    ?d inheres: ?o . 
    ?d rdf:type cancer: .    
} limit 5 
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collections. For example, the query shown above gets a list of 
patient identifiers for patients who have been diagnosed with 
HPV, and who have also been diagnosed with a cancerous tumor 
in their oropharynx. This query is able to retrieve results from 
both the Head-Neck-PET-CT collection and the Head and Neck 
Squamous Cell Carcinoma collection because the relevant data 
are now represented in the same way in the triple store.  This 
enhanced data is immediately available for simple reasoning 
tasks allowed by the use of ontologies, e.g. using the partonomic 
information built into UBERON to support queries at different 
levels of anatomical granularity. 

V. DISCUSSION AND FUTURE WORK  
The Cancer Imaging Archive contains a wealth of diverse 

non-image data that is currently difficult to work with because 
much of it, though publicly available, is locked away in 
spreadsheet files that must to be downloaded and interpreted 
individually. As part of ongoing development work for TCIA 
and for the PRISM platform, we are examining the contents of 
these files, cataloging and characterizing the data therein, and 
designing realist ontology-based representations that explicitly 
the entities that these data are about.  

The examples presented in this paper demonstrate the 
usefulness of ontologies and semantic web tools for knowledge 
representation to enable querying of otherwise opaque non-
image data in these TCIA collections. We are expanding this 
work beyond the collections presented here to include more data 
from the archive. The graph-based nature of RDF stores allows 
us to incrementally add and link knowledge from different 
collections and files within them as the representation work 
proceeds, simplifying the task of integrating these data.  

Because most users prefer not to write SPARQL queries, a 
next step is the development of user-friendly interfaces to help 
end users search, explore, and interpret these data. We also plan 
to provide ontology-driven submission tools that will 
automatically generate  the same representations, allowing for 
seamless integration of new datasets. 
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